Parallel & Concurrent Programming: Multiprogrammed Multiprocessors

Emery Berger CMPSCI 691W Spring 2006

Outline

- Last time:
 - Parallel language taxonomy
 - Cilk parallel programming language
 - "Work-first" principle
- Today:
 - Multiprogrammed multiprocessors
 - "Hood" library

Static Partitioning

- Program partitions
 work T1 evenly among
 P (light-weight)
 processes
 - a.k.a. kernel threads
- Each process performs
 T₁/P work

- At runtime, P processors execute P processes in parallel
 - Time = T₁/P
 - linear speedup

Multiprogramming

If another program is running concurrently,
 P processes may execute on P_A < P processors

- Desired execution time = T_1/P_A
 - Linear speedup
- Statically partitioned program may fall far short:
 - In this example, execution = $T_1/2$, but $P_{\Delta} = 3$

Static Partitioning

Dynamic Scheduling

Program partitions work into (user-level) **threads** to expose all parallelism. Computation may create millions of threads, all dynamically scheduled through two levels

Each computation has a (user-level) thread scheduler that maps its threads to its processes

Kernel maps all processes to all processors

Define **processor average** P_A of computation as time-average number of processors on which computation executes, as determined by the kernel.

Goal: execution time $T \approx T_1/P_A$, irrespective of kernel scheduling.

Dag Model

Multithreaded computation modeled as dag (directed

acyclic graph)

 Each node represents one executed instruction and takes one time unit to execute.

> Assume single source node and out-degree at most 2

• Work T_1 = number of nodes. Critical-path length T_{∞} = length of a longest (directed) path

 Node is ready if all of its ancestors have been executed.
 Only ready nodes can be executed.

Theory and Practice

Hood uses a **non-blocking work stealer** whose execution time *T* satisfies the following bounds:

 T_{∞} = critical-path length, theoretical minimum execution time with infinitely many processors

Theory:
$$E[T] = O(T_1/P_A + T_{\infty}P/P_A)$$
.

- Kernel assumed to be adversary
- Bound optimal to within constant factor
- For any $\varepsilon > 0$, we have $T = O(T_1/P_A + (T_\infty + \lg(1/\varepsilon))P/P_A)$ with probability at least $1-\varepsilon$

Practice:
$$T \approx T_1/P_A + T_{\infty}P/P_A$$
.

• We have $T \approx T_1/P_A$ whenever P is small relative to average parallelism, T_1/T_{∞} .

Work Stealing

Each process maintains "pool" of ready threads organized as a **deque** (double-ended queue) with a top and a bottom

Process obtains work by popping the bottom-most thread from its deque and executing that thread

- If the thread blocks or terminates, then the process pops another thread.
- If the thread creates or enables another thread, then the process pushes one thread on the bottom of its deque and continues executing the other.

If a process finds that its deque is empty, then it becomes a *thief* and steals the top-most thread from the deque of a randomly chosen *victim* process.

Non-Blocking Stealer

Implementation of work stealing with following features:

1 deques implemented with non-blocking synchronization

- There exists constant c (≈ 10) such that if process performs a deque operation, then after executing c instructions, some process has succeeded in performing deque operation
- 2 Each process, between consecutive steal attempts, performs a yield system call

Why Yield?

Processes spin making steal attempts, but all deques empty

Performance w/o Yield

Lower Bounds

At each time step i = 1, 2, ..., T, the kernel chooses to **schedule** any subset of the **P** processes, and those scheduled processes execute one instruction. Let p_i denote the number of processes scheduled at step i.

Processor average defined by $P_A = \frac{1}{T} \sum_{i=1}^{T} p_i$

Execution time given by $T = \frac{1}{P_A} \sum_{i=1}^{T} p_i$

- $T \ge T_1/P_A$, because $\sum_{i=1}^{T} p_i \ge T_1$.
- $T \ge T_{\infty} P/P_A$, because kernel can force $\sum_{i=1}^{T} p_i \ge T_{\infty} P$.

There must be at least T_{∞} steps i with $p_i \neq 0$, and for each such step, the kernel can schedule $p_i = P$ processes.

Greedy Schedules

A schedule is **greedy** if at each step i, the number of nodes executed is equal to the minimum of p_i and the number of ready nodes.

Theorem: Any greedy schedule has length at most $T_1/P_A + T_{\infty} P/P_A$.

Proof: We prove that $\sum_{i=1}^{I} p_i \le T_1 + T_{\infty} P$. At each step each scheduled process pays one token.

If the process executes a node, then it places a token in the *work bucket*. Execution ends with *T*₁ tokens in the work bucket.

• Otherwise, the process places a token in the *idle bucket*. There are at most T_{∞} steps at which a process places a token in the idle bucket, and at each such step at most P tokens are placed in the idle bucket.

Analysis

Theorem: The non-blocking work stealer runs in expected time $O(T_1/P_A + T_{\infty}P/P_A)$.

Proof sketch: Let S denote the number of steal attempts. We prove that $\sum_{i=1}^{N} p_i = O(T_1 + S)$ and $\mathbf{E}[S] = O(T_{\infty}P)$. At each step each scheduled process pays one token.

• If the process is "working," then it places a token in the *work bucket*. Execution ends with $O(T_1)$ tokens in the work bucket.

Otherwise, the process places a token in the *steal bucket*. Execution ends with *O(S)* tokens in the steal bucket.

Enabling Tree

- An edge (u,v) is an enabling edge if the execution of u made v ready. Node u is the designated parent of v.
- The enabling edges form an enabling tree.

Structural Lemma

For any deque, at all times during the execution of the workstealing algorithm, the designated parents of the nodes in the deque lie on a root-to-leaf path in the enabling tree.

Consider any process at any time during the execution.

- v_0 is the ready node of the thread that is being executed.
- $v_1, v_2, ..., v_k$ are the ready nodes of the threads in the process's deque ordered from bottom to top.
- For i = 0, 1, ..., k, node u_i is the designated parent of v_i .

Then for i = 1, 2, ..., k, node u_i is an ancestor of u_{i-1} in the enabling tree.

Steal Attempts

We use a potential function to bound the number of steal attempts.

At each step i, each ready node u has potential $\phi_i(u) = 3^{T_{\infty}-d(u)}$, where d(u) is the depth of u in the enabling tree.

The potential Φ_i at step *i* is the sum of all ready node potentials.

- The deques are top-heavy: the top-most node contributes a constant fraction.
- With constant probability, **P** steal attempts cause the potential to decrease by a constant fraction.
- The initial potential is $\Phi_0 = 3^{T_{\infty}}$, and it never increases.
- The expected number of steal attempts until the potential decreases to 0 is $O(T_{\infty}P)$.

Performance Model

Execution time: $T \le c_1 T_1/P_A + c_2 T_{\infty} P/P_A$.

Utilization:
$$\frac{T_1}{P_A T} \ge \frac{T_1}{c_1 T_1 + c_2 T_\infty P}$$
 The ratio
$$\frac{P/(T_1/T_\infty)}{P/(T_1/T_\infty)}$$
 is the normalized number of processes.

For all multithreaded applications and all input problems, the utilization can be lower bounded as a function of one number, the normalized number of processes.

We test this claim with a synthetic application, **knary**, that produces a wide range of work and critical-path lengths for different inputs.

Knary Utilization

Utilization measured on 8-processor Sun Ultra Enterprise 5000.

No other program is running, so $P_A = \min\{8, P\}$.

Application Utilization

Utilization measured on 8-processor Sun Ultra Enterprise 5000.

No other program is running, so $P_A = \min\{8, P\}$.

Hood Performance

Varving # Processors

To test the model when the number of processors varies over time, we run the test applications concurrently with a synthetic application, cycler.

Repeatedly, **cycler** creates a random number of processes, each of which runs for a random amount of time.

- Each process repeatedly increments a shared counter.
- At regular intervals, the counter value and a timestamp are written to a buffer.

For any time interval, we can look at the counter values at the start and end to determine the processor average $P_A(\text{cycler})$ for cycler over that interval.

Knary Utilization

Utilization measured on 8-processor Sun Ultra Enterprise 5000.

Cycler is also running, so $P_A = \min\{8 - P_A(\text{cycler}), P\}$.

Application Utilization

Utilization measured on 8-processor Sun Ultra Enterprise 5000.

Cycler is also running, so $P_A = \min\{8 - P_A(\text{cycler}), P\}$.

Summarv

- Non-blocking work stealer provides predictable, good performance on commodity OS
- Related work (OS side):
 - coscheduling
 - process control

Coscheduling

Coscheduling (gang scheduling) – all computation's processes scheduled to run in parallel

- © For some computation mixes, coscheduling not effective. Example: Computation with 4 processes and computation with 1 process on a 4-processor machine
- © Resource-intensive may require coscheduling for high performance. Example: Data-parallel programs with large working sets

Process Control

With process control, each computation creates and kills processes dynamically: always runs with number of processes equal to number of processors assigned to it.

Process control & non-blocking work stealer complement each other

- With work stealing, new process can be created at any time, and process can be killed when its deque is empty
- With non-blocking work stealer, little penalty for operating with more processes than processors
- Process control can help keep P close to P_A .

The End

- Next week: Spring Break
- Week after that: travel
 - Plenty of time to work on homework (due 29th) and...
 - Project report: describe your proposed work and implementation plan, including division of responsibilities if appropriate, and timeline with milestones.

