Parallel & Concurrent
Programming:

Advanced Java
Concurrency

Emery Berger
CMPSCI 691W - Spring 2006

UNIVERSITY OF MASSACHUSETTS AMHERST » Department of Computer Science

s Last time:

=« Built-in Java concurrency

» Thread, synchronized, wait (),
notify()..

= New in java.util.concurrent

= Semaphores
= Blocking queues, barriers, futures

= Today:
= Lock “improvements”
= Non-blocking operations
= java.nio library

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

JIJICT]

No way to

= Try to acquire lock

= Give up after timeout

= Use reader/writer locking

Locks always reentrant

Access control:
= Any method can call synchronized (obj)

Only block-structured locking
Locks may block

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

VeV

= java.util.concurrent. locks

= Familiar Lock interface
= lock (), unlock()
n tryLock ()

= tryLock (time, unit)
s ReentrantLock

m ReentrantReadWritelock

= Support for rolling your own
= Condition

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

class BoundedBuffer {

final Lock lock =
new ReentrantLock();

final Condition notFull =
lock.newCondition () ;

final Condition notEmpty =
lock.newCondition () ;

public void put (Object x)
throws InterruptedException ({
lock.lock();
try {
while (count == items.length)
notFull.await () ;
items [putptr] = x;
if (++putptr == items.length)
putptr = 0;
++count;
notEmpty.signal () ;
} finally { lock.unlock(); }

public Object take()
throws InterruptedException {
lock.lock();
try {
while (count == 0)
notEmpty.await () ;
Object x = items|[takeptr];
if (++takeptr == items.length)
takeptr = O;
——count;
notFull.signal();
return x;
} finally { lock.unlock(); } }

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

VO!]

= Locks can block =
= Priority inversion
= Can wait unbounded time till success
=« Deadlock, relatively slow, convoying
m java.util.concurrent.atomic

= Provides access to hardware-level
atomic operations

= Building blocks for non-blocking data
structures

UNIVERSITY OF MASSACHUSETTS AMHERST » Department of Computer Science

VO!]

s AtomicInteger
= set (int)
= get ()
= addAndGet (int), incrementAndGet ()
» getAndAdd (int), getAndIncrement ()

= compareAndSet (expected, update)

= Atomically sets value to updated value iff current
value == expected value

= True iff successful
= No locks used on most platforms

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

VO!]

s AtomicReference<V>
= set (V newValue)
= get ()
= compareAndSet (expected, update)

= getAndSet (newValue)
= Returns old value

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

VO!]

= push (N)
= h=Head; N->next = h
= Repeat until
CAS(Head, h, N)
= POp:
= h = Head;
next = h->next

= Repeat until
CAS(head, h, next)

= Return h
= But: ABA problem

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

VO!]

= push (N)
= h=Head; N->next = h
= Repeat until
CAS(Head, h, N)
= POp:
= h = Head;
next = h->next

= Repeat until
CAS(head, h, next)

= Return h
= But: ABA problem

next h

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

VO!]

= push (N)
= h=Head; N->next = h
= Repeat until
CAS(Head, h, N)
= POp:
= h = Head;
next = h->next

= Repeat until
CAS(head, h, next)

= Return h
= But: ABA problem

next

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

VO!]

= push (N)
= h=Head; N->next = h
= Repeat until
CAS(Head, h, N)
= POp:
= h = Head;
next = h->next

= Repeat until
CAS(head, h, next)

= Return h
= But: ABA problem

next | h L

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

VO!]

= push (N)
= h=Head; N->next = h
= Repeat until
CAS(Head, h, N)
= POp:
= h = Head;
next = h->next

= Repeat until
CAS(head, h, next)

= Return h
= But: ABA problem

next | h L

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

VO!]

= push (N)
= h=Head; N->next = h
= Repeat until
CAS(Head, h, N)
= POp:
= h = Head;
next = h->next

= Repeat until
CAS(head, h, next)

= Return h
= But: ABA problem

next | h L

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

VO!]

= push (N)
= h=Head; N->next = h
= Repeat until
CAS(Head, h, N)
= POp:
= h = Head;
next = h->next

= Repeat until
CAS(head, h, next)

= Return h
= But: ABA problem

next h

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

' '
4

= One solution — use tags
= Associate version number with refs

s AtomicStampedReference<V>
= set (V newReference, int newStamp)
= get (stampHolder)

= compareAndSet (expectedRef,
newRef,
expectedStamp,
newStamp)

= Non-blocking only on supporting
architectures

= X86, but not 64-bit

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

VO!]

= push (N)
= h=Head; N->next = h
= Repeat until
CAS(Head, h, N)
= POp:
= h= Head;
next = h->next

= Repeat until
CAS(head, h, next)

= Return h

next h |1

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

VO!]

= push (N)
= h=Head; N->next = h
= Repeat until
CAS(Head, h, N)
= POp:
= h = Head;
next = h->next

= Repeat until
CAS(head, h, next)

= Return h
= ABA problem solved

next | h |1 L

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

= Java (as of 1.4) supports
non-blocking I/0 and other low-level
/O

= Memory mapped byte buffers
= Channels

= Pipes

= Selectors

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

= Memory-mapped buffers
= Array mapped to file on disk
= Uses virtual memory operations

= Access to buffer in memory = file
operation

s Much faster than direct calls to file I/0

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

a Selector

= Essentially same notion as select ()

= Add any channels of interest and start
I/O operations
= Must have configured as non-blocking:
sc.configureBlocking (false)
= Returns iterator to channels ready for
I/O operations

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

' '
4

= No class next week
= Homework due Feb 27

s Next time(s):
server architectures, SEDA, Flux
= Read SEDA & Flux papers

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

