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Abstract

In [1] we introduced a linear statistical model of joint color changes in
images due to variation in lighting and certain non-geometric camera pa-
rameters. We did this by measuring the mappings of colors in one image
of a scene to colors in another image of the same scene under different
lighting conditions. Here we increase the flexibility of this color flow
model by allowing flow coefficients to vary according to a low order
polynomial over the image. This allows us to better fit smoothly vary-
ing lighting conditions as well as curved surfaces without endowing our
model with too much capacity. We show results on image matching and
shadow removal and detection.

1 Introduction

The number of possible images of an object or scene, even when taken from a single view-
point with a fixed camera, is very large. Light sources, shadows, camera aperture, expo-
sure time, transducer non-linearities, and camera processing (such as auto-gain-control and
color balancing) can all affect the final image of a scene. These effects have a significant
impact on the images obtained with cameras and hence on image processing algorithms,
often hampering or eliminating our ability to produce reliable recognition algorithms.

Addressing the variability of images due to these photic parameters has been an important
problem in machine vision. We distinguish photic parameters from geometric parameters,
such as camera orientation or blurring, that affect which parts of the scene a particular pixel
represents. We also note that photic parameters are more general than “lighting parame-
ters” and include anything which affects the final RGB values in an image given that the
geometric parameters and the objects in the scene have been fixed.

We present a statistical linear model of color change space that is learned by observing
how the colors in static images change jointly under common, naturally occurring lighting
changes. Such a model can be used for a number of tasks, including synthesis of images
of new objects under different lighting conditions, image matching, and shadow detection.
Results for each of these tasks will be reported.

Several aspects of our model merit discussion. First, it is obtained from video data in a
completely unsupervised fashion. The model uses no prior knowledge of lighting condi-
tions, surface reflectances, or other parameters during data collection and modeling. It also
has no built-in knowledge of the physics of image acquisition or “typical” image color



changes, such as brightness changes. Second, it is a single global model and does not need
to be re-estimated for new objects or scenes. While it may not apply to all scenes equally
well, it is a model of frequently occurring joint color changes, which is meant to apply to
all scenes. Third, while our model is linear in color change space, each joint color change
that we model (a 3-D vector field) is completely arbitrary, and is not itself restricted to
being linear. This gives us great modeling power, while capacity is controlled through the
number of basis fields allowed.

After discussing previous work in Section 2, we introduce the color flow model and how
it is obtained from observations in Section 3. In Section 4, we show how the model and a
single observed image can be used to generate a large family of related images. We also
give an efficient procedure for finding the best fit of the model to the difference between two
images. In Section 5 we give preliminary results for image matching (object recognition)
and shadow detection.

2 Previous work

The color constancy literature contains a large body of work on estimating surface re-
flectances and various photic parameters from images. A common approach is to use linear
models of reflectance and illuminant spectra [2]. Gray world algorithms [3] assume the
average reflectance of all the surfaces in a scene is gray. White world algorithms [4] as-
sume the brightest pixel corresponds to a scene point with maximal reflectance. Brainard
and Freeman attacked this problem probabilistically [5] by defining prior distributions on
particular illuminants and surfaces. They used a new, maximum local mass estimator to
choose a single best estimate of the illuminant and surface.

Another technique is to estimate the relative illuminant or mapping of colors under an un-
known illuminant to a canonical one. Color gamut mapping [6] uses the convex hull of all
achievable RGB values to represent an illuminant. The intersection of the mappings for
each pixel in an image is used to choose a “best” mapping. [7] trained a back-propagation
multi-layer neural network to estimate the parameters of a linear color mapping. The ap-
proach in [8] works in the log color spectra space where the effect of a relative illuminant
is a set of constant shifts in the scalar coefficients of linear models for the image colors and
illuminant. The shifts are computed as differences between the modes of the distribution
of coefficients of randomly selected pixels of some set of representative colors.

[9] bypasses the need to predict specific scene properties by proving that the set of images
of a gray Lambertian convex object under all lighting conditions form a convex cone.1 We
wanted a model which, based upon a single image (instead of three required by [9]), could
make useful predictions about other images of the same scene. This work is in the same
spirit, although we use a statistical method rather than a geometric one.

3 Color flows

In the following, let C = {(r, g, b)T ∈ R
3 : 0 ≤ r ≤ 255, 0 ≤ g ≤ 255, 0 ≤ b ≤ 255} be

the set of all possible observable image color 3-vectors. Let the vector-valued color of an
image pixel p be denoted by c(p) ∈ C.

Suppose we are given two P -pixel RGB color images I1 and I2 of the same scene taken
under two different photic parameters θ1 and θ2 (the images are registered). Each pair of

1This result depends upon the important assumption that the camera, including the transducers,
the aperture, and the lens introduce no non-linearities into the system. The authors’ results on color
images also do not address the issue of metamers, and assume that light is composed of only the
wavelengths red, green, and blue.
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Figure 1: Matching non-linear color changes. b is the result of squaring the value of a (in
HSV) and re-normalizing it to 255. c-f are attempts to match b with a using four different
algorithms. Our algorithm (f) was the only one to capture the non-linearity.
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defined at points in C for which there are colors in image I1.

To obtain a full color flow (i.e. a vector field Φ defined at all points in C) from a partially
observed color flow Φ′, we must address two issues. First, there will be many points in
C at which no vector difference is defined. Second, there may be multiple pixels of a
particular color in image I1 that are mapped to different colors in image I2. We use a radial
basis function estimator which defines the flow at a color point (r, g, b)T as the weighted
proximity-based average of nearby observed “flow vectors”. We found empirically that
σ2 = 16 (with colors on a 0–255 scale) worked well. Note that color flows are defined so
that a color point with only a single nearby neighbor will inherit a flow vector that is nearly
parallel to its neighbor. The idea is that if a particular color, under a photic parameter
change θ1 7→ θ2, is observed to get a little bit darker and a little bit bluer, for example, then
its neighbors in color space are also defined to exhibit this behavior.

3.1 Structure in the space of color flows

Consider a flat Lambertian surface that may have different reflectances as a function of
the wavelength. While in principle it is possible for a change in lighting to map any color
from such a surface to any other color independently of all other colors2, we know from
experience that many such joint maps are unlikely. This suggests that while the marginal
distribution of mappings for a particular color is broadly distributed, the space of possible
joint color maps (i.e., color flows) is much more compact3.

In learning a statistical model of color flows, many common color flows can be anticipated
such as ones that make colors a little darker, lighter, or more red. These types of flows can
be well modeled with a simple global 3x3 matrix A that maps a color c1 in image I1 to a
color c2 in image I2 via

c2 = Ac1. (3)

However, there are many effects which linear maps cannot model. Perhaps the most signifi-
cant is the combination of a large brightness change coupled with a non-linear gain-control
adjustment or brightness re-normalization by the camera. Such photic changes will tend

2By carefully choosing properties such as the surface reflectance of a point as a function of wave-
length and lighting any mapping Φ̃ can, in principle, be observed even on a flat Lambertian surface.
However the metamerism which would cause such effects is uncommon in practice [10, 11]

3We will address below the significant issue of non-flat surfaces and shadows, which can cause
highly “incoherent” maps.



Figure 2: Evidence of non-linear color
changes. The first two images are of
the top and side of a box covered with
multi-colored paper. The quotient image
is shown next. The rightmost image is an
ideal quotient image, corresponding to a
linear lighting model.

Figure 3: Effects of the first three eigenflows.
See text.

to leave the bright and dim parts of the image alone, while spreading the central colors of
color space toward the margins.

For a linear imaging process, the ratio of the brightnesses of two images, or quotient image
[12], should vary smoothly except at surface normal boundaries. However as shown in
Figure 2, the quotient image is a function not only of surface normal, but also of albedo–
direct evidence of a non-linear imaging process. Another pair of images exhibiting a non-
linear color flow is shown in Figures 1a and b. Notice that the brighter areas of the original
image get brighter and the darker portions get darker.

3.2 Color eigenflows

We wanted to capture the structure in color flow space by observing real-world data in an
unsupervised fashion. A one square meter color palette was printed on standard non-glossy
plotter paper using every color that could be produced by a Hewlett Packard DesignJet
650C. The poster was mounted on a wall in our office so that it was in the direct line of
overhead lights and computer monitors but not the single office window. An inexpensive
video camera (the PC-75WR, Supercircuits, Inc.) with auto-gain-control was aimed at the
poster so that the poster occupied about 95% of the field of view.

Images of the poster were captured using the video camera under a wide variety of lighting
conditions, including various intervals during sunrise, sunset, at midday, and with various
combinations of office lights and outdoor lighting (controlled by adjusting blinds). People
used the office during the acquisition process as well, thus affecting the ambient lighting
conditions. It is important to note that a variety of non-linear normalization mechanisms
built into the camera were operating during this process.

We chose image pairs Ij = (Ij
1
, I

j
2
), 1 ≤ j ≤ 800, by randomly and independently se-

lecting individual images from the set of raw images. Each image pair was then used to
estimate a full color flow Φ(Ij). We used 4096 distinct RGB colors (equally spaced in
RGB space), so Φ(Ij) was represented by a vector of 3 ∗ 4096 = 12288 components.

We modeled the space of color flows using principal components analysis (PCA) because:
1) the flows are well represented (in an L2 sense) by a small number of principal compo-
nents, and 2) finding the optimal description of a difference image in terms of color flows
was computationally efficient using this representation (see Section 4). We call the prin-
cipal components of the color flow data “color eigenflows”, or just eigenflows,4 for short.
We emphasize that these principal components of color flows have nothing to do with the
distribution of colors in images, but only model the distribution of changes in color. This
is a key and potentially confusing point. Our work is very different from approaches that
compute principal components in the intensity or color space itself [14, 15]. Perhaps the
most important difference is that our model is a global model for all images, while the

4PCA has been applied to motion vector fields [13], and these have also been termed “eigenflows”.
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Figure 4: Image matching. Top row: original images. Bottom row: best approximation to
original images using eigenflows and the source image a. Reconstruction errors per pixel
component for four methods are shown in b.

above methods are models only for a particular set of images, such as faces.

4 Using color flows to synthesize novel images

How do we generate a new image from a source image and a color flow Φ? For each pixel
p in the new image, its color c

′(p) can be computed as

c
′(p) = c(p) + αΦ(ĉ(p)), (4)

where c(p) is color in the source image and α is a scalar multiplier that represents the
“quantity of flow”. ĉ(p) is interpreted to be the color vector closest to c(p) (in color space)
at which Φ has been computed. RGB values are clipped to 0–255.

Figure 3 shows the effect of the first three eigenflows on an image of a face. The original
image is in the middle of each row while the other images show the application of each
eigenflow with α values between ±4 standard deviations. The first eigenflow (top row)
represents a generic brightness change that could probably be represented well with a linear
model. Notice, however, the third row. Moving right from the middle image, the contrast
grows. The shadowed side of the face grows darker while the lighted part of the face grows
lighter. This effect cannot be achieved with a simple matrix multiplication as given in
Equation 3. It is precisely these types of non-linear flows we wish to model.

We stress that the eigenflows were only computed once (on the color palette data), and that
they were applied to the face image without any knowledge of the parameters under which
the face image was taken.

4.1 Flowing one image to another

Suppose we have two images and we pose the question of whether they are images of the
same object or scene. We suggest that if we can “flow” one image to another then the
images are likely to be of the same scene.

Let us treat an image I as a function that takes a color flow and returns a difference image
D by placing at each (x,y) pixel in D the color change vector Φ(c(px,y)). The difference
image basis for I and set of eigenflows Ψi, 1 ≤ i ≤ E, is Di = I(Ψi). The set of images
S that can be formed using a source image and a set of eigenflows is S = {S : S =

I +
∑E

i=1
γiDi}, where the γi’s are scalars, and here I is just an image, and not a function.

In our experiments, we used E = 30 of the top eigenvectors.

We can only flow image I1 to another image I2 if it is possible to represent the difference
image as a linear combination of the Di’s, i.e. if I2 ∈ S. We find the optimal (in the
least-squares sense) γi’s by solving the system

D =

E∑

i=1

γiDi, (5)
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Figure 5: Modeling lighting changes with color flows. a. Image with strong shadow. b.
Same image under more uniform lighting conditions. c. Flow from a to b using eigenflows.
d. Flow from a to b using linear. Evaluating the capacity of the color flow model. e. Mirror
image of b. f. Failure to flow b to e implies that the model is not overparameterized.

using the pseudo-inverse, where D = I2 − I1. The error residual represents a match score
for I1 and I2. We point out again that this analysis ignores clipping effects. While clipping
can only reduce the error between a synthetic image and a target image, it may change
which solution is optimal in some cases.

5 Experiments

5.1 Image matching

One use of the color change model is for image matching. An ideal system would flow
matching images with zero error, and have large errors for non-matching images.

We first examined our ability to flow a source image to a matching target image under
different photic parameters. We compared our system to 3 other commonly used methods:
linear, diagonal, and gray world. The linear method finds the matrix A in Equation 3 that
minimizes the L2 error between the synthetic and target images; diagonal does the same
with a diagonal A; gray world linearly matches the mean R, G, B values of the synthetic
and target images. While our goal was to reduce the numerical difference between two
images using flows, it is instructive to examine one example that was particularly visually
compelling, shown in Figure 1.

In a second experiment (Figure 4), we matched images of a face taken under various camera
parameters but with constant lighting. Color flows outperforms the other methods in all but
one task, on which it was second.

5.2 Local flows

In another test, the source and target images were taken under very different lighting con-
ditions. Furthermore, shadowing effects and lighting direction changed between the two
images. None of the methods could handle these effects when applied globally. Thus we
repeatedly applied each method on small patches of the image. Our method again per-
formed the best, with an RMS error of 13.8 per pixel component, compared with errors of
17.3, 20.1, and 20.6 for the other methods. Figure 5 shows obvious visual artifacts with the
linear method, while our method seems to have produced a much better synthetic image,
especially in the shadow region at the edge of the poster.
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Figure 6: Backgrounding with color flows. a A background image. b A new object and
shadow have appeared. c For each of the two regions (from background subtraction), a
“flow” was done between the original image and the new image based on the pixels in each
region. d The color flow of the original image using the eigenflow coefficients recovered
from the shadow region. The color flow using the coefficients from the non-shadow region
are unable to give a reasonable reconstruction of the new image.

Synthesis on patches of images greatly increases the capacity of the model. We performed
one experiment to measure the over-fitting of our method versus the others by trying to
flow an original image to its reflection (Figure 5). The RMS error per pixel component was
33.2 for our method versus 41.5, 47.3, and 48.7 for the other methods. Note that while our
method had lower error (which is undesirable), there was still a significant spread between
matching images and non-matching images. We believe we can improve differentiation
between matching and non-matching image pairs by assigning a cost to the change in γi

across each image patch. For non-matching images, we would expect the γi’s to vary
rapidly to accommodate the changing image. For matching images, sharp changes would
only be necessary at shadow boundaries or changes in the surface orientation relative to
directional light sources.

5.3 Shadows

Shadows confuse tracking algorithms [16], backgrounding schemes and object recognition
algorithms. For example, shadows can have a dramatic effect on the magnitude of differ-
ence images, despite the fact that no “new objects” have entered a scene. Shadows can
also move across an image and appear as moving objects. Many of these problems could
be eliminated if we could recognize that a particular region of an image is equivalent to a
previously seen version of the scene, but under a different lighting.

Figure 6a shows how color flows may be used to distinguish between a new object and a
shadow by flowing both regions. A constant color flow across an entire region may not
model the image change well. However, we can extend our basic model to allow linearly
or quadratically (or other low order polynomially) varying fields of eigenflow coefficients.
That is, we can find the best least squares fit of the difference image allowing our γ esti-
mates to vary linearly or quadratically over the image. We implemented this technique by
computing flows γx,y between corresponding image patches (indexed by x and y), and then
minimizing the following form:

arg min
M

∑

x,y

(γx,y − Mcx,y)T Σ−1

x,y(γx,y − Mcx,y). (6)

Here, each cx,y is a vector polynomial of the form [x y 1]T for the linear case and
[x2 xy y2 x y 1]T for the quadratic case. M is an Ex3 matrix in the linear case and
an Ex6 matrix in the quadratic case. The Σ−1

x,y’s are the error covariances in the estimate
of the γx,y’s for each patch.

Allowing the γ’s to vary over the image greatly increases the capacity of a matcher, but
by limiting this variation to linear or quadratic variation, the capacity is still not able to
qualitatively match “non-matching” images. Note that this smooth variation in eigenflow
coefficients can model either a nearby light source or a smoothly curving surface, since
either of these conditions will result in a smoothly varying lighting change.



constant linear quadratic
shadow 36.5 12.5 12.0

non-shadow 110.6 64.8 59.8

Table 1: Error residuals for shadow and non-shadow regions after color flows.

We consider three versions of the experiment: 1) a single vector of flow coefficients, 2)
linearly varying γ’s, 3) quadratically varying γ’s. In each case, the residual error for the
shadow region is much lower than for the non-shadow region (Table 1).

5.4 Conclusions

Except for the synthesis experiments, most of the experiments in this paper are preliminary
and only a proof of concept. Much larger experiments need to be performed to estab-
lish the utility of the color change model for particular applications. However, since the
color change model represents a compact description of lighting changes, including non-
linearities, we are optimistic about these applications.
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