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Probability is Useful

We love probability distributions!
We've learned how to define & use p(...) functions.

Pick best output text T from a set of candidates
maximize p4(T) for some appropriate distribution p4

Pick best annotation T for a fixed input I
maximize p(T | I); equivalently maximize joint probability p(I,T)
often define p(I,T) by noisy channel: p(I,T) = p(T) * p(I| T)

are cases of this too:
we're maximizing an appropriate p1(T) defined by p(T | I)

Pick best probability distribution (a meta-problem!)
really, pick best parameters 6:
maximum likelihood; smoothing; EM if unsupervised (incomplete data)
Bayesian smoothing: max p(6|data) = max p(6, data) =p(6)p(dataie)
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Probability is Flexible

We love probability distributions!
We've learned how to define & use p(...) functions.

We want p(...) to define probability of linguistic objects

of (non)terminals (PCFGs; )
of words, tags, morphemes, phonemes (n-grams, FSAs,
FSTs; , , )
(clusters)
We've also seen some not-so-probabilistic stuff
, . Could be stochasticized?

Methods can be quantitative & data-driven but not fully probabilistic:

4 4 4

But probabilities have wormed their way into most things
p(...) has to capture our intuitions about the ling. data
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An Alternative Tradition

Exposé at 9

Probabilistic Revolution
Not Really a Revolution,
Critics Say

Log-probabilities no more ses and
than scores in disguise

“We’re just adding stuff up
like the old corrupt regime
did,” admits spokesperson
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Nuthin’ but adding weights

N-grams. ... + log p(w7 | w5,w6) + log(w8 | w6, w7) + ...

PCFQG: 1og p(NP VP | S) + log p(Papa | NP) + log p(VP PP | VP) ...

Can regard any linguistic object as a collection of features (here,
tree = a collection of context-free rules)

Weight of the object = total weight of features

Our weights have always been conditional log-probs (=< 0)
but that is going to change in a few minutes!

HMM tagging: ... +log p(t7 | t5, t6) + log p(w7 | t7) + ...

NOiSY channel: [Iog p(source)] + [Iog p(data | source)]
Cascade of FSTs:

[1og p&)] + [log pB | AY] + [log pcc | B)] + ...
Nalve Bayes:

log(Class) + log(featurel | Class) + log(feature2 | Class) + ...
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p(m | spam) = (1/Z())) exp X; A; fi(m) where

m is the email message

A; is weight of feature i

f.(m)&{0,1} according to whether m has feature i
More generally, allow f;(m) = count or strength of feature.
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They don’t have to mean anything, so long as they give us a good
probability.
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f.(m)e{0,1} according to whether m has feature i

More generally, allow f;(m) = count or strength of feature.

1/Z()) is a normalizing factor making ¥ . p(m | spam)=1
(summed over all possible messages m! hard to find!)
The weights we add up are basically arbitrary.

They don’t have to mean anything, so long as they give us a good
probability.

Why is it called “log-linear™? ”
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Choose weights A; that maximize logprob of labeled

training data = log [[; p(c;) pP(m; | ¢;)

where cje{ling,spam} is classification of message m;

and p(mj | cj) is log-linear model from previous slide
Convex function — easy to maximize! (why?)

But: p(mj | cj) for a given A requires Z(A): hard!
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Attempt to Cancel out Z

Set weights to maximize Hj p(Cj) P(mj | Cj)

where p(m | spam) = (1/Z(A)) exp »; A; f.(m)
But normalizer Z(2.) is awful sum over all possible emails

So instead: Maximize Hj p(cj | mj)

only their classifications c.

Doesn’t model the emails m. J

JI
Makes more sense anyway given our feature set

p(spam | m) = p(spam)p(m|spam) / (p(spam)p(m|spam)+p(ling)p(m|ling))
Z appears in both numerator and denominator

Alas, doesn’t cancel out because Z differs for the spam and ling models

But we can fix this ... .
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= Hj p(cj | mj)

Now Z cancels out of conditional probability!
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Now we can cancel out Z

Now where c&{ling, spam}

Old: choose weights A that maximize prob of labeled training data =
[y p(m;, &)
New: choose weights A that maximize prob of labels given messages

= Hj p(cj | mj)

Now Z cancels out of conditional probability!

p(spam | m) = p(m,spam) / (p(m,spam) + p(m,ling))
= exp 2 M fi(m,spam) / (exp 2i M fi(m,spam) + exp 3 A fi(m,ling))

Easy to compute now ...

Hj p(cj | mj) is still convex, so easy to maximize too
18
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Generative vs. Conditional

What is the most likely label for a given
input?

How likely is a given label for a given input?
What is the most likely input value?

How likely is a given input value?

How likely is a given input value with a given
abel?

What is the most likely label for an input

that might have one of two values (but we
don't know which)?
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Maximum Entropy

A B |[C |[D |[E |F |G H |[I |]
Buy |0.051|0.003|0.029|0.003 | 0.003 | 0.003 | 0.003 | 0.003 | 0.003 | 0.003
Other | 0.499| 0.045 | 0.045 | 0.045 | 0.045 | 0.045 | 0.045 | 0.045 | 0.045 | 0.045

Column A sums to 0.55 ("55% of all messages are in class A”)

21

21



Maximum Entropy

A B |[C |[D |[E |F |G H |[I |]
Buy |0.051|0.003|0.029|0.003 | 0.003 | 0.003 | 0.003 | 0.003 | 0.003 | 0.003
Other | 0.499| 0.045 | 0.045 | 0.045 | 0.045 | 0.045 | 0.045 | 0.045 | 0.045 | 0.045

Column A sums to 0.55
Row Buy sums to 0.1 (*10% of all messages contain Buy”)
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Entropy = -.051 log .051 - .0025 log .0025 - .029 log .029 - ...
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Buy 0.051(0.003 | 0.029]| 0.003 | 0.003 | 0.003 | 0.003 | 0.003 | 0.003 | 0.003
Other | 0.499| 0.045 | 0.045 | 0.045 | 0.045 | 0.045 | 0.045 | 0.045 | 0.045 | 0.045

Column A sums to 0.55

Row Buy sums to 0.1

(Buy, A) and (Buy, C) cells sum to 0.08 (“80% of the 10%")

Given these constraints, fill in cells “as equally as possible”:
maximize the entropy (related to cross-entropy, perplexity)

Entropy = -.051 log .051 - .0025 log .0025 - .029 log .029 - ...
Largest if probabilities are evenly distributed
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Maximum Entropy

A B |[C |[D |[E |F |G H |[I |]
Buy |0.051|0.003 |0.029|0.003 | 0.003 | 0.003 | 0.003 | 0.003 | 0.003 | 0.003
Other | 0.499| 0.045 | 0.045 | 0.045 | 0.045 | 0.045 | 0.045 | 0.045 | 0.045 | 0.045

Column A sums to 0.55

Row Buy sums to 0.1

(Buy, A) and (Buy, C) cells sum to 0.08 (“80% of the 10%")

Given these constraints, fill in cells “as equally as possible”:

maximize the entropy

Now p(Buy, C) =.029 and p(C | Buy) = .29
We got a compromise: p(C | Buy) < p(A | Buy) < .55
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Generalizing to More Features

Sy 7 77
/

Other
A B [C D IE |F |G |H |. |/

Buy 0.051]0.003 { 0.029]| 0.003 | 0.003 | 0.003 | 0.003 | 0.003

O\

Other | 0.499| 0.045 | 0.045 | 0.045 | 0.045 | 0.045 | 0.045 | 0.045
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What we just did

For each feature (“contains Buy”), see what
fraction of training data has it

Many distributions p(c,m) would predict these
fractions (including the unsmoothed one where all mass
goes to feature combos we've actually seen)

Of these, pick distribution that has max entropy

Amazing Theorem: This distribution has the form

So it is log-linear. In fact it is the same log-linear
distribution that maximizes Hj p(mj, c]-) as beforel!

Gives another motivation for our log-linear approaché6
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Log-linear form derivation

e Say we are given some constraints in the form of
feature expectations:

Z plx)filx) = a;
Az
* In general, there may be many distributions p(x) that
satisfy the constraints. Which one to pick?

* The one with maximum entropy (making fewest possible
additional assumptions---Occum’s Razor)

e This yields an optimization problem
max H (p(x)) = Zpl x)log p(x)

Slll)]utruZp ) fi(x) = «;, Vi and Z})H—l

26
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Log-linear form derivation

e [0 solve the maxent problem, we use Lagrange multipliers:
— Zp( ) log p(x Z 0, (Zp fi(x) — u,) — I (Zp(x) — l)
0L
— =1+ log 6, —
p(x) + log p(x Z fi(x) —
pi(x) = e Lexp {Z 9,f’,{xfl}
) = e Zt\]J{ZH}‘ }

p(x|0) = 20 L\p{Zﬁf }

e So feature constraints + maxent implies exponential family.

e Problem is convex, so solution is unique.
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MaxEnt = Max Likelihood

Define two submanifolds on
the probability simplex p(x).

The first is £, the set of all

exponential family

distributions based on a M
particular set of features f;(x).

The second is M, the set of

all distributions that satisfy the

feature expectation P
constraints. Pu

They intersect at a single
distribution p;;, the maxent,

maximum likelihood
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Exponential Model Likelihood

= Maximum Likelihood (Conditional) Models :

« Given a model form, choose values of
parameters to maximize the (conditional)
likelihood of the data.

= Exponential model form, for a data set (C,D):

exp ), A f(c,d)
logP(C|D,A)= Y logP(c|d,A)= Y log :
(e.d)e(C,D) (e,d)e(C,D) Z exp Z A f.(c',d)
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Building a Maxent Model

Define features (indicator functions) over data
points.

» Features represent sets of data points which are
distinctive enough to deserve model parameters.

» Usually features are added incrementally to “target”
errors.

For any given feature weights, we want to be able to
calculate:

» Data (conditional) likelihood

» Derivative of the likelihood wrt each feature weight
=« Use expectations of each feature according to the model

Find the optimum feature weights (next part).
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The Likelihood Value

= The (log) conditional likelihood is a function of the iid data
(C.D) and the parameters A:

logP(C|D,A)=log []P(cld,A)= D logP(c|d,A)

(¢,d)e(C,D) (c,d)e(C,D)
= |f there aren’t many values of ¢, it's easy to calculate:
exp Y 4 f,(c.d)

log P(C|D,A)= Z log ;
(¢.d)e(C,D) Z exp Z A f.(c,d)

= We can separate this into two components:

log P(C| D, A) = Z logexpzzil.fi(c,d) - Z logZepo/l,f,(c',d)

(c,d)e(C,D) (c,d)e(C,D) c'

logP(C|D,A)=N(A) — M(A)

= The derivative is the difference between the derivatives of each component
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&)} The Derivative |: Numerator

0 logexp ) A, f.(c,d) & A fi(c,d)
6N(/1) _ (c,d)ez((:,p) Z B (c,d);?,u)zz':

o4 oA, o

0Y A f(c,d)
) (c,d;;?,i)) 5’11

= ) filc,d)

(¢,d)e(C,D)

Derivative of the numerator is: the empirical count(f;, ¢)
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Ls) The Derivative Il: Denominator

M) o Z logZepoﬂifi(c',d)

— (c,d)e(C,D) c'
0/, 04,
0 exp) Af,(c',d)

— Z 1 c' i

(c.d)e(C,D) Z“CXPZ&fi(C"ad) 04,

- exp Y A f(c',d) 0% A f(c,d)

- ¥ 1 > "

(¢,d)e(C,D) Z €Xp Z AL (c",d) S 1 04,

exp Y A7(c'd) 0. 2.4 d)
:(c,dgzc D)ZzepoAf(c" d) 04,

— Z ZP(C'| d,A) f,(c',d) = predicted count(f, A)

(c,d)e(C,D) ¢
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The Derivative llI

Olog P(C|D,A i
og a(/1| ) _ . tual count( f,,C) —predicted count( £, A)

1

= The optimum parameters are the ones for which
each feature’s predicted expectation equals its
empirical expectation. The optimum distribution is:

» Always unique (but parameters may not be unique)
» Always exists (if features counts are from actual data).

=« Features can have high model expectations
(predicted counts) either because they have large
weights or because they occur with other features

which have large weights.
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Summary

= We have a function to optimize:

exp Z A f.(c,d)
log P(C|D,A)= Z log ;
(c.d)e(C.D) Z exp Z A f(c,d)

= We know the function’s derivatives:
dlog P(C | D,A)/0A = actual count( f,,C) —predicted count( f,, A1)

=« Perfect situation for general optimization (Part Il)

By gradient ascent or conjugate gradient.
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Comparison to Naive-Bayes

= Naive-Bayes is another tool for classification: e

= We have a bunch of random variables
(data features) which we would like to use

to predict another variable (the class): @ @ @

« The Naive-Bayes likelihood over classes is:

P(c|d,A) =

P(c)

IP(¢1 )

> P,

c

P& 1<)

Naive-Bayes is just an
exponential model.

-

-

exp[log P(c)+ Z log P(¢, | c)}

> exp[log P(c")+ ) logP(4,|c' )}
exp[z At (d, C)}
Z exp[z Ao fo(d,C )}
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Comparison to Naive-Bayes

= The primary differences between Naive-
Bayes and maxent models are:

Naive-Bayes

Trained to maximize joint
likelihood of data and
classes.

Features assumed to
supply independent

evidence.
Feature weights can be set

independently.

Features must be of the
conjunctive ®(d) A ¢ = ¢,
form.

Maxent

Trained to maximize the
conditional likelihood of
classes.

Features weights take
feature dependence into

account.
Feature weights must be

mutually estimated.

Features need not be of the
conjunctive form (but
usually are).
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Overfitting

If we have too many features, we can choose
weights to model the training data perfectly.

If we have a feature that only appears in spam
training, not ling training, it will get weight « to
maximize p(spam | feature) at 1.

These behaviors overfit the training data.
Will probably do poorly on test data.
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Solutions to Overfitting
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Solutions to Overfitting

Throw out rare features.

Require every feature to occur > 4 times, and > 0
times with ling, and > 0 times with spam.
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Solutions to Overfitting

Throw out rare features.

Require every feature to occur > 4 times, and > 0
times with ling, and > 0 times with spam.

Only keep 1000 features.

Add one at a time, always greedily picking the one
that most improves performance on held-out data.

Smooth the observed feature counts.

Smooth the weights by using a prior.
max p(A|data) = max p(A, data) =p(A)p(data|r)
decree p()\) to be high when most weights close to 0
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Smoothing: Priors (MAP)

What if we had a prior expectation that parameter values
wouldn’t be very large?

We could then balance evidence suggesting large
parameters (or infinite) against our prior.

The evidence would never totally defeat the prior, and
parameters would be smoothed (and kept finite!).

We can do this explicitly by changing the optimization
objective to maximum posterior likelihood:

log P(C,A|D)=1log P(A)+1log P(C|D,A)

Posterior Prior Evidence
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= Gaussian, or quadratic, priors:

Intuition: parameters shouldn’t be large. -2

Formalization: prior expectation that each _4
parameter will be distributed according to

a gaussian with mean p and variance o?.

]

_ 1 . (’1:' _Iui)z
P(A4)= - N exp( 2?2 J

Penalizes parameters for drifting to far
from their mean prior value (usually p=0).

2c%=1 works surprisingly well.

They don’t even

capitalize my
name anymore!
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Recipe for a Conditional
MaxEnt Classifier

1. Gather constraints from training data:

aiy=Elfyl= Y Fiylej. )

.I'/'._(/‘}'ED

2. Initialize all parameters to zero.
3. (Classify training data with current parameters. Calculate
expectations. ¥ N N
P Eolfiyl= Y. D _polzj)fiyx;y)

4. Gradient is Ef”/ — E(_)[f]'!/]
5. Take a step in the direction of the gradient
6. Until convergence, return to step 3.
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