Context-Free Parsing
Adding Features & Improving Efficiency

Introduction to Natural Language Processing
Computer Science 585—Fall 2009
University of Massachusetts Amherst
David Smith

Some slides and whimsical example sentences due
to Jason Eisner (JHU)

Overview

* We’'ve seen several parsing algorithms
— Backtracking, shift-reduce, CKY, Earley’s

 But what grammar should we use?
— Refine constituents with features
— Maintain context-free power
* Grammars are getting big! Speed parsing with
— Grammar preindexing
— Search pruning during parsing

3 views of a context-free rule

generation (production): S — NP VP
parsing (comprehension): S <= NP VP
verification (checking): S=NP VP

Today you should keep the third, declarative
perspective in mind.

Each phrase has

— an interface (S) saying where it can go

— an implementation (NP VP) saying what’s in it

To let the parts of the tree coordinate more closely

with one another, enrich the interfaces:
S[features...] = NP[features...] VP[features...]

Examples

Verb — thrills
VP— Verb NP S
S—-NPVP /\
NP VP
Verb NP

| _

A roller coaster thrills every teenager

3 common ways to use features

morphology of a single word:

Vel‘b[head:thrill, tense=present, num=sing, person=3,...] — thrills

projection of features up to a bigger phrase

VP[head=a, tense=p, num=y..] = V[head=q, tense=[3, num=y...] NP
provided o is in the set TRANSITIVE-VERBS

agreement between sister phrases:

S[head=q, tense=fp] — NP[num:y,...] VP[head=q, tense=f3, num=y...]

3 Common Ways to Use Features

Verb[head=thrill, tense=present,

| person=3,...] —

VP .1 VI
S| 1 - NPJ 1 VP
S
(generation
perspective)

nu |ng

A roller coaster thrills every teenager

numT%smg

3 Common Ways to Use Features

Verb[head=thrill, tense=present,

| person=3,...] —

VP .1 VI
S| 1 - NPJ 1 VP
S
(comprehension
perspective)

nu |ng

A roller coaster thrills every teenager

numT%smg

S

/\

p VP
)\ /\

Det V VP

The /\ has /\

pIan /\ been A

to VP V

/\ thrilling Otto

swaIIow Wanda

S— NP[n=1] VP[n=1] S VP[n=1] = V[n=11 VP

/\ V[nh=1] - has

Det N [num=1] [num—

The /\ has
N [num=1]
/\ been /:\

to V

VP
NP[=1] — Det N[n=1] /\ thrilling Otto

N[n=1] - N[n=1] VP

Nin=1] - plan
swaIIow Wanda

S— NP[n=c] VP[n=0] S VP[n=a] - V[n=c] VP

/\ V[h=1] - has

Det N [num=1] [num—

The /\ has
N [num=1]
/\ been /:\

to V

VP
NP[=o] — Det N[n=c] /\ thrilling Otto

N[n=c] = N[n=a] VP

Nin=1] - plan
swaIIow Wanda

S

/\VP

Det V VP
The lan has /\
vV V
h |
| elail%l[f)\an /\ been
to V NP

NP[h=c] - Det N[h=u] /\ thrilling Otto

N[h=c] = N[h=c] VP

N[h=plan] — plan
swaIIow Wanda

>thaill]

/’g‘% /’*@

Det

The lan N

[heac’i\lﬁlan WMW] been W
rhea VPWallow h%ﬁ hrlll [head I%Etto]
NP[h=c] — Det N[h=q] r|I INg

Nih=c] - N[h=c] VP p
N[h=plan] — plan [head—sMallow] heMl =Wanda]
swallow Wanda

= Why use heads? S

/U]eaﬂs = Morphology (e.g.,word endings)
P = Nrh— 1
rhe lan] N[h=plan,n=1] — plan
N[h=plan,n=2+] — plans
= N[h=thrill,tense=prog] — thrilling
Det [he N lan] N[h=thrill,tense=past] — thrilled
The N[h=go,tense=past] — went
heac’i\=| lan] [head=swallow A
h /\é‘\ : been W
VP \Y/
e

[headzswallow] h%ﬁ 1ihr111][head= Ithto]
NP[h=c] - Det N[h=o] rilling Otto

Nih=c] - N[h=a] VP p
N[h=plan] — plan [head—syallow heMi =Wanda]
swallow Wanda

= Why use heads? S

/UWaﬂé « Subcategorization (i.e.,
transitive vs. intransitive)

P = When is VP - V NP ok?

[hega™gplan] VP[H-c] — V[h-c] NP
restrict to oo € TRANSITIVE_VERBS
Det he N an] | " Whenis NN VP ok?
The N[h=c] — N[h=c] VP

restrict to oo € {plan, plot, hope,...}

heac{i\lﬁlan Wlow] been W
[hea

wallow] [he d= hr111 [head=0tto]
NP[h=0] — Det N[h=c] /?\ rlﬁlng OttO

N[h=c] = N[h=c] VP
N[h=plan] — plan [head—swallow he!a\!lEWanda]
swallow Wa nda

= Why use heads? S

»)
[he lan]
Det N
The [he lan]

Equivalently: keep the template
but make prob depend on «,f

= Selectional restrictions j
= VP[h=0] = V[h=0] NP

= I.e.<VP[h=0] — V[h=0] NP[h=R]>
= Don't fill template in all ways:

VPIh= P[h=0tto]
Prh=thrill] — V[h= thrlll] NP[h=plan]P

leave out, or low prob

heac’i\lwan Wlow] heen W
e

NP[h=0] — Det N[h=a]
Nih=c] - N[h=a] VP
N[h=plan] — plan

VP
a

V
[h 11 head=thrill][head=Otto]
NOW] e rlﬁ]flrﬁlg - Otto0

[head—swallow he!a\!lEWanda]

swallow Wanda

= Why use anything but heads?

= Dependency grammar
= Aka “word grammar”
= Maps closely to argument

Det structure
© = Only as many edges as

The \ words

N of weeks

plan een
to V NP
\/\ thrilling Otto
V NP

swallow Wanda

16

Part of the English Tense/Aspect System

eats ate will eat |to eat
has had will have |to have
eaten eaten |eaten eaten
is eating (was | will be to be
eating | eating eating
has been | had will have |to have
eating been |been been
eating | eating eating

S

[tense=p#cS, =thrill]

P
[he lan] [tense=p ad thrill]

The plan ... _
ens erf ,head=thrill]

CHS
been head= thr

= Let’s distinguish

the different kinds [tense—prog,hezﬁl ﬁ\rlll [head I}étto
of VP by tense ...

t S

pas -
[tensc=p#es, read=thrill]

[he lan]
The plan ... ﬂw [heada I?tO]

o)
thrilled

Past
= Present tense

ast S eat

P past\/P___ eat_
[he lan] [tense= ad=thsdl]
The plan ... [tensel)%,hea‘&fgn%ﬂ] [headcz)léé‘?g)]
ate
Past

= Present tense

S

[tense=p#eS, =thrill]
P

[he lan]

The plan ...

= Present tense
(again)

S
[tense= —thrﬂl]

an H?\
The plan ..

_headﬁhaage] tens erf ‘head=thrill]

[tense=perf,he%ﬁ??tﬁreld] [headéléét%)]

= Present perfect tense

S

[tense=p#eS, =thrill]

p VP
[he lan] [tense=y[,hq\%d=thrﬂl]
The plan ... \V
tense=pres,head=have
| p R |

= Present perfect tense

P
head=
| eadoléét%" |

S eat
[tense=p#cS, =tlmeshd]

P VP eat
[he lan] [tenseWﬂrﬂl]

The plan .. eat
p ' [tense=pres,head hl\laétge] [tens\!/g@headthfﬂ-l]

[tense=perf, hegﬁﬁtﬂgé_ head I}'l:)tto]

= Present perfect tense eaten
= The yellow material makes it not ate — why?
a perfect tense — what effects?

t S

pas .
[tensc=pwes, =thrill]
lan tenseW =thrill]

The plan .. past _
tenseﬁpfes head—have Whead—thrﬂl]
had
[tense=perf,hea \ﬁrl][head I}étto]
Past Icwl ci

= Present perfect tense

S

[tense=p#eS, =thrill]
P

[he lan]

The plan ...

= Present tense
(again)

S

[tense=p#eS, =thrill]

NI ar s
[he lan]]
The plan ..

 ERSEEPHES o | W—u

[tense=pro g,het deMmll] [head= Iéétto]
= Present progressive tense

t S

pas .
[tensc=pwes, =thrill]
P past\/P _
lan] [tensezyeg,h\%d:thrﬂl]

The plan .. past

tenseﬂpfes hez;:?tens;c?ead—thrﬂl]

tense—prog,he d— 111] [head tto]

Past
= Present progressive tense

S
[tense= —thrﬂl]

an H?\
The plan ..

_headﬁhaage] tens erf ‘head=thrill]

[tense=perf,he%ﬁ??tﬁreld] [headélkét%)]

= Present perfect tense
(again)

S

[tense=p#eS, =thrill]

P
[he lan] [tense—pﬂ/h\d—thrlll]
The plan ... ‘/
[tense=pres,head—have ens erf,head—thrﬂl]
has
tense=perf,h ad be] [tens¢™prog,
s pert gl e e
= Present perfect ;
progressive tense [tense—prog,hezﬁl ﬁ’\l‘lﬂ [headélééttg)]

S

[tense=p#eS, =thrill]
p VP
[he lan] [tenseWthrﬂl]

The plan .. \/ \/ ,
' [tense=pres,head= I;]I@][teyﬁeif,headthnll]

[tense=perf, hete)lc}/ be]

een

= Present perfect

progressive tense [tense—prog,hezﬁl ﬁ’\l‘lﬂ [headBI}étIth)]

t S

pas .
[tensc=pwes, =thrill]
lan tenseW =thrill]

The plan .. past

tense—'pfes head have Whead—thrill]
had

[tense=pert, he[:e)ld =be] ens rog,
Past h d—thr
= Present perfect

progressive tense [tense—prog,het dﬁ1 111] head= I}éttto

cond S

Wﬂlﬂ

cond\/P
lan tense— ad=thrill]

The plan .. \

[tense= cond head—wH |[tense= stem ad=thrill]

/
Conditional [teﬂsesil%{‘nes hea(lhl\l_aélgfg] [tensVP erf,head=thrill]
= Present perfect have
progressive tense C}/ bl |

[tense=perf,hca tensVP rog,
Pert i een m
head=thr

. P
tense=prog,head ﬁ\l‘lll headZIEéEto
[P i ng] [O o]

Ws,headzthrill]
:tensezpres,hea_y:be] [tense=prog,
1S h&ad=thri

[tense=prog, head—t}{rlll [head=Otto]
thrllllng Otto

[te ast,head=eat]

[tensezpast,heayzbe] [tense=prog,
was €ad=cat

[tense=prog, head eat][headuf tto]
eating Otto

= So what pattern do all
progressives follow?

[Wheadthrill]

[tense=pert,h a(}/ be] [tensV rog,
ebeen -
head=thr

[tense—prog,heﬁ%lﬁmrilll [headaléégg)]

[t}ég%s,headzthrill]
:tensezpres,heaXZbe] [tense=prog,
1S h&ad=thri

[tense=prog,head=thrill][head2Otto]
P Mhrilling Otto

[te ast,head=eat]

[tensezpast,heaXZbe] [tense=prog,
was €ad=cat

[tense=prog,he ad¥e at] [headﬂﬁto]
eating Otto

= So what pattern do all
progressives follow?

[Whead B]

[tense= O ’,hqac}ibe] [t?{lsv/%f(
hedd=

[tense=prog,head= VB |1 [headzlgltato]

-Ing Otto

PI‘OQI‘eSSiVGZ VP[tense=a, head=§, ...] — V[tense=a, stem=be ...]
VP[tense=prog, head=p ...]

Perfect: VP[tense=q, head=g, ...] = V[tense=q, stem=have ...]
VP[tense=perf, head=p ...]

Future or VP[tense=0, head=p, ...] = V[tense=a, stem=will ...]
conditional: VP[tense=stem, head=p ...]
Infinitive: VP[tense=inf, head=g, ..] - tO
VP[tense=stem, head=§ ...]

[Whead ﬁ]
[tense= (L ’,hqac}ibe] [tensV rog,
As well as the “ordinary” rules: head=

VP[tense=q, head=4, ...]
— V[tense=a, head=p, ...] NP [tensezprog,head:VB |1 [headzlgltato]

V[tense=past, head=have ...] — had -INg Otto

Etc.

Gaps (“deep’

" grammar!)

* Pretend “kiss” is a pure transitive verb.

* |s “the president kissed” grammatical?

— If so, what type of phrase is it?

» the sandwich that | the president kissed

« | wonder what Sa
- Sa
e What else has Sa

y said the president kissed
y consumed the pickle with
y consumed e with the pickle

the sandwich that)
| wonder what
What else has

Subject gaps:

Gaps
Object gaps: A/ \A

.

the president kissed e

Sally said the president kissed e
Sally consumed the pickle with e
Sally consumed e with the pickle

'

the sandwich that®

I wonder what
What else has

.

e kissed the president
Sally said e kissed the president

38

Gaps

All gaps are really the same — a missing NP:

the sandwich that | the president kissed
e | wonder what Sally said the president kissed
S~ . .
What else has Sally consumed the _plckle w!th
Sally consumed e with the pickle
kissed the president
Sally said e kissed the president

Phrases with missing NP:
X[missing=NP]
or just X/NP for short

VP

/VP\
V CP [wh=yes] v irves]
wonder
wonder
N Pwh=yes] S/NP
what

yes] S/NP

what else NP VP/NP

VP
AN

V VP

could go he

- g WA /\

ere: V V NP
was Kissing him

Kissing
what ¢lse could go here?

VP

4 CP [wh=yes] CENP [wh=no]
wonder
yes] S/NP /\
VP/NP
what else NP /\VP .
could go he /
here?
\ P
Kissing /I\‘e\lp

Kissing
what ¢lse could go here?

VP

/VP\
v CP [wh=yes] vo oo R Dl
believe
wonder
Comp S
that

yes] S/NP

what else NP VP/NP

NP VP

e /N

V VP

could go he
- g A /\
ere: V Vv NP
was kissing the
sandwich
V
Kissing

what ¢lse could go here?

N\

To indicate what fills)P\
a gap, people
sometimes NPy CHNP, [wh=no]
\\ W 17 he sandwich
coindex” the gap
and its filler. Comp NP,
that

= Each phrase has a unique index
such as "

= In some theories, coindexation is
used to help extract a meaning
from the tree.

= In other theories, it is just an aid
to help you follow the example.

NP VP/NP;

he
V VP/NP;

/NB

klssmg

the money; I spend €; on the happinessj I hope to buy €
which violin; is this sonata; easy to play e; 0N &

N\

Parsing Tricks

Left-Corner Parsing

* Technique for 1 word of lookahead in
algorithms like Earley’s

* (can also do multi-word lookahead but it’s
harder)

Basic Earley’s Algorithm

0ROOT. S attach

OSNP.VP

ONP.DetN |ONPNP.PP

0 NP . Papa

0 Det . the

0 Det. a

O0ROOT.S |ONPPapa.
0S.NPVP
ONP.DetN |ONPNP.PP
ONP.NPPP |1VP.VNP
ONP.Papa |1VP.VPPP
0 Det . the

0 Det. a

predict

O0ROOT.S |ONPPapa.
0S.NPVP |0OSNP.VP
ONP . DetN

ONP.NPPP |1VP.VNP
ONP.Papa |1VP.VPPP
0 Det . the 1PP.PNP

0 Det. a

predict

0 Papa

O0ROOT.S |ONPPapa.
0S.NPVP |OSNP.VP
ONP.DetN [ONPNP.PP
0O NP .NP PP

ONP.Papa |1VP.VPPP
0 Det . the 1PP.PNP
ODet.a 1V .ate

1V . drank

1V . snorted

predict

V

0 Papa 1

0ROOT.S |0NP Papa.
O0S.NPVP |[0OSNP.VP
ONP.DetN [ONPNP.PP
ONP.NPPP [1VP.VNP
ONP.Papa |1VP . VPPP
0 Det . the 1PP.PNP
0Det.a 1V.ate
1V . drank
1V . snorted

predict

Every .VP adds all VP - ... rules again.
Before adding a rule, check it's not a

duplicate.

Slow if there are > 700 VP - ... rules,
so what will you do in Homework 37?

0 Papa

O0ROOT.S |ONPPapa.
O0S.NPVP |[0OSNP.VP
ONP.DetN [ONPNP.PP
ONP.NPPP [1VP.VNP
ONP.Papa |[1VP.VPPP
0 Det . the
ODet.a 1V.ate
1V . drank
1V . snorted

1P . with

predict
P

1-word lookahead would help

0 Papa 1 ate

0ROOT.S |0NP Papa.
O0S.NPVP |[0OSNP.VP
ONP.DetN [ONPNP.PP
ONP.NPPP [1VP.VNP
ONP.Papa |[1VP.VPPP
0 Det . the 1PP.PNP
0Det.a 1V.ate
A drank—
AN snerted—

“+Pwith——

No point in adding words other than ate

1-word lookahead would help

0 Papa 1 ate

0ROOT.S |0NP Papa.
0S.NPVP |0OSNP.VP
ONP.DetN |ONPNP PP
ONP.NPPP |1VP.VNP
ONP.Papa |1VP.VPPP
0 Det . the “PPPNP—
ODet.a 1V .ate

A —drank—

AN snerted—

“+Pwith——

In fact, no point in adding any constituent
that can’t start with ate
Don’t bother adding PP, P, etc.

No point in adding words other than ate

With Left-Corner Filter

0 Papa 1 ate

0ROOT.S |0ONPPapa. | attach

0S.NPVP [0OSNP.VP

ONP.DetN |otENP—RE-| PP can't start with ate

ONP.NPPP

0 NP . Papa Pruning— now we won't predict
0 Det . the 1 PP . P NP

0 Del_a 1 PP . ate

either!

Need to know that ate can’t start PP
Take closure of all categories that it does

start ...

ate

O0ROOT.S |ONPPapa.

0S.NPVP predict

ONP.DetN |ONPINP—PP~

ONP.NPPP | 1VP . VNP

ONP.Papa |1VP.VPPP

0 Det . the

0 Det. a

ate

0 Papa

O0ROOT.S |ONPPapa.
0S.NPVP |0OSNP.VP
ONP.DetN |ONPNP PP
O NP .NP PP

ONP.Papa |1VP.VPPP
0 Det . the 1V .ate
ODet.a “=dramk—

N —shorHed—

predict

ate

0 Papa
O0ROOT.S |ONPPapa.
O0S.NPVP |[0OSNP.VP
ONP.DetN [ONPINPTPP
ONP.NPPP [1VP.VNP
0 NP . Papa
0 Det . the 1V .ate
ODet.a “=vdramk—

1N —shorHed—

predict

Merging Right-Hand Sides

Grammar might have rules

X—=AGHP
X—=BGHP

Could end up with both of these in chart:
(2, X—=A.GHP)incolumn5
(2, X—=B.GHP)incolumn5

But these are now interchangeable: if one
produces X then so will the other

To avoid this redundancy, can always use
dotted rules of this form: X—=...GHP

58

Merging Right-Hand Sides

Similarly, grammar might have rules
X—=AGHP
X—=AGHQ

Could end up with both of these in chart:

(2, X—=A.GHP)incolumn5
(2, X—=A.GHQ)incolumn5

Not interchangeable, but we’ll be processing
them in parallel for a while ...

Solution: write grammar as X—= A GH (P|Q)

59

Merging Right-Hand Sides

* Combining the two previous cases:
X—=AGHP
X—=AGHQ
X—>BGHP
X—=BGHQ

becomes
X—=(A|B)GH(P]| Q)

e And often nice to write stuff like
NP — (Det | €) Adj* N

60

Merging Right-Hand Sides
X—(A|B)GH(P|Q)
NP — (Det | €) Adj* N
* These are regular expressions!
* Build their minimal DFAs:

A P
X -0 o—e0—e O
B G +H
Q Ads
Det (/"
NP —° ON@
Adj

61

Merging Right-Hand Sides

Indeed, all NP — rules can be unioned into a single DFA!

NP — ADJP ADJP JJ JJ NN NNS
NP — ADJP DT NN

NP — ADJP JJ NN

NP — ADJP JJ NN NNS
NP — ADJP JJ NNS

NP — ADJP NN

NP — ADJP NN NN

NP — ADJP NN NNS

NP — ADJP NNS

NP — ADJP NPR

NP — ADJP NPRS

NP — DT

NP — DT ADJP

NP — DT ADJP , JJ NN
NP — DT ADJP ADJP NN
NP — DT ADJP 1J JJ NN
NP — DT ADJP JJ NN

NP — DT ADJP JJ NN NN

etc. 62

Merging Right-Hand Sides

Indeed, all NP — rules can be unioned into a single DFA!

——— -

NP — ADJP ADJP JJ JJ NN NNS .
| ADJP DT NN ADIP @
| ADJP 13 NN _{)
| ADJP 13 NN NNS :

A T e NP —-DT
| ADJP NN O
| ADJP NN NN

| ADIP NN NNS / NP O
| ADJP NNS

| ADJP NPR L

| ADJP NPRS

| DT

| DT ADJP 4 AD-,I ©

| DT ADJP, JJ NN
| DT ADJP ADJP NN ADJP o> P
| DT ADJP JJ JJ NN
| DT ADJP 1] NN S \ O

| DT ADJP JJ NN NN ,
etc. 63 ADJP ©

Earley’s Algorithm on DFAs

* What does Earley’s algorithm now look like?

PP EEn

VP .8,

Column 4

@®) predict

Earley’s Algorithm on DFAs

* What does Earley’s algorithm now look like?

PP T
VP—>.a— g
PP < ...

Column 4
@®) predict
(4, @)
(4,0)

NP —

@

Det

Adj

@
N

Adj
I N

o

PP

Earley’s Algorithm on DFAs

* What does Earley’s algorithm now look like?

PP]
Ad PP
VP — .8 Det (/7
np @ (NP - O ,© N O
Adj
PP 4) EEE J N
Column 4 | Column 5 Column 7
2, ® |~ (4, ©) predict
() o U[attach?

Earley’s Algorithm on DFAs

* What does Earley’s algorithm now look like?

PP]
Ad PP
VP — .8 Det (/7
np @ (NP - O ,© N O
Adj
PP 4) EEE J N
Column 4 | Column 5 Column 7
O lv.(4 O t|;I:edict
s attach?
(41 Q) (71 CD) Both!

Pruning for Speed

* Heuristically throw away constituents that probably
won’t make it into best complete parse.

* Use probabilities to decide which ones.
— So probs are useful for speed as well as accuracy!

e Both safe and unsafe methods exist

— Throw x away if p(x) < 10200
(and lower this threshold if we don’t get a parse)

— Throw x away if p(x) < 100 * p(y)
for some y that spans the same set of words

— Throw x away if p(x)*q(x) is small, where g(x) is an estimate
of probability of all rules needed to combine x with the
other words in the sentence

68

Agenda (“Best-First”) Parsing

Explore best options first
— Should get some good parses early on —grab one & go!

Prioritize constits (and dotted constits)

— Whenever we build something, give it a priority
* How likely do we think it is to make it into the highest-prob parse?

— usually related to log prob. of that constit
— might also hack in the constit’s context, length, etc.
— if priorities are defined carefully, obtain an A* algorithm

Put each constit on a priority queue (heap)

Repeatedly pop and process best constituent.
— CKY style: combine w/ previously popped neighbors.
— Earley style: scan/predict/attach as usual. What else?

69

Preprocessing

* First “tag” the input with parts of speech:

— Guess the correct preterminal for each word, using faster
methods we’ll learn later

— Now only allow one part of speech per word
— This eliminates a lot of crazy constituents!
— But if you tagged wrong you could be hosed

e Raise the stakes:

— What if tag says not just “verb” but “transitive verb”? Or
“verb with a direct object and 2 PPs attached”?
(“supertagging”)

e Safer to allow a few possible tags per word, not just

one ... 70

if X
then
ify
then
if a
thenb
endif
else b
endif
else b
endif

Center-Embedding

STATEMENT — if EXPR then
STATEMENT endif

STATEMENT — if EXPR then STATEMENT
else STATEMENT endif

But not:
STATEMENT — if EXPR then
STATEMENT

/1

Center-Embedding

This is the rat that ate the malt.
This is the malt that the rat ate.

This is the cat that bit the rat that ate the malt.
This is the malt that the rat that the cat bit ate.

This is the dog that chased the cat that bit the rat
that ate the malt.

This is the malt that [the rat that [the cat that [the
dog chased] bit] ate].

/2

More Center-Embedding

[What did you disguise [Which mantelpiece did you
[those handshakes that you put
greeted [the idol | sacrificed
[the people we bought [the fellow we sold
[the bench [the bridge you threw
[Billy was read to] [the bench

o)

n] l [Billy was read to]
with] Take l a ; on)
with] I off]
oL,
aglsh B4,

for]?
on]?

/3

Center Recursion vs. Tail Recursion

l l

[What did you disguise [For what did you disguise

[those handshakes that you [those handshakes with which
greeted you greeted
[the people we bought [the people with which we bought
[the bench [the bench on which
[Billy was read to] [Billy was read to]?
on]
with) “pied piping” —
with]

NP moves leftward,
preposition follows along

/4

for]?

Disallow Center-Embedding?

Center-embedding seems to be in the grammar, but people
have trouble processing more than 1 level of it.

You can limit # levels of center-embedding via features: e.g.,
S[S_DEPTH=n+1] — A S[S_DEPTH=n] B

If a CFG limits # levels of embedding, then it can be compiled
into a finite-state machine — we don’t need a stack at all!
— Finite-state recognizers run in linear time.

— However, it’s tricky to turn them into parsers for the original CFG from
which the recognizer was compiled.

/5

Parsing Algs for non-CFG

* |f you're going to make up a new kind of
grammar, you should also describe how to

parse it.

* Such algorithms exist!

 For example, there are parsing algorithms for
TAG (where larger tree fragments can be
combined by substitution & adjunction)

/6

