Parallel & Concurrent Programming:

Processes & Threads

Emery Berger
CMPSCI 691W - Spring 2006

UNIVERSITY OF MASSACHUSETTS, AMHERST » Department of Computer Science

@/ NE

= Processes

= Threads

= Basic synchronization
= Bake-off

UNIVERSITY OF MASSACHUSETTS, AMHERST Department of Computer Science

DCECDOOC ea

= Both useful for parallel programming
& concurrency

« Hide latency
= Maximize CPU utilization

=« Handle multiple, asynchronous events

= But: different programming styles,
performance characteristics, and more

UNIVERSITY OF MASSACHUSETTS, AMHERST » Department of Computer Science

» 0 - -
= Process: Usr AdaressSpace
execution sk | et et 7 e Cor
context (PC, I
registers) + —t—
address space, a | v G
files, etc.
- o
= Basic unit of -
execution

UNIVERSITY OF MASSACHUSETTS, AMHERST » Department of Computer Science

Process AP/

= UNIX:

» Fork() - create copy of current process
= Different return value
=« Copy-on-write

= exec() - replace process w/ executable

= Windows:
= CreateProcess (..)
= 10 arguments

UNIVERSITY OF MASSACHUSETTS, AMHERST » Department of Computer Science

= TLB: fast, fuII)ll |

associative - Sl p—
memory | [—
= Stores page *= ~——
numbers (key) womewas |
and frame (value) ™ T = |
in which they are ! [
Physical Manay]
stored

= Copy-on-write:
protect pages,
copy on first write

UNIVERSITY OF MASSACHUSETTS, AMHERST Department of Computer Science

maan(} {

imt: pareatll = getpid(}; /v Ik of this process =/

char prgnoame[1024]:

geta (prename); f+ read the nams of program we went to Start &/
iwt cid = Fork(};

if{eid — @) £ /= I'm ihe child process =/
execlp(prgname, pregname, OF; /% Load the program +/
f# If the program namsd pregnsms can be started, we Dever get
to thiz Lins, becouse the child program is replaced by prgnomes =/
printi{"l dida’s Iind poogram Xe\n®, prgname};

¥} elze { /+ I’m the parent peocess #f
slesp {L}; /= CGive my <hild time to start. =/
waitpid{eid, O, O); J* Wait for my child to terminate. #/
peinti{"Program %o finished\n™, prgnomec);

* 3}

UNIVERSITY OF MASSACHUSETTS, AMHERST » Department of Computer Science

0/147441%14 o/4

N

= Processes:
= Input = state before fork()
= Output = return value
= argument to exit()
= But: how can processes communicate
during execution?

UNIVERSITY OF MASSACHUSETTS, AMHERST » Department of Computer Science

= signals
= Send & receive ints
= Not terribly useful for parallel or
concurrent programming
= pipes
= Communication channels — easy & fast
= Just like UNIX command line

UNIVERSITY OF MASSACHUSETTS, AMHERST » Department of Computer Science

9 2. 01441911

int main() {

int pfds[2];

pipe(pfds);

if (1forkQ) {
close(1); /* close normal stdout */
dup(pfds[1]); /* make stdout same as pfds[1] */
close(pfds[0]); /7* we don"t need this */
execlp('ls™, "Is™, NULL);

} else {
close(0); /* close normal stdin */
dup(pfds[0]); /* make stdin same as pfds[0] */
close(pfds[1]); /* we don"t need this */
execlp('wc™, "wc", "-1", NULL);

UNIVERSITY OF MASSACHUSETTS, AMHERST » Department of Computer Science

DI IIUE L
= sockets
- Explicit message passing
+ Can distribute processes anywhere
= shmem

= Best not spoken of...
= mmap (common hack)

= All processes map same file into fixed
memory location

= Objects in region shared across
processes

=« Use Flock() to synchronize

UNIVERSITY OF MASSACHUSETTS, AMHERST » Department of Computer Science

= Processes -
everything in
distinct st
address space

= Threads -
same address
space (& files,
sockets, etc.)

feap

UNIVERSITY OF MASSACHUSETTS, AMHERST » Department of Computer Science

Threads AP/

= UNIX (POSIX):
= pthread_create() - start separate
thread executing function
» pthread_join() - wait for thread to
complete

= Windows:
= CreateThread (..)
= only 6 arguments!

UNIVERSITY OF MASSACHUSETTS, AMHERST » Department of Computer Science

#include <pthread.h>
void * run (void * d) {
int g = ((int) d);
int v = 0;
for (int i = 0; 1 <q; i++) {
v = v + expensiveComputation(i);

}
return (void *) v;
}
main() {
pthread_t tl1, t2;
int rl, r2;

pthread_create (&tl, run, 100);
pthread_create (&t2, run, 100);
pthread_wait (&tl, (void *) &ril);
pthread_wait (&t2, (void *) &r2);
printf (“rl = %d, r2 = %d\n”, rl, r2);

UNIVERSITY OF MASSACHUSETTS, AMHERST » Department of Computer Science

ommunication

= In threads, everything shared except:

stacks, registers & thread-specific data
= Old way:

= pthread_setspecific

» pthread_getspecific
= New way: _ thread

= Static _ thread int Xx;

« Easier in Java...

= Updates of shared state must be
synchronized

" UNIVERSITY OF MASSACHUSETTS, AMHERST » Department of Computer Science

') l l " 4 .’

= Mutual exclusion locks
= Only one thread in critical section

pthread_mutex_ lock (&l);

update data; /* critical section */
pthread_mutex_unlock (&l);

UNIVERSITY OF MASSACHUSETTS, AMHERST Department of Computer Science

Pthreads AP/

pthread_ Threads themselves and miscellaneous subroutines
ptheead_atte_ Thread attributes objects

pthread_mutex_ Mutexes

pthread_mutexatte_ Mutex attributes abjects.

ptheead_cond_ Condition variables

pthread_condattr_ Condition attributes objects

pthread_key_ Thread-specific data keyvs

UNIVERSITY OF MASSACHUSETTS, AMHERST » Department of Computer Science

= Processes or threads?
= Performance
= Flexibility / Ease-of-use
= Robustness

UNIVERSITY OF MASSACHUSETTS, AMHERST » Department of Computer Science

110 queue V0 request

fime shica
expired

forka

child
BNECUES child
infermipt

occurs 4 |

I

waitforan [
intermupk

=

UNIVERSITY OF MASSACHUSETTS, AMHERST » Department of Computer Science

DI TLEA /| 1 o

= Threads — much cheaper

= Stash registers, PC (“IP"), stack pointer
= Processes:

= Same as threads plus -

= Process context

= TLB shootdown

= Process switches more expensive, or
require long quanta

UNIVERSITY OF MASSACHUSETTS, AMHERST » Department of Computer Science

10

= Processes — more flexible

+ Easy to spawn remotely

+ Can communicate via sockets = can be
distributed across cluster / Internet

- Requires explicit communication or risky
hackery

= Threads

=« Communicate through memory — must
be on same machine

- Require thread-safe code

UNIVERSITY OF MASSACHUSETTS, AMHERST » Department of Computer Science

ROLDUSITNE

= Processes — far more robust

= Processes isolated from other processes
= Process dies) no effect

= Apache 1.x

= Threads:

= If one thread crashes (e.g., derefs
NULL), whole process terminates

= Then there’s the stack size problem
= Apache 2.x...

UNIVERSITY OF MASSACHUSETTS, AMHERST Department of Computer Science

11

ve 111=

= Advanced synchronization

UNIVERSITY OF MASSACHUSETTS, AMHERST » Department of Computer Science

12

