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 “Learns” over time – as you adjust bonuses and 
penalties by hand to improve performance. 

 Total kludge, but totally flexible too …
 Can throw in any intuitions you might have

really so alternative?

Exposé at 9

Probabilistic Revolution
Not Really a Revolution, 

Critics Say

Log-probabilities no more 
than scores in disguise

“We’re just adding stuff up 
like the old corrupt regime 
did,” admits spokesperson
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.5  .02  

.9  .1
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Naïve Bayes 
claims .5*.9=45% 
of spam has both 
features – 
25*9=225x more 
likely than in 
ling.

50% of spam has this – 25x more likely than in ling

90% of spam has this – 9x more likely than in ling
but here are the emails with both features – only 25x!
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 Can adjust scores to compensate for feature overlap …
 Some useful features of this message:

 Contains a dollar amount under $100 

 Mentions money

 Naïve Bayes: pick C maximizing p(C) * p(feat 1 | C) * …
 What assumption does Naïve Bayes make?  True here?

Probabilists Regret Being Bound by Principle

.5  .02  

.9  .1

spam ling

11



11

 But ad-hoc approach does have one advantage

 Can adjust scores to compensate for feature overlap …
 Some useful features of this message:

 Contains a dollar amount under $100 

 Mentions money

 Naïve Bayes: pick C maximizing p(C) * p(feat 1 | C) * …
 What assumption does Naïve Bayes make?  True here?

Probabilists Regret Being Bound by Principle

.5  .02  

.9  .1

spam ling

-1   -5.6  

-.15  -3.3

spam ling
log prob

11



11

 But ad-hoc approach does have one advantage

 Can adjust scores to compensate for feature overlap …
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 Mentions money

 Naïve Bayes: pick C maximizing p(C) * p(feat 1 | C) * …
 What assumption does Naïve Bayes make?  True here?

Probabilists Regret Being Bound by Principle

.5  .02  

.9  .1

spam ling

-1   -5.6  

-.15  -3.3

spam ling
log prob

-.85  -2.3  
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spam ling
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 But not clear how to restructure these features like that:
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 Contains supercalifragilistic 
 Contains a dollar amount under $100 
 Contains an imperative sentence
 Reading level = 7th grade
 Mentions money (use word classes and/or regexp to detect this)
 …

 Boy, we’d like to be able to throw all that useful stuff in 
without worrying about feature overlap/independence.

 Well, maybe we can add up scores and pretend like we 
got a log probability: log p(feats | spam) = 5.77

 

+4
+0.2
+1
+2
 -3
+5
 …

total: 5.77

 Oops, then p(feats | spam) = exp 5.77 = 320.5
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fi(m)∈{0,1} according to whether m has feature i

More generally, allow fi(m) = count or strength of feature.

1/Z(λ) is a normalizing factor making ∑m p(m | spam)=1

(summed over all possible messages m!  hard to find!)
 The weights we add up are basically arbitrary.

 They don’t have to mean anything, so long as they give us a good 
probability.

 Why is it called “log-linear”?

 p(feats | spam) = exp 5.77 = 320.5

scale down so

everything < 1 

and sums to 1!
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 Can use ’em to bet, or combine w/ other probs.

 We can now learn weights from data!

 Choose weights λi that maximize logprob of labeled 

training data = log ∏j p(cj) p(mj | cj)

 where cj∈{ling,spam} is classification of message mj

 and p(mj | cj) is log-linear model from previous slide

 Convex function – easy to maximize!  (why?)

 But: p(mj | cj) for a given λ requires Z(λ): hard!
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 Set weights to maximize  ∏j p(cj) p(mj | cj)

 where p(m | spam) = (1/Z(λ)) exp ∑i λi fi(m) 
 But normalizer Z(λ) is awful sum over all possible emails

 So instead: Maximize  ∏j p(cj | mj)

 Doesn’t model the emails mj, only their classifications cj
 Makes more sense anyway given our feature set

 p(spam | m) = p(spam)p(m|spam) / (p(spam)p(m|spam)+p(ling)p(m|ling))

 Z appears in both numerator and denominator
 Alas, doesn’t cancel out because Z differs for the spam and ling models
 But we can fix this …
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 spam        
 spam and Contains Buy

 spam and Contains supercalifragilistic 
 …

 ling           
 ling and Contains Buy

 ling and Contains supercalifragilistic

 No real change, but 2 categories now share single 
feature set and single value of Z(λ)

 weight of this feature is log p(spam) + a constant

 weight of this feature is log p(ling) + a constant

old spam model’s weight for “contains Buy”

old ling model’s weight for “contains Buy”
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 New: choose weights λi that maximize prob of labels given messages 
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 p(spam | m) = p(m,spam) / (p(m,spam) + p(m,ling))

   = exp ∑i λi fi(m,spam) / (exp ∑i λi fi(m,spam) + exp ∑i λi fi(m,ling))

 Easy to compute now …

 ∏j p(cj | mj) is still convex, so easy to maximize too
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Generative vs. Conditional

 What is the most likely label for a given 
input?

 How likely is a given label for a given input?
 What is the most likely input value?
 How likely is a given input value?
 How likely is a given input value with a given 

label?
 What is the most likely label for an input 

that might have one of two values (but we 
don't know which)?
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Maximum Entropy

 Suppose there are 10 classes, A through J.
 I don’t give you any other information.
 Question: Given message m: what is your guess for p(C | m)?

 Suppose I tell you that 55% of all messages are in class A.
 Question: Now what is your guess for p(C | m)?

 Suppose I also tell you that 10% of all messages contain Buy 
and 80% of these are in class A or C.

 Question: Now what is your guess for p(C | m), 
  if m contains Buy?

 OUCH!
20



21

Maximum Entropy

A B C D E F G H I J
Buy 0.051 0.003 0.029 0.003 0.003 0.003 0.003 0.003 0.003 0.003

Other 0.499 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045

 Column A sums to 0.55   (“55% of all messages are in class A”)
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 Column A sums to 0.55
 Row Buy sums to 0.1   (“10% of all messages contain Buy”)
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Maximum Entropy

A B C D E F G H I J
Buy 0.051 0.003 0.029 0.003 0.003 0.003 0.003 0.003 0.003 0.003

Other 0.499 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045

 Column A sums to 0.55
 Row Buy sums to 0.1
 (Buy, A) and (Buy, C) cells sum to 0.08  (“80% of the 10%”)

 Given these constraints, fill in cells “as equally as possible”: 
maximize the entropy  (related to cross-entropy, perplexity)

Entropy = -.051 log .051 - .0025 log .0025 - .029 log .029 - …
Largest if probabilities are evenly distributed
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Maximum Entropy

A B C D E F G H I J
Buy 0.051 0.003 0.029 0.003 0.003 0.003 0.003 0.003 0.003 0.003

Other 0.499 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045

 Column A sums to 0.55
 Row Buy sums to 0.1
 (Buy, A) and (Buy, C) cells sum to 0.08  (“80% of the 10%”)

 Given these constraints, fill in cells “as equally as possible”: 
maximize the entropy

 Now p(Buy, C) = .029  and  p(C | Buy) = .29
 We got a compromise: p(C | Buy) < p(A | Buy) < .55
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Generalizing to More Features

A B C D E F G H …
Buy 0.051 0.003 0.029 0.003 0.003 0.003 0.003 0.003

Other 0.499 0.045 0.045 0.045 0.045 0.045 0.045 0.045

<$100
Other
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What we just did

 For each feature (“contains Buy”), see what 
fraction of training data has it

 Many distributions p(c,m) would predict these 
fractions (including the unsmoothed one where all mass 
goes to feature combos we’ve actually seen)

 Of these, pick distribution that has max entropy

 Amazing Theorem: This distribution has the form 
p(m,c) = (1/Z(λ)) exp ∑i λi fi(m,c)

 So it is log-linear.  In fact it is the same log-linear 
distribution that maximizes ∏j p(mj, cj) as before! 

 Gives another motivation for our log-linear approach.
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Log-linear form derivation

• Say we are given some constraints in the form of
feature expectations:

• In general, there may be many distributions p(x) that
satisfy the constraints.  Which one to pick?

• The one with maximum entropy (making fewest possible
additional assumptions---Occum’s Razor)

• This yields an optimization problem
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Log-linear form derivation
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MaxEnt = Max Likelihood
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By gradient ascent or conjugate gradient.

36



37 37

37



38 38

38



39

Overfitting

 If we have too many features, we can choose 
weights to model the training data perfectly.

 If we have a feature that only appears in spam 
training, not ling training, it will get weight ∞ to 
maximize p(spam | feature) at 1.

 These behaviors overfit the training data.
 Will probably do poorly on test data.
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Solutions to Overfitting

1. Throw out rare features.
 Require every feature to occur > 4 times, and > 0 

times with ling, and > 0 times with spam.

2. Only keep 1000 features.  
 Add one at a time, always greedily picking the one 

that most improves performance on held-out data.

3. Smooth the observed feature counts.
4. Smooth the weights by using a prior.

 max p(λ|data) = max p(λ, data) =p(λ)p(data|λ)

 decree p(λ) to be high when most weights close to 0
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Recipe for a Conditional

MaxEnt Classifier

1. Gather constraints from training data:

2. Initialize all parameters to zero.

3. Classify training data with current parameters.  Calculate
expectations.

4. Gradient is

5. Take a step in the direction of the gradient

6. Until convergence, return to step 3.
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