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The Story So Far

® |ast time: simple LMs
® Markov assumptions: bigrams, trigrams,...
® Generating text from an n-gram model
® This time
® More on probability
® Bayes theorem and naive Bayes classifiers

® Smoothing: expecting the unseen




Axioms of Probability

e Define event space U, Fi =Q

® Probability function, s.t. P:F —|0,1]
e Disjointeventssum ANB=0« P(AUB)= P(A)+ P(B)
® All events sum to one P(Q) =1

® Show that: P(A)=1- P(A)




Conditional Probability
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Independence

P(A,B) = P(A)P(B)
N
P(A|B)=P(A) A P(B|A) =P(B)

In coding terms, knowing B doesn’t
help in decoding A, and vice versa.
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Yet Another View

Directed graphical models: lack of edge means conditional independence
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Classifiers:
Language under
Different Conditions
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Movie Reviews

there ' s some movies i enjoy even though i know i probably shouldn
t and have a difficult time trying to explain why i did . " lucky
numbers " is a perfect example of this because it ' s such a blatant
rip - off of " fargo " and every movie based on an elmore leonard
novel and yet it somehow still works for me .i know i ' m in the
minority here but let me explain . the film takes place in harrisburg

, pa in 1988 during an unseasonably warm winter . ...
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Setting up a Classifier

® VWhat we want:
P(© | wi,wa, ..., Wn) > p(® | wi, Wz, ..., Wn) !
® VWhat we know how to build:
® A language model for each class
® D(Wi,W2,...,Wn | ©)

® p(W|,W2, oy Wh | ©)




Bayes’ Theorem

By the definition of conditional probability:
P(A,B)=P(B)P(A| B)=P(A)P(B| A)

we canh show:

pa| By~ LB
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P(A)
)

Seemingly trivial result from |763;
Interesting consequences...
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A “Bayesian” Classifier

p(R)p(w17w27 e ooy Wi | R)
p(wy, wa, ..., w,)

p(R | wy,wa, ..., wy,) =

p(wy, wa, ..., w, | R)

Likelihood

max p(R|wy,ws,...,w

Re{—,~}
b




Naive Bayes Classifier

. No dependencies among words!

R




NB on Movie Reviews

® Train models for positive, negative
® For each review, find higher posterior

® Which word probability ratios are highest?

>>> classifier.show_most_informative_features(5)

classifier.show_most_informative_features(5)
Most Informative Features

contains(outstanding) = True pos : heg = 14.1 : 1.0
contains(mulan) = True pos : neg = 8.3 : 1.0
contains(seagal) = True neg : pos = 7.8 : 1.0
contains(wonderfully) = True pos : neg = 6.6 : 1.0
contains(damon) = True pos : neg = 6.1 : 1.0




What's Wrong With
NB!?

® What happens for word dependencies are
strong!

® VWhat happens when some words occur
only once!

® What happens when the classifier sees a
new word!




Summing Up

Exploit rules of probability to condition
events

Exploit Bayes rule for classification
Smooth to avoid zeroes

Read Manning & Schutze 2.1 and chap. 6




