
Inference by Minimizing Size, Divergence, or their Sum

Sebastian Riedel David A. Smith Andrew McCallum
Department of Computer Science

University of Massachusetts
Amherst, MA 01003, U.S.A.

{riedel,dasmith,mccallum}@cs.umass.edu

Abstract

We speed up marginal inference by ignoring
factors that do not significantly contribute to
overall accuracy. In order to pick a suitable
subset of factors to ignore, we propose three
schemes: minimizing the number of model
factors under a bound on the KL divergence
between pruned and full models; minimizing
the KL divergence under a bound on factor
count; and minimizing the weighted sum of
KL divergence and factor count. All three
problems are solved using an approximation
of the KL divergence than can be calculated
in terms of marginals computed on a sim-
ple seed graph. Applied to synthetic im-
age denoising and to three different types of
NLP parsing models, this technique performs
marginal inference up to 11 times faster than
loopy BP, with graph sizes reduced up to
98%—at comparable error in marginals and
parsing accuracy. We also show that mini-
mizing the weighted sum of divergence and
size is substantially faster than minimizing
either of the other objectives based on the
approximation to divergence presented here.

1 INTRODUCTION

Computational resources are naturally scarce; hence,
in practice, we often replace generic graphical mod-
els and their machinery with more restricted classes
of distributions. For example, dependency parsing in
Natural Language Processing can be formulated as in-
ference in a Markov network (Smith & Eisner, 2008).
While this approach allows great modelling flexibil-
ity and principled integration of several modules of an
NLP pipeline, practical applications such as parsing
web-scale data usually apply local classification ap-

proaches or models of limited structure that give better
runtime guarantees than, say, BP on large and densely
connected factor graphs (Nivre et al., 2004).

Here we show that generic approaches based on graphi-
cal models can be much more competitive if we restrict
ourselves to a subgraph of the network that sufficiently
approximates the full graph. Choi & Darwiche (2006)
show how we can find such a graph by minimizing
the KL divergence between the full and partial model;
however, they require inference in the full graph—the
very operation we want to avoid. How, then, can we
efficiently find a sufficient subgraph without inference
in the full network?

We show how—and when—the KL divergence can be
approximated using the marginals of a simple proxy
“seed” graph, such as a subgraph with only unary fac-
tors. We represent the divergence as the sum of three
terms: (1) a sum over isolated per-factor divergences,
based on the marginals of the seed graph, for all fac-
tors that are not in the target subgraph; (2) a term
that measures the error we introduce by using the seed
graph instead of the subgraph for calculating the di-
vergence; and (3) a term that measures the error we
introduce by considering the remaining factors in iso-
lation. Informally, the error terms will disappear with
increasing independence between the potentials of the
remaining factors under the proxy distribution.

Based on this representation, we approximate the di-
vergence by the sum of isolated per-factor gains. This
approximation can be very efficiently computed but
will work poorly if the unused potentials are highly
correlated under the distribution of the proxy graph.

How can we use this approximation to decide which
factors to ignore? We show three distinct ways to an-
swer this question in a principled manner. First, we
can minimize the size of the graph under a bound on
the approximate KL divergence; second, we can min-
imize the approximate divergence under a bound on
the number of factors; finally, we can minimize the

weighted sum of both approximate divergence and fac-
tor count. The first and second objectives can be min-
imized in O(n log n) time, where n is the number of
factors that are not in the proxy graph. The third
objective only requires O(n) time.

We empirically evaluate all approaches on state-of-the-
art graphical models for dependency parsing in several
languages. For some of these models no efficient dy-
namic programs (DP) exist. For others, DPs are avail-
able, but belief propagation (BP) has been shown to
be significantly faster while providing comparable ac-
curacy (Smith & Eisner, 2008).

We show that our three objectives speed up BP in-
ference by an order of magnitude with no loss in ap-
plication accuracy (e.g., 11 times for English). This
is achieved while using only a fraction (e.g., 1.3% for
English) of the factors in the original graph. We also
show that jointly minimizing the sum of size and diver-
gence is the fastest option, with accuracy comparable
to the other two objectives.

In the following, we first introduce our notation (§2).
Then we present the optimization problems we are try-
ing to solve and upper bounds on the KL divergence
that make this possible (§3). We relate our approach
to existing work (§4), evaluate it on a synthetic image
denoising and real-world NLP data (§5), and conclude
(§6). In the appendix we give proof sketches of our
approximations and bounds.

2 BACKGROUND

Here we consider binary Markov networks (Wain-
wright & Jordan, 2008): our distributions are repre-
sented by undirected graphical models over the space
Y def= {0, 1}|V | of assignments to binary variables V :

pF (y) def=
1
Z

∏

i∈F
Ψi (y) . (1)

specified by an index set F and a corresponding fam-
ily (Ψi)F of factors Ψi : Y !→ #+. Here Z is the
partition function ZF =

∑
y∈Y

∏
i Ψi (y). We will

restrict our attention to binary factors that can be
represented as Ψi (y) def= eθiφi(y) with binary feature
functions φi (y) ∈ {0, 1}.Finally, for a subset of fac-
tors G ⊆ F we will write ΨG to mean

∏
i∈G Ψi.

When using Markov networks we often need to calcu-
late expectations of the variables and features under
the model. These can be used for calculating the gradi-
ent during maximum likelihood learning and providing
confidence values for predictions. They are also often
used for posterior decoding, where the state of each
variable is chosen to maximize its marginal probabil-
ity, possibly subject to constraints.

Formally, we seek to find the mean vector of the suf-
ficient statistics of pF . That is, for each factor i we
want to calculate

µFi
def=

∑

φi(y)=1

pF (y) = EF [φi] . (2)

Note that the expectations of a variable can be formu-
lated as the expectation of a unary feature for this vari-
able. We also often need the expectations and covari-
ances for potentials and their products, abbreviated as
EY

X
def= EX [ΨY] and CovX,Y

Z
def= CovZ (ΨX ,ΨY)

We assume that we already have some means of infer-
ence for our model at hand—at least for small versions
of it. This could be, among others, loopy belief propa-
gation (Murphy et al., 1999), a Gibbs sampler (Geman
& Geman, 1990), a naive or structured mean field ap-
proach (Jordan et al., 1999), or a further developed
and optimized version of the above.

Many of these approximations, however, are still too
slow for practical purposes because they scale, at best,
linearly with network size. When we consider fac-
tor sets that grow super-exponentially (Culotta et al.,
2007), or at least with a high polynomial (e.g., when
grounding factor templates with many free variables
as present in Markov Logic Networks), inference soon
becomes the bottleneck of our application. But do
these networks need to be so large, or can we ignore
factors, speed-up inference, and still achieve sufficient
accuracy?

3 MINIMIZING SIZE AND
DIVERGENCE

As noted above, there are least three ways to tackle
the question of finding an optimal subset of factors to
approximate the full network. The first can be phrased
as follows: among the distributions that are within
some bounded KL divergence to the full graph, find the
one that is smallest in terms of factor count. Formally,
we need to find pĤ such that

Ĥ = arg min
H⊂F,D(pH||pF)≤ε

|H| . (3)

The second way amounts to the following question:
among the family of distributions that arise from pick-
ing m factors out of the full graph, which one is the
closest to the full distribution? Formally, we have to
find pĤ such that

Ĥ = arg min
=H⊂F,|H|≤m

D (pH||pF) . (4)

This is formulation is variational in the traditional
sense: we are searching for a good approximation in a

family of tractable distributions, where “tractable” is
defined as “small in size.”

Finally, we can ask: what is the sub-graph that mini-
mizes the weighted sum of size and KL divergence?

Ĥ = arg min
H⊂F

D (pH||pF) + γ |H| . (5)

In this case we are explicitly searching for a trade-off
between efficiency and accuracy and do not need to
commit to a specific bound on size or divergence. Cru-
cially, it turns out that for the approximations on the
KL divergence presented here, choosing Ĥ for prob-
lem 5 is asymptotically and empirically faster than for
problems 3 and 4.

All three problems are combinatorial—the space of
models we have to search is exponential in |F|. Ob-
viously, we cannot search it exhaustively, not only be-
cause the space is large, but also because evaluating
the KL divergence generally requires inference in pH.

3.1 KL DIVERGENCE WITH PROXIES

We cannot try every possible subset of factors H, per-
form inference with it, and calculate its KL diver-
gence to F . Instead, we can use some small initial
seed graph, perform inference in it, and use the re-
sults to approximate the KL divergences for several
H. Clearly, the effectiveness of this approach hinges
on the choice of seed graph, but previous work in re-
laxation and cutting plane methods has shown that
simple “local” approximations can go a long way as ini-
tial formulations of inference problems (Riedel, 2008;
Tromble & Eisner, 2006; Anguelov et al., 2004). In
the following we will qualify and quantify when this
approximation works well.

The cornerstone of our approach is a formulation of
the KL divergence for pH that factors into isolated
per-factor divergences which can be calculated using
the beliefs of a proxy graph G ⊂ H. In the following
we will assume that N def= H\G and R def= F \H; that
is, H can be derived from the proxy G by adding the
new factors N , and from the full graph H by removing
the remaining factors R.

Proposition 1. Let SX,Y
Z

def= log
(

CovX,Y
Z

EX
Z EY

Z
+ 1

)
−

CovZ(log(ΨX),ΨY)
EZ(log(ΨX)) and IXZ

def= log
(

EX
ZQ

i∈X Ei
Z

)
, then

D (pH||pF) =
∑

i∈R
D

(
pG ||pG∪{i}

)
+ SN ,R

G + IRG .

In words: we can calculate the divergence between pH
and pF by first summing over the divergences between
pG and pG∪{i}for all remaining factors i ∈ R, and then

adding two error terms: SN ,R
G that measures a corre-

lation between the new product of potentials ΨN and
remaining product ΨR; and IRG that measures a corre-
lation between the remaining individual potentials Ψi

with i ∈ R.

This leads us to the following factorized proxy-based
approximation of the KL divergence

D1
G (pH||pF) def=

∑

i∈R
D

(
pG ||pG∪{i}

)
. (6)

It is this approximation that we will consider when
minimizing the three objectives we have presented ear-
lier. Clearly, its accuracy will depend on the correla-
tion between the features of the factors in R and N ,
as measured by SGN ,R + IGR. In particular, it is easy to
show that if the features of all remaining factors R are
independent of each other, and if ΨN is independent
of ΨR, then the approximation is exact.

Finally, note that Riedel & Smith (2010) show that
with an expectation for the feature φi under pG we
can efficiently calculate the gain D (G||G ∪ {i}) as

gG (i) def= D
(
pG ||pG∪{i}

)
= log

(
1− µGi + µGi eθi

)
−µGi θi.

3.2 SIZE MINIMIZATION

The factorized proxy-based divergence allows us to
find an approximation to problem 3 by simply min-
imizing the number |N | of new factors under a con-
straint on the approximate divergence D1

G . That is,
for a given proxy G we need to find the additional fac-
tors N according to

arg min
N :D1

G(pG∪N ||pF)≤ε
|N | . (7)

This can be achieved by first sorting the factors ac-
cording to their gain gG (i). Then we iterate over the
sorted factors, starting at the lowest gain, and discard
each factor i until the sum of the gains of all discarded
factors exceeds ε.

3.3 DIVERGENCE MINIMIZATION

The factorized proxy-based approximation also helps
us to find an approximate solution to problem 8 by
solving

arg min
N :|N |≤m−|G|

D1
G (pG∪N ||pF) . (8)

This amounts to simply choosing the m − |G| factors
i with highest gG (i), which again requires sorting the
candidate factors.

Algorithm 1 Ignorant Inference using black-box
solver S and initial seed graph G.

1: µ← inferS (G)
pick additional factors w.r.t. to objective and bound

2: N ← pickUntilSumExceedsε (µ,F \ G)
N ← pickUntilCountExceedsm (µ,F \ G)
N ← pickAllOverγ (µ,F \ G)
add to seed graph

3: H← G ∪N
inference on final model, if changed

4: if H *= G µ← inferS (H)

3.4 JOINT MINIMIZATION

Based on the approximate divergence we can ap-
proximate the objective in problem 5 by γ |F| +∑

i∈F\{G∪N} (gG (i)− γ). This leads to the equivalent
optimization problem

arg min
N

∑

i∈F\{G∪N}

(gG (i)− γ) (9)

This problem has the additional benefit of not re-
quiring sorting of candidate factors: in order to
solve it we simply add all factors with gG (i) ≥
γ. Choosing H thus requires O(|F \ G|) rather than
O(|F \ G| log |F \ G|) time.

3.5 ALGORITHM

Algorithm 1 summarizes our method and the three ba-
sic variations we investigate here. We start with infer-
ence in some initial graph G (step 1) using some black-
box method S. In our case this graph is always the
fully factorized set of local factors. Then we choose an
additional set of factors N either by discarding them
until the sum of discarded factor gains gG (i) exceeds ε
(MinSize), by picking the m factors with highest gain
(MinDivergence), or by picking all factors with gain
higher than γ (MinJoint).

3.6 UPPER BOUND FOR DIVERGENCE

Once we have found an H and performed inference in
it, we can ask how close it really is to the full graph
F in terms of KL divergence. This could be used to
decide whether to continue inference, or to give confi-
dence intervals for the marginals we return. Note that
here we do not require a proxy graph; instead, we can
directly evaluate D (H||F) using the inference result of
the algorithm. Also note that the bounds in §3.1 can-
not be applied here because we cannot easily evaluate
the constants that depend on second order moments.

In the following we give the tightest possible bound
when we only want to consider first order moments

(i.e., feature expectations). This bound is derived
from an exact bound on the expectation presented by
Kreinovich et al. (2003) and assumes, with no loss of
generality, positive weights.

Proposition 2. Let L
def= |F \ H| and (i1, . . . , iL)

be a sequence of the remaining factors F \ H sorted
in increasing order of means µHi . Let µ′0

def= 0,
µ′L+1

def= 1 and µ
′

j
def= µHij

for j ∈ {1, . . . , L}. With

C def= log
(∑L

j=0

(
µ′j+1 − µ′j

)
e−

Pj
k=1 θik

)
we then have

D (pH||pF) ≤
∥∥θF\H

∥∥
1
−

〈
µGF\H, θF\H

〉
− C

and there exists at least one distribution with the given
means for which the divergence equals the upper bound.

Riedel & Smith (2010) give a looser version of this
bound without the C term (which is always non-
negative). Also, while this bound is the tightest pos-
sible when we are only given potential expectations,
it may still be quite loose in many cases. This is due
to the fact that it allows potentials to be maximally
correlated and in practice this is rarely the case.

4 RELATED WORK

There is a link between our work and relaxation
approaches for MPE inference, in which violated
factors/constraints of a graphical model (Anguelov
et al., 2004; Riedel, 2008), weighted Finite State Ma-
chine (Tromble & Eisner, 2006) or Integer Linear Pro-
gram (Riedel & Clarke, 2006) are incrementally added
to a partial graph. Our work differs in that we (a)
tackle marginal instead of MPE inference and (b)
frame the problem of choosing factors as optimization
problem.

Sontag & Jaakkola (2007) compute marginal proba-
bilities by using a cutting plane approach that starts
with the local polytope and then optimizes some ap-
proximation of the log partition function. Hence they
ignore constraints instead of factors. While this ap-
proach does tackle marginalization, it is focusing on
improving its accuracy. In particular, the optimiza-
tion problems they solve in each iteration are in fact
larger than the problem we want to compress (if we
use BP as solver for our sub-problems).

This paper can partly be seen as theoretical justifi-
cation for the work of Riedel & Smith (2010), who
heuristically use a threshold on the gain function (§3.1)
in each iteration in order to choose which factors to
add. Here we prove that they are effectively optimiz-
ing the weighted sum of proxy-based factorized diver-
gence and graph size we present in §3.4. Moreover,
we present a tighter bound on divergence—in fact,

the tightest bound possible when we only first order
moments are available. We also provide further ex-
periments and analysis. Previous work on training-
time feature induction for MRFs (as well as decision
trees) also applied greedy, iterative divergence mini-
mization (Della Pietra et al., 1997), and it would be
interesting to apply our methods for adding multiple
features at training time.

Our approach is also closely related to traditional
variational methods such as the naive and structured
mean field (Wainwright & Jordan, 2008). While
these approaches assume the structure to be fixed and
search for good parametrization/weights, we keep the
parametrization fixed and search for good structure.
One advantage of our approach is that it can dynam-
ically adapt to the complexity of the model. That is,
while some some areas of the graph may be modelled
as well through local factors alone, some others are
easiest to capture by the (possibly loopy) structure of
the full graph. Where these areas are usually depends
on the observed evidence, and hence we cannot iden-
tify a fixed structure in advance. Moreover, in our case
we do not pick a particular family of distributions in
advance; instead, we allow it to grow as needed.

Finally, our approach is related to edge deletion in
Bayesian networks (Choi & Darwiche, 2006). They re-
move edges from a Bayesian network in order to find
a close approximation to the full network useful for
other inference-related tasks (such as MAP inference).
The most obvious difference is the use of Bayesian
Networks instead of Markov Networks. They also ask
which factors to remove from the full graph, instead
of which to add to a partial graph. This requires in-
ference in the full model—the very operation we want
to avoid. Moreover, the method they use for choosing
edges to remove corresponds to MinDivergence, and
therefore requires sorting of edges. Hence our Min-
Joint approach is asymptotically faster.

5 RESULTS

We now investigate and describe our algorithms in a
controlled environment to display some of their prop-
erties (§5.1) and show their effectiveness in a real-world
NLP application (§5.2).

5.1 SYNTHETIC DATA

Our approach is inspired by the following observation
we made in practice: Often models consists of a very
confident “local” graph, and the long distance factors
only serve to correct the few mistakes the local model
makes. We argue that in such cases (a) the three objec-
tives choose a small subset of factors that is sufficient

to correct the remaining errors, and (b) the decrease
in graph size leads to quicker inference.

To test this claim in a controlled environment we use
an existing synthetic image denoising dataset (Kumar
& Hebert, 2004). It consists of 4 original images, and
50 versions of each with added noise. The factor graph
we apply is an Ising model on a 64 x 64 binary grid
with nodes V and edges E defined as follows:

p (y|x) =
1

Zx
exp

∑

(i,j)∈E

[yi = yj] + α
∑

i∈V

xiyi

Here each xi is the observed pixel value with added
noise, normalized to have 0 mean. The parameter α
controls the confidence we give into the unary factors,
and the observations we have. Hence, if we choose the
unary factors as seed graph, we hope that for large
α our algorithms will add only a few factors but still
produce accurate results. Note that this model uses
the edge weight 1. We ran experiments with varying
weights and observed the same qualitative trends.1

We choose the free parameters m, ε and γ for the dif-
ferent optimization strategies by setting α = 5 as ref-
erence point, and tune each parameter to yield factor
graphs with 50% of the original factors. This allows us
to directly compare the different speed-ups and errors
at α = 5, as well as each methods qualitative behaviour
for a range of α values. Finally, for inference in the
sub-graphs, and full graph, we use Tree-Reweighted
BP (TRW).

Figure 1a shows the relative size of the final factor
graph compared to the full graph for our three objec-
tives. Figure 1b presents the corresponding average
error in marginals with respect to the marginals of the
full graph (approximately calculated using TRW). Fi-
nally, figure 1c shows the relative speed-ups compared
to inference in the full graph.

All figures show a clear picture: the more confidence
we have in our seed graph, the better all methods
perform. For the case of MinDivergence (where we
bound size) we achieve increasingly accurate results
with the same number of factors. For both MinSize
(where we bound divergence) and MinJoint we require
fewer factors to achieve equivalent levels of accuracies.
Moreover, this reduction in size leads to direct im-
provements in inference speed, despite having to run
inference twice.

Finally, note that for α = 5 (all methods give 50% re-
ductions in graph size) MinJoint is clearly faster than
both other approaches. This suggests that its advan-

1Clearly inference in general became harder with higher
interaction strength. We omit further details for brevity.

2 4 6 8 10

0.
4

0.
6

0.
8

1.
0

alpha

S
iz
e

(a) Relative size

2 4 6 8 10

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

alpha

A
vg

. E
rr

or

MinSize
MinDiv
MinJoint

(b) Average Error

2 4 6 8 10

1.
0

1.
5

2.
0

2.
5

alpha

S
pe
ed
-u
p

(c) Speed-up

Figure 1: Impact of varying confidence parameter α.

tage in terms of asymptotic complexity pays off in this
case. We make a similar observation for parsing below.

5.2 DEPENDENCY PARSING

The synthetic nature of the above experiments helped
us to describe some of the basic properties of MinSize,
MinJoint and MinDivergence, but it is not yet clear
whether these are useful methods in practice. To show
their utility in the real world, we also evaluate them
on three second order dependency parsing models, as
presented by Smith & Eisner (2008). These models
yield state-of-the-art performance for many languages
and are very relevant in practice.

These factor graphs are computationally challenging:
they employ a number of variables quadratic in the
sentence length to represent each of the candidate de-
pendency links between words, and a cubic number of
pairwise factors between them. Factor graphs for En-
glish, for example, average about 700 nodes and 20,000
factors per sentence.

The models we consider here also contain a single
“combinatorial factor” that connects all n2 variables
and ensures that the distribution models spanning
trees over the tokens of the sentence. Since there are an
exponential number of valid trees, naively computing
this factor’s messages is intractable; instead, we fol-
low Smith & Eisner (2008) in calculated messages by
combinatorial optimization. Crucially, our approach
treats this machinery to calculate the initial and final
beliefs (steps 2 and 4 of algorithm 1) as a black box.

We trained and tested on a subset of languages from
the CoNLL Dependency Parsing Shared Tasks (Nivre
et al., 2007): Dutch, Italian, and English. Our models
differ in the number and type of edges (only grand-
parent edges for Dutch and Italian, grandparent and
sibling edges for English), and in the type of combina-

torial factor used to ensure the proper tree structure
for the language at hand (non-projective for Dutch,
projective for Italian and English). Our models would
rank highly among the shared task submissions, but
could surely be further improved.

We evaluate the accuracy of inference in two ways.
First, we measure the error of our marginals relative to
the marginals calculated by full BP. For each sentence,
we find the node with highest error and then average
these maximal errors over the corpus.

Absolute errors on marginals do not give the full pic-
ture. One way to measure the effective accuracy in
practice is to use posterior decoding and find the tree
that maximizes the calculated marginal beliefs. This
allows us to compare against a gold standard tree.

5.2.1 Averaged Performance

The results in terms of average dependency accuracy,
speed, and final factor graph size can be seen in table
1. We compare full BP (with maximally 10 iterations)
to the three setups we present in §3. For each method
and language we find the most efficient parameters ε,
m and γ that lead to the same dependency accuracy as
BP in the full graph, if possible in a reasonable amount
of time. See §5.2.3 for a closer look.

The table shows that, across the board, a significant
reduction in size is possible without loss of dependency
accuracy. Moreover, for the case of Italian we can
calculate the marginals exactly and hence measure the
true error of both BP and our approximations. Note
that they are in fact nearly identical.

Clearly, the reduced size has a direct effect on speed.
For example, for the MinJoint algorithm we observe a
4 times (Dutch), 7 times (Italian), and 11 times (En-
glish) speed-up. MinJoint outperforms both other ap-
proaches, with comparable accuracy at higher speed.

Table 1: Averaged results at same dependency accuracy; F=Percentage of binary edges added; T=time in
ms; E=averaged max. error in marginals; A=accuracy on gold standard; NP=Non-projective; P=projective;
GP=grandparent edges; SIB=sibling edges. *E=calculated w.r.t. to the true marginals as calculated by DP.

Dutch(NP,GP) Italian(P,GP) English (P, GP+SIB)
Conf. F T E A F T E* A F T E A
BP 100 350 0 84.0 100 890 14.5 86.9 100 2370 0 88.4
MinDivergence 21.5 121 1.4 83.9 3.4 162 14.6 86.9 1.5 248 14.1 88.5
MinSize 23.0 141 1.8 83.9 4.0 161 14.7 87.0 1.4 245 16.5 88.5
MinJoint 12.3 79 1.8 84.0 1.8 129 14.7 87.0 1.3 210 16.1 88.5

5.2.2 Scaling

Figure 2a shows the number of added factors versus
the number of nodes in a graph for Italian. (Other
languages showed the same trends.) As expected, the
graph size stays constant for MinDivergence inference,
which means that we will allocate too many factors
for small problems if we want to allocate enough for
large ones. By contrast, the factor count required by
MinSize and MinJoint adapt with problem size.

Figure 2b shows that runtime also scales better with
graph size. In fact, for MinJoint, MinSize and MinDi-
verence we observe a linear behaviour with the number
of nodes, akin to the observations of Riedel (2008) in
relaxed/cutting plane MAP inference. Asymptotically,
however, our algorithm still scales with the number of
factors |F| (or |F| log |F| when sorting) since we have
to scan all remaining factors as candidates.

5.2.3 Choosing Factors

Which scheme should be chosen to pick factors? The
previous sections suggest that MinJoint is the better
approach because it is faster. To show that this ob-
servation is not based on better tuning of the param-
eter γ, we show how each method performs when we
vary their free parameters. Figure 2c presents the ef-
fectiveness of each scheme: For several values of the
parameter ε (when minimizing size) , m (when min-
imizing divergence) or γ (when minimizing both) we
draw average time spent vs average accuracy.

We notice that MinJoint makes significantly better use
of its runtime. In particular, we see that MinSize and
MinDivergence cannot be configured to achieve the ac-
curacy of BP (at 0.15) as quickly as MinJoint.

6 CONCLUSION

We have shown how to substantially speed up marginal
inference by ignoring a set of factors that do not sig-
nificantly contribute to overall accuracy. We surely
cannot expect this always to work well: we require
factor graphs that contain small but highly confident

sub-models that can be used as initial proxy graphs
(compare §5.1). However, we think that in many cases
local clues are enough to determine the state of a vari-
able and can hence be incorporated into powerful lo-
cal sub-graphs. This has been frequently observed in
NLP, where local features are in fact often hard to
beat (Bengtson & Roth, 2008). It is also crucial for
the success of factor reduction methods in MPE infer-
ence (Riedel, 2008; Tromble & Eisner, 2006) for tasks
such as entity resolution or semantic role labeling.

We want to extend our work in two directions. First,
we want to ignore not only factors, but also values. We
believe that in many cases models have an almost de-
terministic belief about the state of certain variables,
and in these cases we can gain significant efficiencies by
ignoring the other states entirely. Second, we want to
investigate reparametrization of the remaining factors
in the spirit of Choi & Darwiche (2006).

Appendix: Proof Sketches

Proposition 1 relies on the fact that we can represent
pG∪N (y) using Z−1

G∪NZGΨN (y) pG (y) and calculate the
quotient of partition functions using

Z−1
G∪NZG = EG [ΨN]−1 . (10)

Hence we can evaluate expectations underH = G∪N based
on expectations under G using

EG∪N [x (y)] = EG [x (y)ΨN] EG [ΨN]−1 . (11)

Using the primal form of the KL divergence Wainwright &
Jordan (2008) (slightly adapted) we get

D (pH||pF) = log
`
ZFZ−1

G∪N
´
− EH

`
log

`
ΨF\H

´´
.

By plugging in 10 and 11 we can write

D (pH||pF) = log

„
ER∪NG
ENG

«
− EG [log (ΨR)ΨN]

ENG
.

Setting α
def
=

ER∪NG
ERG ENG

and β
def
= EG [log (ΨR)ΨN] −

EG [log (ΨR)] ENG , we get log
`
ERG

´
− EG [log (ΨR)] +

log (α)− β
ENG

.

0 500 1000 1500 2000 2500 3000 3500

1e
+0
1

1e
+0
2

1e
+0
3

1e
+0
4

1e
+0
5

Nodes

Fa
ct
or
s

BP
MinSize
MinDiv
MinJoint

(a) Node count vs. added factors

0 500 1000 1500 2000 2500 3000 3500

0
5

10
15

Nodes

Ti
m

e
in

 m
s

(b) Node count vs. runtime.

0.10 0.15 0.20

0.
15

0.
20

0.
25

0.
30

Time in ms

Av
g.

 E
rro

r

(c) Avg. time vs. accuracy

Figure 2: Runtime, factor count and dependency accuracy.

With η
def
=

ERGQ
i∈R Ei

G
we can replace the first term by

P
i∈R log

`
Ei
G

´
+log (η). The second term can we be rewrit-

ten as −
P

i∈R µGi θi using the additivity of expectations.

We can hence write the divergence as
P

i∈R log
`
Ei
G

´
−

µGi θi + log (αη) − β
ENG

. Expanding α, β and η while using

the definition of covariance and replacing log
`
Ei
G

´
− µGi θi

by D
`
pG ||pG∪{i}

´
leads to the desired representation.

For proposition 2 we use

D (pH||pF) = log
“
EF\HG

”
− EG

ˆ
log

`
ΨF\H

´˜

and apply the bound of Kreinovich et al. (2003) for expec-
tations of products of variables to EF\HG .

Acknowledgements

This work was supported in part by the Center for In-
telligent Information Retrieval, in part by SRI Interna-
tional subcontract #27-001338 and ARFL prime contract
#FA8750-09-C-0181, in part by Army prime contract num-
ber W911NF-07-1-0216 and University of Pennsylvania
subaward number 103-548106, and in part by UPenn NSF
medium IIS-0803847. Any opinions, findings and conclu-
sions or recommendations expressed in this material are the
authors’ and do not necessarily reflect those of the sponsor.

References
Anguelov, D., Koller, D., Srinivasan, P., Thrun, S., Pang,
H.-C., and Davis, J. The correlated correspondence algo-
rithm for unsupervised registration of nonrigid surfaces.
In NIPS, 2004.

Bengtson, E. and Roth, D. Understanding the value of
features for coreference resolution. In EMNLP, 2008.

Choi, A. and Darwiche, A. A variational approach for
approximating bayesian networks by edge deletion. In
UAI, 2006.

Culotta, A., Wick, M., Hall, R., and McCallum, A. First-
order probabilistic models for coreference resolution. In
HLT-NAACL, 2007.

Della Pietra, S., Della Pietra, V., and Lafferty, J. Inducing
features of random fields. IEEE Trans. Pattern Analysis
and Machine Intelligence, 19(4):380–393, 1997.

Geman, S. and Geman, D. Stochastic relaxation, Gibbs
distributions, and the Bayesian restoration of images. In
Readings in Uncertain Reasoning, pp. 452–472. Morgan
Kaufmann, 1990.

Jordan, M. I., Ghahramani, Z., Jaakkola, T., and Saul,
L. K. An introduction to variational methods for graphi-
cal models. Machine Learning, 37(2):183–233, 1999.

Kreinovich, V., Ferson, S., and Ginzburg, L. Exact upper
bound on the mean of the product of many random vari-
ables with known expectations. Reliable Computing, 9(6):
441–463, 2003.

Kumar, S. and Hebert, M. Approximate parameter learn-
ing in discriminative fields. In Snowbird Learning Work-
shop, 2004.

Murphy, K. P., Weiss, Y., and Jordan, M. I. Loopy be-
lief propagation for approximate inference: An empirical
study. In UAI. 1999.

Nivre, J., Hall, J., and Nilsson, J. Memory-based depen-
dency parsing. In CoNLL, 2004.

Nivre, J., Hall, J., Kubler, S., McDonald, R., Nilsson, J.,
Riedel, S., and Yuret, D. The CoNLL 2007 shared task
on dependency parsing. In CoNLL, 2007.

Riedel, S. Improving the accuracy and efficiency of MAP
inference for Markov logic. In UAI, 2008.

Riedel, S. and Clarke, J. Incremental integer linear pro-
gramming for non-projective dependency parsing. In
EMNLP, 2006.

Riedel, S. and Smith, D. A. Relaxed marginal inference and
its application to dependency parsing. In HLT-NAACL,
2010.

Smith, D. A. and Eisner, J. Dependency parsing by belief
propagation. In EMNLP, 2008.

Sontag, D. and Jaakkola, T. New outer bounds on the
marginal polytope. In NIPS, 2007.

Tromble, R. W. and Eisner, J. A fast finite-state relaxation
method for enforcing global constraints on sequence de-
coding. In HLT-NAACL, 2006.

Wainwright, M. and Jordan, M. Graphical Models, Expo-
nential Families, and Variational Inference. Now Pub-
lishers, 2008.

