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ABSTRACT
One of the central challenges in backscatter is how to en-
able concurrent transmissions. Most backscatter protocols
operate in a sequential TDMA-like manner due to the fact
that most nodes cannot overhear each other’s transmissions,
which is detrimental for throughout and energy consump-
tion. Recent e↵orts to separate concurrent signals by invert-
ing a system of linear equations is also problematic due to
varying channel coe�cients caused by system and environ-
mental dynamics. In this paper, we introduce BST, a novel
physical layer for backscatter communication that enables
concurrent transmission by leveraging intra-bit multiplexing
of OOK signals from multiple tags. The key idea underlying
BST is that the reader can sample at considerably higher
rates than the tags, hence it can extract time-domain signal
edges that result from interleaved transmissions of several
tags. Our preliminary experiment results show that BST can
achieve 5⇥ the throughput of Buzz and 10⇥ the throughput
of TDMA-based solutions, such as EPC Gen 2.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design
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1. INTRODUCTION
Backscatter communication has seen a revival in popular-

ity in recent years due to the potential to enable ultra-low
power data transfer between sensor tags and infrastructure.
There has been substantial recent work on backscatter, in-
cluding e↵orts to improve range [9], improve throughput [7,
10], leverage di↵erent power harvesting sources [6, 3], and
enable new applications [5, 8].

One of the central challenges in backscatter is how to en-
able concurrency. Most protocols designed for backscatter
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operate in a sequential TDMA-like manner due to the fact
that nodes cannot overhear each other’s transmissions [1].
This approach has several performance drawbacks. First,
the overall network-wide bandwidth is limited by the maxi-
mum rate at which individual tags can transmit, often only
a few tens or hundreds of kilobits/second. Second, control
messages from the reader for enabling TDMA scheduling has
both bandwidth and power implications. In terms of band-
width, control messages are slow since the tags are generally
expected to be resource-limited and unable to decode data
at a fast rate. For example, the reader to tag data rate in
EPC Gen 2 is only 40⇠160 kbps, whereas the tag to reader
data rate is up to 640kbps. Into terms of power, control
messages require all tags to be listening and processing mes-
sages, which has high energy overhead on passively powered
tags (74% of the power of running a backscatter radio [4]). In
principle, concurrent transfer can address these drawbacks.
By letting nodes transfer concurrently, the aggregate data
rate can be higher than a single tag, and control overhead
can be amortized over many concurrent transmissions.

But enabling concurrency in backscatter is challenging.
Backscatter tags are typically highly constrained, and inca-
pable of leveraging computationally sophisticated multiple
access techniques such as CDMA. Further, since tags do not
actively generate carrier wave, FDMA cannot be achieved
on backscatter tags. Finally, any approach that requires
more sophisticated transmission circuitry at the tag comes
at the cost of higher power consumption, which defeats the
backscatter power advantage. Thus, concurrency has to be
enabled while retaining the underlying simplicity and low
power nature of backscatter.

In recent years, there have been a few approaches sug-
gested for achieving such concurrency in backscatter. One
interesting approach is Buzz [7], which leverages the fact
that the received signal is a linear combination of the com-
plex channel coe�cients from each tag to the reader, and the
bits being transmitted from each tag. Thus, the signals can
be decoded once the channel coe�cients to each node are
learnt. While this approach can be e↵ective in some deploy-
ments, we argue that channel coe�cients are not as stable
and predictable as one might expect, which makes decoding
challenging. Another approach from Angerer et al [2] is to
use the received phase and amplitude information to create
multiple clusters for identifying the collided bits, where each
cluster corresponds to a specific combination of bits from the
nodes. This approach works well when there are only two or
perhaps three concurrent nodes. However, its performance



degrades significantly when number of nodes increases be-
cause the number of clusters increases exponentially.

In this paper, we introduce BST1, a physical layer tech-
nique for backscatter networks that enables concurrent trans-
mission from multiple devices by leveraging temporally in-
terleaved signal edges of the OOK signals from multiple
tags. The key idea underlying BST is that the reader can
sample at considerably higher rates than the tags, hence it
can extract time-domain signal edges that result from inter-
leaved transmissions of several tags. Since nodes transmit
via OOK, edges carry important information regarding the
bits being transmitted, hence allow us to decode data from
di↵erent tags.

Our contributions are three-fold. We carefully investigate
the drawbacks of previous techniques that have been pro-
posed for concurrency in backscatter. We then describe the
central ideas in BST, and how we can reliably detect signal
edges and leverage them to decode interleaved streams from
multiple tags. Finally, we develop an algorithm for dealing
with collisions between edges. We present a preliminary im-
plementation of BST on a USRP based backscatter reader
and UMass Moo platforms and show that the throughput
achieved by BST is 5⇥ higher than Buzz [7] and 10⇥ higher
than TDMA-based solutions, such as EPC Gen 2 [1].

2. CASE FOR BST
In this section, we argue that existing approaches for col-

lision recovery in backscatter have significant flaws that pre-
vent them from scaling to larger number of nodes and achiev-
ing higher throughput.

2.1 Vector based Collision Recovery
One approach from Angerer et al [2]. is to leverage the

fact that when tags transmit simultaneously, their phase and
amplitude information (IQ vector) creates multiple clusters,
where each cluster corresponds to a specific combination of
values from the nodes. This approach is similar to methods
like Quadrature Amplitude Modulation (QAM) shown in
Figure 1(a), but the major di↵erence is that while the signals
in QAM are structured to be as far apart as possible, the
clusters in our case are unstructured and depend on channel
coe�cients between each node and the reader.

For example, consider that there are two tags that trans-
mit simultaneously. In the I (in phase) channel, the signal
of each tag reflected when sending 0 is I(i,0) and I(i,1) when
sending 1. Similarly in the Q (quadrant) channel the signal
is Q(i,0) and Q(i,1) respectively. Define complex vector V:

V(i,0) = I(i,0) +Q(i,0) (1)

V(i,1) = I(i,1) +Q(i,1) (2)

The total signal reflected by both tags can be one of four
options (depending on the bit, si, transmitted by each tag):

0

BB@

⌃V1 = V(1,0) + V(2,0) , s1 = 0, s2 = 0;
⌃V2 = V(1,0) + V(2,1) , s1 = 0, s2 = 1;
⌃V3 = V(1,1) + V(2,0) , s1 = 1, s2 = 0;
⌃V4 = V(1,1) + V(2,1) , s1 = 1, s2 = 1;

1

CCA (3)

1BST stands for Backscatter Spike Train, representing a se-
quence of edges in time.

Besides the signal reflected by the tags, the reader also re-
ceives the signal reflected by the environment. For simplic-
ity, let us assume that the reflection from the environment
is a constant, so it won’t a↵ect the number of clusters, but
will only add an o↵set to them.

Figure 1(b) shows the empirically obtained IQ constella-
tion of received signal generated by 2 tags. We can see four
dense clusters with sparse points between them. The sparse
points are imperfect transitions between di↵erent states of
transmitted signal.

Lack of scalability: In the two nodes example, it is easy
to see that simply choosing the closest cluster to a received
vector can decode the signal from each node with high prob-
ability, but when we try to increase the number of tags,
performance using this method degrades rapidly. This is
because given N tags (N >2), there are 2N clusters in the
IQ plot, resulting in clusters being closer to each other. An
example with six tags is shown in Figure 1(c). The figure has
64 clusters that are very close to each other, and dwell time
in the cluster is short, which means there are more points
lie between clusters. In this case, separating the signal by
using spatial-division multiplexing is very di�cult [2].

2.2 Signal Inversion for Collision Recovery
A second approach for decoding concurrent transfers from

tags is to leverage the fact that backscatter signals are nar-
rowband, and the received signal is a linear combination of a)
the complex channel coe�cients from each tag to the reader,
and b) the bit being transmitted from each tag. This can be
expressed as: y = h1⇥nbn⇥1, where y, the received symbol
at the reader, is a linear combination of the complex chan-
nel coe�cient corresponding to node i, hi, and the bit being
transmitted by the node, bi. Once the channel coe�cients
from each band are known, the function can be inverted to
estimate the bits transmitted by each tag.

Buzz [7] is a protocol that leverages this idea. Briefly,
Buzz first determines the channel coe�cients of each node
by using a compressive sensing method. Once the chan-
nel coe�cients are known, nodes transmit their message in
a synchronized manner with slot boundaries being aligned.
To allow the reader to decode which node is transmitting
which bit, the nodes re-transmit the same bit multiple times
with di↵erent random combinations as determined by a pre-
defined random matrix. This allows the decoder to observe
di↵erent combinations of the concurrent transmissions, en-
abling it to decode using a belief propagation algorithm
that continuously searches for the lowest error combination.
Once a combination with low error is determined, nodes
move on to transmit the next message.

A key problem with this approach is that the channel
coe�cients need to be known a priori in-order for the scheme
to work, which makes it unsuitable in scenarios where either
the node or the environment changes frequently.

Channel coe�cients can change for three reasons. The
first reason why channel coe�cients can change is when
there is mobility of objects in the vicinity of the tag. In
Figure 2(a), a node is stationary in front of a reader while
an individual moves around the room, resulting in substan-
tial changes to the channel coe�cients. Second, the channel
coe�cients is also sensitive to even small movements to the
tag. In Figure 2(b), a node’s orientation is varied by rotating
it without displacing the node, again resulting in significant
changes to the channel coe�cients. Third, channel coe�-
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(a) 4QAM IQ clusters.

−0.56 −0.54 −0.52 −0.5 −0.48 −0.46 −0.44
0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

I Channel

Q
 C

ha
nn

el

(b) Clustering of 2 tags

−0.05 0 0.05 0.1 0.15 0.2 0.25
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

I Channel

Q
 C

ha
nn

el

(c) IQ plot of signal generated by 6 tags

Figure 1: 4QAM, IQ plot with 2 tags, and IQ plot with 6 tags.

cients also change when there is near-field coupling between
the antennas of two or more tags. Figure 2(c) illustrates this
case with a simple experiment where two tags were placed
far apart, and then brought closer together. As shown, both
channel coe�cients are unchanged when the nodes are about
1m apart, but when nodes become closer together (roughly
5cm), there is near-field coupling across the antennas of the
nodes resulting in variations of channel coe�cients. To make
matters worse, the coupling depends on the bit transmitted
by each tag, making decoding extremely hard. Buzz does
not explicitly address this problem, but dealing with varia-
tions in channel coe�cients is costly since the compressive
sensing-based estimation process is complex and elaborate.

3. BST DESIGN
The core primitive in BST is reliable edge detection. We

discuss this primitive, and then show that we can design a
reliable concurrent transfer protocol over this layer.

3.1 Leveraging interleaved signal edges
Backscatter is an asymmetric communication system in

that the reader is far more powerful than the tag. Thus, the
reader sampling rates are often orders of magnitude higher
than the maximum rate at which any single tag can trans-
mit. For example, the USRP reader can sample at 100 mil-
lion samples per second, while a typical Moo sensor can
transmit at a maximum of 250 kbps. The implication is
that even if nodes transmit in an interleaved manner, re-
sulting in many more edges than a single node can generate,
the reader can oversample to detect these edges as long as
there is a small amount of temporal separation across the
edges. Of course, the implicit assumption that we make is
that the edges are separable and don’t overlap, and this is
a key consideration that we address in this paper.

While edges are not particularly useful for complex en-
coding or modulation schemes such as OFDM, backscatter
devices are simple and use OOK modulation. As a result,
each edge carries information about when the tag toggled
its transistor. This information, in turn, can be leveraged
to decode the signal as we will soon describe.

Di↵erent from systems discussed in section 2 that depend
on the combination of signal and channel condition, BST
relies on edges. Clearly, edges are not impacted by changes
in the channel coe�cients unlike alternate methods. Also, if
di↵erent nodes have di↵erent SNRs, then edges correspond-
ing to nodes with strong SNR will be decoded with fewer

errors, and will have fewer retransmissions. In terms of scal-
ability, edge-based techniques scale much better than use of
IQ clusters; however, as we show later, collisions can increase
when too many nodes interleave their edges.

We now turn to a more detailed description of BST. The
decoding process of BST includes two steps: time-domain
edge detection and bits interpretation from detected edges.
We start with reliable edge detection.

3.2 Reliable edge detection
Before diving into practical approaches for detecting sig-

nal edges, it is useful to understand the structure of the ASK
(OOK) signal generated by backscatter devices.

Signal model: When a backscatter reader communicates
with backscatter devices, its carrier wave is sent on both I
and Q channels. Therefore, the reflected signal generated
by toggling a transistor also have two components: one re-
flection on I channel and the other on the Q channel. For a
single transmitter, the received signal at the reader is:

Aj = sjV(j,I) + s̄jV(j,Q) (4)

In this model, sj is the reflection coe�cient, and V(j,I)

and V(j,Q) are signal vectors on I and Q channels. When
multiple backscatter devices transmit to a reader simulta-
neously, their signal linearly add up on I and Q channels.
Therefore, for concurrent transmission, the received signal
at the reader is:

⌃A =
NX

j=1

sjV(j,I) +
NX

j=1

s̄jV(j,Q) (5)

Edge detection: A key observation is that the linearly
combined signal received by a single reader still contains the
edge information of each individual backscatter transmitter.
This is a result of the linear signal addition described in
the previous signal model. When an individual backscatter
device toggles its transistor, it introduces edges on both I
and Q channels of the combined signal at the receiver, which
enables the receiver to detect the edge.

Figure 3 shows an example of how edge detection can
be done on I and Q channels. Let’s assume that only one
backscatter device toggles its transistor in this example. The
background signal, which are generated by other backscatter
devices as well as the signal reflected by ambient environ-
mental background, is represented by a signal vector V (bg).
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Figure 2: Dynamics in Channel Coe�cients

When the device transmits, it generates a reflected signal
V (tx0) for data zero and V (tx1) for data one. The signal re-
ceived by a backscatter reader is V (rx0) and V (rx1) respec-
tively, which are the addition between background signal and
transmitted signal. Intuitively, a single device’s signal edge
detection can be done by checking the di↵erence between
V (rx0) and V (rx1) as the following equation shows:

�A = |���!Vdiff | = |
����!
V (rx1)�

����!
V (rx0)| (6)
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Figure 3: Edge detection based on signal vectors on

I and Q channels

When the di↵erential vector is greater than a predefined
threshold, an edge of a single device is detected. Some ap-
proaches, such as EPC Gen 2, use amplitude of the signal
for edge detection. However, those approaches lose phase
information and lead to reduced SNR as well as potential
errors in detection.

3.3 Assigning edges to nodes
Once edges have been detected, the next question is how

to assign edges to the corresponding nodes that generated
them. Assigning an edge to a node without any priori in-
formation of transmitters is di�cult. Therefore, we make
each node transmit in a periodic manner with a pre-defined
period. This is shown in Figure 4 where the first node starts
transmission at t0 and the second starts at t1. Those two
nodes use di↵erent periods, T1 and T2, for transmitting in-
formation. Because of the di↵erence of starting time as well
as transmission period, the reader can then separate the dif-
ferent sequences of edges by looking for the streams that
have di↵erent time-o↵sets.

T1 T1

T2 T2
detected 
edges

t0 t1 no edge is present 
because of 00 or 11

T2 T2

Figure 4: Detected edges of several transmitters

Once the streams are identified, the next stage is to iden-
tify gaps in the edge sequence — these gaps are not er-
rors, instead, they carry critical information about instances
where a“00”or“11”occurs (hence the lack of an edge). They
can be identified by detecting the presence of an edge at time
ti + nTi where ti is the starting time of transmission and Ti

is the period of transmission. Thus, we now have a sequence
of ones and zeros, where ones correspond to a change in
the transmission symbol (one to zero or vice-versa) and zero
corresponds to no change in the transmission symbol.

3.4 Recovering data from edges
Once we know the edge sequence corresponding to each

node, we can now figure out the actual bit stream being
transmitted if we have an anchor that tells us the starting
point. For example, let’s say that we know each stream
starts with a one. Then, given the sequence of edges, we
know at what time points the value changed from 1 to 0,
or vice-versa, hence we can decode the bitstream from the
edges. The process is shown in table 1. The data starts with
1 and the correct output is decoded bits 2.

Of course, this process assumes that there are no missed
edges or erroneously detected edges. If so, this can throw
o↵ the subsequent decoding, and cause errors in the rest
of the sequence. To avoid this, we insert a sentinel bit at
specific intervals. For example, consider the case where we
insert a “1” after every byte in the data. Then we know that
every 9th bit should be a 1 in the decoding, which lets us
bootstrap the decoding of the subsequent byte, and lets us
detect single edge errors in the previous byte.

Table 1: Data Recovery

Sent Bits 1 0 0 0 0 1 1 0

Relative Bits x 1 0 0 0 1 0 1

Decoded Bits 1 0 1 1 1 1 0 0 1

Decoded Bits 2 1 0 0 0 0 1 1 0



3.5 Handling edge collisions
Our discussion so far assumes that edges are not overlap-

ping and therefore easily separable. The obvious question
is how often edges from di↵erent nodes overlap, and how to
deal with this problem.

Let us first ask how frequently edges overlap. Set the baud
rate for backscatter node to 100kbps, so this is the rate at
which an individual node generates edges. In our current im-
plementation, the edge detection resolution is about 3 sam-
ples at 25M samples per second from the reader. Thus, if
two edges were to appear within 3 samples of each other, it
would result in a collision.

We use two methods to deal with edge collisions. The
first approach that the reader tries to locally perturb collid-
ers to avoid collisions. To achieve this, the reader sending
a short jitter pulse when it detects a collision, causing the
nodes that just transmitted to re-try with a new o↵set. If
this method fails, the second approach that the reader tries
is to asks nodes to reduce their bit rate by half if the num-
ber of retries exceed a certain threshold. For example, for
16 concurrent transmitters with a bit rate of 100 kbps, the
collision probability is 0.93. which means an expectation of
13.1 retries before success in the start-up process. However,
if we reduce the bit rate by half to 50 kbps, collision proba-
bility drops to 0.72, which means only 3.6 retries are needed
before a success.

4. PRELIMINARY RESULTS
We now present some initial results for BST. Figure 5

shows the aggregate communication throughput achieved
across multiple concurrent transmitters for a fixed bit rate.
In this experiment, we deploy 1, 2, 4, 8, 12, and 16 backscat-
ter devices 1 meter from a backscatter reader. As the num-
ber of transmitters increases, the obtained aggregate through-
put at the backscatter reader also increases. We observe a
linear increase when there are fewer than twelve transmit-
ters, which means that the reader is able to successfully
decode all the edges from these transmitters. When the
number of transmitters is larger than twelve, the aggregate
throughput degrades as a result of collided edges — as de-
scribed earlier, this would need to be addressed by reducing
the bit rate.

As baseline, we show the throughput of a TDMA based
scheduling algorithm, which has a roughly fixed throughput
irrespective of the number of tags. The throughput of BST
is up to 10⇥ higher than a TDMA-based approach as the
number of transmitters increases.

5. CONCLUSION
In this paper, we introduce BST, a novel physical layer

technique for backscatter networks that enables concurrent
transmission from multiple devices. The key idea in BST is
to leverage high-rate sampling backscatter reader and detect
interleaved signal edges to decode collided bits from multi-
ple concurrent transmitters. We propose an algorithm for
reliable signal edge detection and discuss how to use these
edges to decode interleaved streams from multiple tags. In
the case of a dense tag deployment where signal edges might
collide with each other, we also develop an algorithm for re-
solving collisions between edges. Our experimental results
show that BST can achieve 5⇥ to 10⇥ throughput improve-
ment over existing approaches.
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