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Overview

Sequence labeling task (cf. POS tagging)
Independent classifiers

HMMs

(Conditional) Maximum Entropy Markov
Models

Conditional Random Fields

Beyond Sequence Labeling



Sequence Labeling

Inputs: X = (X4, ..., X,)

Labels: y = (y;, ..., ¥,)
Typical goal: Given x, predict y

Example sequence labeling tasks
— Part-of-speech tagging
— Named-entity-recognition (NER)

» Label people, places, organizations



NER Example:

Red Sox and Their Fans Let Loose
S B

Fans of the slugger David Ortiz in Boston's Copley Square.

By PETE THAMEL

victory parade into a full-scale dance party Tuesday as the
an exclamation point on the 2007 season.

BOSTON]|, Oct. 30 — Jonathan Papelbon turned Boston’s World Series
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First Solution:

Maximum Entropy Classifier
« Conditional model p(y|x).

— Do not waste effort modeling p(x), since x
IS given at test time anyway.

— Allows more complicated input features,
since we do not need to model
dependencies between them.

* Feature functions f(x,y):
—f,(x,y) = { word is Boston & y=Location }
—f,(x,y) = { first letter capitalized & y=Name }
—f3(x,y) = { xis an HTML link & y=Location}



First Solution: MaxEnt Classifier
« How should we choose a classifier?

* Principle of maximum entropy

— We want a classifier that:
« Matches feature constraints from training data.
* Predictions maximize entropy.

* There is a unique, exponential family
distribution that meets these criteria.



First Solution: MaxEnt Classifier

* p(y|x;0), inference, learning, and
gradient.

. (ON BOARD)



First Solution: MaxEnt Classifier

* Problem with using a maximum entropy
classifier for sequence labeling:

* |t makes decisions at each position
iIndependently!



Second Solution: HMM

P(y.x)=] |PO, 1y, )P(x1y,)

* Defines a generative process.

« Can be viewed as a weighted finite
state machine.



Second Solution: HMM

 HMM problems: (ON BOARD)

— Probability of an input sequence.

— Most likely label sequence given an input
sequence.

— Learning with known label sequences.
— Learning with unknown label sequences”?



Second Solution: HMM

 How can represent we multiple features
in an HMM?

— Treat them as conditionally independent
given the class label?
 The example features we talked about are not
iIndependent.
— Try to model a more complex generative
process of the input features?

* We may lose tractability (i.e. lose a dynamic
programming for exact inference).



Second Solution: HMM

 Let's use a conditional model instead.



Third Solution: MEMM

« Use a series of maximum entropy
classifiers that know the previous label.

* Define a Viterbi algorithm for inference.

Piylo=|]P, (y Ix



Third Solution: MEMM

* Finding the most likely label sequence
given an input sequence and learning.

. (ON BOARD)



Third Solution: MEMM

 Combines the advantages of maximum
entropy and HMM!

* But there is a problem...



Problem with MEMMs: Label Bias

* In some state space configurations,
MEMMs essentially completely ignore
the inputs.

« Example (ON BOARD).

* This is not a problem for HMMs,
because the input sequence is
generated by the model.



Fourth Solution:
Conditional Random Field

» Conditionally-trained, undirected
graphical model.

 For a standard linear-chain structure:

Piy1x) =] [¥,.y,.%)

lpk(ytayt_lax) = eXp(E )"kf(ytaytlax))
k



Fourth Solution: CRF

* Finding the most likely label sequence

given an input sequence and learning.
(ON BOARD)



Fourth Solution: CRF

* Have the advantages of MEMMs, but
avoid the label bias problem.

 CRFs are globally normalized, whereas
MEMMSs are locally normalized.

* Widely used and applied. CRFs give
state-the-art results in many domains.



Example Applications

 CRFs have been applied to:
— Part-of-speech tagging
— Named-entity-recognition
— Table extraction
— Gene prediction
— Chinese word segmentation

— Extracting information from research
papers.

— Many more...



