
1

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science

Parallel & Concurrent Programming:

Processes & Threads

Emery Berger
CMPSCI 691W - Spring 2006

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science 2

Outline

Processes
Threads
Basic synchronization
Bake-off

2

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science 3

Processes vs. Threads…

Both useful for parallel programming
& concurrency

Hide latency
Maximize CPU utilization
Handle multiple, asynchronous events

But: different programming styles,
performance characteristics, and more

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science 4

Processes

Process:
execution
context (PC,
registers) +
address space,
files, etc.
Basic unit of
execution

3

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science 5

Process API

UNIX:
fork() – create copy of current process

Different return value
Copy-on-write

exec() – replace process w/ executable

Windows:
CreateProcess (…)

10 arguments

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science 6

Translation Lookaside Buffer

TLB: fast, fully
associative
memory

Stores page
numbers (key)
and frame (value)
in which they are
stored

Copy-on-write:
protect pages,
copy on first write

4

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science 7

Processes Example

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science 8

Communication

Processes:
Input = state before fork()
Output = return value

argument to exit()

But: how can processes communicate
during execution?

5

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science 9

IPC
signals

Send & receive ints
Not terribly useful for parallel or
concurrent programming

pipes
Communication channels – easy & fast
Just like UNIX command line

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science 10

Pipe example
int main() {

int pfds[2];
pipe(pfds);
if (!fork()) {
close(1); /* close normal stdout */
dup(pfds[1]); /* make stdout same as pfds[1] */
close(pfds[0]); /* we don't need this */
execlp("ls", "ls", NULL);

} else {
close(0); /* close normal stdin */
dup(pfds[0]); /* make stdin same as pfds[0] */
close(pfds[1]); /* we don't need this */
execlp("wc", "wc", "-l", NULL);

}
}

6

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science 11

IPC, continued
sockets
- Explicit message passing
+ Can distribute processes anywhere

shmem
Best not spoken of…

mmap (common hack)
All processes map same file into fixed
memory location
Objects in region shared across
processes
Use flock() to synchronize

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science 12

Threads

Processes -
everything in
distinct
address space
Threads –
same address
space (& files,
sockets, etc.)

7

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science 13

Threads API

UNIX (POSIX):
pthread_create() – start separate
thread executing function
pthread_join() – wait for thread to
complete

Windows:
CreateThread (…)

only 6 arguments!

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science 14

Threads example
#include <pthread.h>
void * run (void * d) {

int q = ((int) d);
int v = 0;
for (int i = 0; i < q; i++) {

v = v + expensiveComputation(i);
}
return (void *) v;

}
main() {

pthread_t t1, t2;
int r1, r2;
pthread_create (&t1, run, 100);
pthread_create (&t2, run, 100);
pthread_wait (&t1, (void *) &r1);
pthread_wait (&t2, (void *) &r2);
printf (“r1 = %d, r2 = %d\n”, r1, r2);

}

8

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science 15

Communication
In threads, everything shared except:
stacks, registers & thread-specific data

Old way:
pthread_setspecific
pthread_getspecific

New way: __thread
static __thread int x;

Easier in Java…

Updates of shared state must be
synchronized

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science 16

Basic synchronization

Mutual exclusion locks
Only one thread in critical section

pthread_mutex_lock (&l);

update data; /* critical section */
pthread_mutex_unlock (&l);

9

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science 17

Pthreads API

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science 18

Bake-off

Processes or threads?
Performance
Flexibility / Ease-of-use
Robustness

10

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science 19

Scheduling

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science 20

Context Switch Cost
Threads – much cheaper

Stash registers, PC (“IP”), stack pointer

Processes:
Same as threads plus –
Process context
TLB shootdown

Process switches more expensive, or
require long quanta

11

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science 21

Flexibility / Ease-of-use
Processes – more flexible
+ Easy to spawn remotely
+ Can communicate via sockets = can be

distributed across cluster / Internet
- Requires explicit communication or risky

hackery

Threads
Communicate through memory – must
be on same machine

- Require thread-safe code

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science 22

Robustness

Processes – far more robust
Processes isolated from other processes

Process dies) no effect

Apache 1.x

Threads:
If one thread crashes (e.g., derefs
NULL), whole process terminates
Then there’s the stack size problem
Apache 2.x…

12

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science 23

Next time
Advanced synchronization

