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Simple Estimation

• Probability courses usually start with 
equiprobable events

• Coin flips, dice, cards

• How likely to get a 6 rolling 1 die?

• How likely the sum of two dice is 6?

• How likely to see 3 heads in 10 flips?
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Binomial Distribution
For n trials, k successes, and success probability p:

P (k) =
(

n

k

)
pk(1− p)n−k

(
n

k

)
=

n!
k!(n− k)!

Prob. mass function

Estimation problem: If we observe n and k, what is p?
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Maximum Likelihood
Say we win 40 games out of 100.

P (40) =
(

100
40

)
p40(1− p)60

The maximum likelihood estimator for p solves:

max
p

P (observed data) = max
p

(
100
40

)
p40(1− p)60
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Maximum Likelihood
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Maximum Likelihood

max
p

(
100
40

)
p40(1− p)60How to solve
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Maximum Likelihood

max
p

(
100
40

)
p40(1− p)60How to solve

0 =
∂

∂p

(
100
40

)
p40(1− p)60

= 40p39(1− p)60 − 60p40(1− p)59

= p39(1− p)59[40(1− p)− 60p]
= p39(1− p)5940− 100p
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= 40p39(1− p)60 − 60p40(1− p)59

= p39(1− p)59[40(1− p)− 60p]
= p39(1− p)5940− 100p

Solutions: 0, 1, .4In general, k/n

This is trivial here, but a widely useful approach.

The 
maximizer!
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ML for Language Models

• Say the corpus has “in the” 100 times

• If we see “in the beginning” 5 times,

pML(beginning | in the) = ?

• If we see “in the end” 8 times,

pML(end | in the) = ?

• If we see “in the kitchen” 0 times,

pML(kitchen | in the) = ?
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ML for Naive Bayes
• Recall: p(+ | Damon movie)

           = p(Damon | +) p(movie | +) p(+)

• If corpus of positive reviews has 1000 
words, and “Damon” occurs 50 times,

pML(Damon | +) = ?

• If pos. corpus has “Affleck” 0 times,

p(+ | Affleck Damon movie) = ?
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Will the Sun Rise Tomorrow?
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Will the Sun Rise Tomorrow?
Laplace’s Rule of Succession:
On day n+1, we’ve observed that 
the sun has risen s times before.

pLap(Sn+1 = 1 | S1 + · · · + Sn = s) =
s + 1
n + 2

What’s the probability on day 0?
On day 1?
On day 106?
Start with prior assumption of equal rise/not-rise 
probabilities; update after every observation.
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Laplace (Add One) Smoothing

• From our earlier example:

pML(beginning | in the) = 5/100?  reduce!

pML(end | in the) = 8/100?          reduce!

pML(kitchen | in the) = 0/100?     increase!
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Laplace (Add One) Smoothing

• Let V be the vocabulary size:

i.e., the number of unique words that could 
follow “in the”

• From our earlier example:

pML(beginning | in the) = (5 + 1)/(100 + V) 

pML(end | in the) = (8  + 1)/(100 + V)

pML(kitchen | in the) = (0 + 1) / (100 + V)
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Generalized Additive Smoothing

• Laplace add-one smoothing now assigns too 
much probability to unseen words

• More common to use λ instead of 1:

p(w3 | w1, w2) =
C(w1, w2, w3) + λ

C(w1, w2) + λV

= µ
C(w1, w2, w3)

C(w1, w2)
+ (1− µ)

1
V

µ =
C(w1, w2)

C(w1, w2) + λV
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Generalized Additive Smoothing

• Laplace add-one smoothing now assigns too 
much probability to unseen words

• More common to use λ instead of 1:

interpolation

What’s the 
right λ?

p(w3 | w1, w2) =
C(w1, w2, w3) + λ

C(w1, w2) + λV

= µ
C(w1, w2, w3)

C(w1, w2)
+ (1− µ)

1
V

µ =
C(w1, w2)

C(w1, w2) + λV
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Picking Parameters

• What happens if we optimize parameters 
on training data, i.e. the same corpus we 
use to get counts?

• Maximum likelihood estimate!

• Use held-out data aka development data
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Good-Turing Smoothing
• Intuition: Can judge rate of novel events by 

rate of singletons

• Developed to estimate # of unseen species in field biology

• Let Nr = # of word types with r training 
tokens

• e.g., N0 = number of unobserved words

• e.g., N1 = number of singletons (hapax legomena)

• Let N =  ∑ r Nr = total # of training tokens
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Good-Turing Smoothing
• Max. likelihood estimate if w has r tokens? r/N

• Total max. likelihood probability of all words with r tokens? Nr 
r / N

• Good-Turing estimate of this total probability:

• Defined as: Nr+1 (r+1) / N

• So proportion of novel words in test data is estimated by 
proportion of singletons in training data.  

• Proportion in test data of the N1 singletons is estimated by 
proportion of the N2 doubletons in training data.   etc.

• p(any given word w/freq. r) = Nr+1 (r+1) / (N Nr)

• NB: No parameters to tune on held-out data

16



Backoff

• Say we have the counts:

C(in the kitchen) = 0

C(the kitchen)    = 3

C(kitchen)          = 4

C(arboretum)     = 0

• ML estimates seem counterintuitive:

p(kitchen | in the) = p(arboretum | in the) = 0
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Backoff

• Clearly we shouldn’t treat “kitchen” the 
same as “arboretum”

• Basic add-λ (and other) smoothing 
methods assign the same prob. to all 
unseen events

• Backoff divides up prob. of unseen 
unevenly in proportion to, e.g., lower-order 
n-grams

• If p(z | x,y) = 0, use p(z | y), etc.
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Deleted Interpolation

• Simplest form of backoff

• Form a mixture of different order n-gram 
models; learn weights on held-out data

• How else could we back off?

pdel(z | x, y) = α3p(z | x, y) + α2p(z | y) + α1p(z)
∑

αi = 1
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Readings, etc.

• For more information on basic probability, 
read M&S 2.1

• For more information on language model 
estimation, read M&S 6

• Next, time Hidden Markov Models
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