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Simple Estimation

® Probability courses usually start with
equiprobable events

® Coin flips, dice, cards
® How likely to get a 6 rolling | die?
® How likely the sum of two dice is 6!

® How likely to see 3 heads in |0 flips!?




Binomial Distribution

For n trials, k successes, and success probability p:

P(k) = <n)pk(1 —p)" " Prob. mass function

Estimation problem: If we observe n and k, what is p?




Maximum Likelihood

Say we win 40 games out of |100.

pio) = () - "

The maximum likelihood estimator for p solves:

100
max P(observed data) = max p* (1 — p)*
p p 40




Maximum Likelihood

Likelihood of 40/100 wins

0.08
I

0.06
I

P(40)
0.04
I

0.02
I

0.00
I

0.0 0.2 0.4 0.6 0.8 1.0




Maximum Likelihood

100
How to solve max (40 >p40(1 —p)*°




Maximum Likelihood
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Maximum Likelihood
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Solutions: 0, |, .4




Maximum Likelihood
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maximizer!

Solutions: 0, |, .4




Maximum Likelihood
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In general, k/n Solutions: 0, |, .4




Maximum Likelihood

100
How to solve max (40 >p40(1 —p)*°

maximizer!

= p°?(1 —p)°?40 — 100p

In general, k/n Solutions: 0, 1, .4

This is trivial here, but a widely useful approach.




ML for Language Models

® Say the corpus has “in the” 100 times

® |f we see “in the beginning” 5 times,
pmL(beginning | in the) =

® |f we see “in the end” 8 times,
pmL(end | in the) =?

® |f we see “in the kitchen” 0 times,

pMmL(kitchen | in the) = ?




ML for Naive Bayes

® Recall: p(+ | Damon movie)
= p(Damon | +) p(movie | +) p(*)

® |f corpus of positive reviews has 1000
words, and “Damon” occurs 50 times,

pmL(Damon | +) =?
® |f pos. corpus has “Affleck” 0 times,

p(+ | Affleck Damon movie) =?




Will the Sun Rise Tomorrow!?




Will the Sun Rise Tomorrow!?

Laplace’s Rule of Succession:

On day n+1, we've observed that
the sun has risen s times before.

pLap(Sn—l—l =1 | Sl‘l“l‘Sn :5) — ”Z:I_l-;
What'’s the probability on day 0?

On day |?

On day 109?

Start with prior assumption of equal rise/not-rise
probabilities; update after every observation.




Laplace (Add One) Smoothing

® From our earlier example:
pmL(beginning | in the) = 5/100? reduce!
pmL(end | in the) = 8/100? reduce!

pMmL(kitchen | in the) = 0/100?  increase!




Laplace (Add One) Smoothing

® | etV be the vocabulary size:

i.e., the number of unique words that could
follow “in the”

® From our earlier example:
pmL(beginning | in the) = (5 + 1)/(100 +V)
pmL(end | in the) = (8 + 1)/(100 +YV)
pMmL(kitchen | in the) = (0 + 1) / (100 +V)




Generalized Additive Smoothing

® | aplace add-one smoothing now assigns too
much probability to unseen words

® More common to use A instead of |:

C(U]l, w2, wB) + A
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Generalized Additive Smoothing
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Generalized Additive Smoothing

® | aplace add-one smoothing now assigns too
much probability to unseen words

® More common to use A instead of |:

P(ws | w1, wz)

interpolation

(4

What’s the

C(U)l, w2, ’lUg) + A
C’(wl, wg) - )\V

C(w17w27w3) 1
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Picking Parameters

® What happens if we optimize parameters

on training data, i.e. the same corpus we
use to get counts!

® Maximum likelihood estimate!

® Use held-out data aka development data




Good-Turing Smoothing

® |ntuition: Can judge rate of novel events by
rate of singletons

® Developed to estimate # of unseen species in field biology

® | et N = # of word types with r training
tokens

® e.g.,No=number of unobserved words

® e.g.,N| = number of singletons (hapax legomena)

® et N= ) r N = total # of training tokens
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Good-Turing Smoothing

® Max. likelihood estimate if w has r tokens? r/N

® Total max. likelihood probability of all words with r tokens? N
r/ N

® Good-Turing estimate of this total probability:

Defined as: N+ (r+1) / N

So proportion of novel words in test data is estimated by
proportion of singletons in training data.

Proportion in test data of the N singletons is estimated by
proportion of the N2 doubletons in training data. etc.

p(any given word w/freq.r) = N+ (r+1) / (N Ny)

® NB:No parameters to tune on held-out data
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Backoff

® Say we have the counts:
C(in the kitchen) = 0
C(the kitchen) =3
C(kitchen) =4
C(arboretum) =0

® ML estimates seem counterintuitive:

p(kitchen | in the) = p(arboretum | in the) =0




Backoff

® Clearly we shouldn’t treat “kitchen” the
same as “‘arboretum”

® Basic add-A (and other) smoothing
methods assign the same prob. to dll
unseen events

® Backoff divides up prob. of unseen
unevenly in proportion to, e.g., lower-order
n-grams

® If p(z | x,y) = 0, use p(z | y), etc.




Deleted Interpolation

® Simplest form of backoff

® Form a mixture of different order n-gram
models; learn weights on held-out data

Pdez(Z \ fl’,y) = 04319(2 \ w,y) T 0421?(2’ \ ZJ) T 04119(2)

ZCM@ = 1

® How else could we back off?




Readings, etc.

® For more information on basic probability,
read M&S 2.1

® For more information on language model
estimation, read M&S 6

® Next, time Hidden Markov Models




