Parallel & Concurrent
Programming:

Atomicity

Emery Berger

CMPSCI 691W
Spring 2006

UNIVERSITY OF MASSACHUSETTS AMHERST » Department of Computer Science

@/ NE

= Last time:
= Race detection

= This time:
= Atomicity

some slides adapted from Flanagan, PLDI o5

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

inc()

—————— precond.

—————— postcond.

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

o+

s

— &

— S =

) .—

e 5 £ 2 ||

-+ 'S

O O C Q = > | M

Voo ¥ = 2 o E

S o 2 @ o 52 E
.—Wrede Sn O S
Iltsrd S-I%d .m
Y ST W0 Lc o E

5935532 5% |
OUh._m ne o
tg._L.Im U o e & 9
A. [| [|

B S S R

=) e — W I
B S S R R R

°
(-
(%)
o
Ll
I
=
<
w
-
=
Ll
w
)
I
U
<
w
w
<
=
T
(©)
>
=
(%]
o
L
=
=
o

Definition of Atomici

» Method (or code block) atomic if

« V arbitrarily interleaved executions:
3 equivalent execution with same
behavior when method executed
serially

= Compare to linearizability,
serializability

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

possible serial executions:

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

ATON

= Atomizer [Flanagan & Freund, POPL o04]

= Dynamic tool for atomicity violation
detection

= Builds on Eraser &
Lipton’s theory of reduction

= Results:
=« Finds more defects than race detectors
= Few false positives
= Most exported methods atomic

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

acq(this X t=i Y i=t+1 Z [
_ acq(this) : I _ rel(this)

acq(this) X Y t=i i=t+1 Z rel(this)
X Y acq(this) t=i i=t+1 VA rel(this)
S —— ——y . . ¢ —_—
X Y acq(this) t=i i=t+1 rel(this) Z
. _ﬁ ° ﬁ . . ° . . °

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

atomic void inc() { R: right-mover lock acquire
int t;
i L: left-mover lock release
synchronized (this) { eft-move :
t=i: B: both-mover race-free variable access
i=t+1; A: atomic conflicting variable
3 access
by
acq(this) t=i i=t+1 rel(this)
R B B L
U J
~
A
@ (RIB)* [A] (L|B)*

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

e void inc() { R: right-mover lock acquire
int t;
g L: left- r lock rel
synchronized (this) { eft-move ock release _
t=i: B: both-mover race-free variable access
2 nchronized (this) ¢ A: atomic conflicting variable
i=t+ 1; access
b
¥
acq(this) t=i rel(this) acq(this) i=t+1 rel(this)
R B L R B L
1§ J 1\ J
Y Y
Y
Compound

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

used by the compiler to implement the binary
string concatenation operator

e

that

ance

der

method
ds

involved.

ala /
"~

/*# atomic */ public class StringBuffer { ... }

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

public class StringBuffer {

private int count;
public synchronized int length() { return count; }
public synchronized void getChars(...) { ... }

atomic public synchronized void append (StringBuffer sb) {

sb.length() acquires lock on sb,

int len = sb.length(); gets length, and releases lock

} - \ use of stale len may yield
StringIndexOutOfBoundsException
inside getChars(...

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

public class StringBuffer {

private int count;
public synchronized int length() { return count; }
public synchronized void getChars(...) { ... }

atomic public synchronized void append (StringBuffer sb) {

int len = sb.length(); /Q)

> Compound

sb.getChars(...,len, ...); /A

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

event stream

T1:
T2:
T2:
T1:
T1:
T2:

begin_atomic
acquire (lock3)
read(x, 5)
write (y, 3)
end_atomic
release (lock3)

Runtime

‘Lockset
*Reduction

/*# atomic */
void append(...)

-

~

U

Javac
+JVM

Warning: method "append”

may hot be atomic at line 43

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

= Lockset algorithm

= from Eraser [Savage et al. 97]
= identifies race conditions

= Reduction [Lipton 75]

= proof technique for verifying atomicity,
using information about race conditions

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

= Lockset algorithm
=« from Eraser [Savage et al. 97]
= identifies race conditions

= Reduction [Lipton 75]

= proof technique for verifying atomicity,
using information about race conditions

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

Dvnamic Reduction

= R:right-mover = B: both-mover

= lock acquire = race-free field access
= L: left-mover = N: non-mover

= lock release = access to "racy" fields

acq(lock) j=bal bal=j+n rel(lock)
R B B L
e Reducible methods: (R|B)* [N](L|B)*
R|B L|B

< e
atomic .,
n\lx\!.v\\/

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

Atomizer Review

= Instrumented code calls Atomizer runtime
= on field accesses, sync ops, etc

= Lockset algorithm identifies races

= used to classify ops as movers or non-movers

= Atomizer checks reducibility of atomic blocks
= warns about atomicity violations

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

Evaluation

= 12 benchmarks
= scientific computing, web server, std libraries, ...
= 200,000+ lines of code

= Heuristics for atomicity
= all synchronized blocks are atomic
= all public methods are atomic, except main and run

= Slowdown: 1.5X - 40X

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

Benchmark Lines Base Time (s) Slowdown
elevator 500 11.2 -
hedc 29,900 6.4 -
tsp 700 1.9 21.8
SOr 17,700 1.3 1.5
moldyn 1,300 90.6 1.5
montecarlo 3,600 6.4 2.7
raytracer 1,900 4.8 41.8
mtrt 11,300 2.8 38.8
jigsaw 90,100 3.0 4.7
specJBB 30,500 26.2 12.1
webl 22,300 60.3 -
lib-java 75,305 96.5 -

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

= AAYI(0]4

= Redundant lock operations are both-movers

= re-entrant acquire/release
= operations on thread-local locks

= operations on lock A,
if lock B always acquired before A

= Write-protected data
= Much like reader-writer locks

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

class Account {
int bal;
/*# atomic */ int read() { return bal; }
/*# atomic */ void deposit (int n) ({

A

— 0w

synchronized (this)
int j = bal;
bal = j + n;

UNIVERSITY OF MASSACHUSETTS AMHERST

{

» Department of Computer Science

—— lib-java
—O— webl
—o—jbb
jigsaw
—e— elevator
—=— hedc

tsp
—>¢—s0r
—¥— moldyn
—e— montecarlo
—+—raytracer
——mtrt

Basic reentrant thread-local thread- protected write-
locks locks local(2) locks protected
locks data

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

Evaluation

= Warnings: 97 (down from 341)
= Real errors: at least 7

= False alarms:
= simplistic heuristics for atomicity
= need programmer help to specify atomicity
= false races
= methods irreducible yet still “atomic”
= €.g., caching, lazy initialization
= No warnings reported in more than 9o% of
exercised methods

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

public class StringBuffer {

private int count;

public synchronized int length() { return count;
public synchronized void getChars(...) ({

/*# atomic */

}
}

public synchronized void append (StringBuffer sb) {

int len = sb.length(

M

14

StringBuffer.append is not atomic:
Start:
at StringBuffer.append (StringBufi
at Threadl.run (Example.java:17)

\\\Efmmit: Lock Release

at StringBuffer.length (StringBufi
at StringBuffer.append (StringBufi
at Threadl.run (Example.java:17)

Error: Lock Acquire

at StringBuffer.getChars (StringBt
at StringBuffer.append (StringBufi
at Threadl.run (Example.java:17)

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

= Types for atomicity
= Basic atomicity (atomic, left-mover, etc.)

= Conditional atomicity
= If lock(l) held, ...

= Field Guarded-by lock, Write-guarded-by lock
= Method Requires lock1, locka2...

= Uses constraint-based system to infer most
precise types
= Full inference often NP-complete
= Better than undecidable...

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

