Parallel & Concurrent
Programming:

Multiprogrammed
Multiprocessors

Emery Berger

CMPSCI 691W
Spring 2006

SETTS AMHERST » Department of Computer Science

- '

= Last time:
= Parallel language taxonomy
= Cilk parallel programming language
= “"Work-first” principle

L Today:
=« Multiprogrammed multiprocessors
= "Hood"” library

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

= Program partitions ——
ok T ey smong
P (light-weight)
processes , ’ ‘ \

= a.k.a. kernel threads

= Each process performs
T./P work

; process 1 process?2 process3 process 4

processor 1

= At runtime, P
processors execute P
processes in parallel

= Time=T/P
> = linear speedup

processor 2

processor 3

processor 4

Tl: /4 time

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

Multiproagr mmm

= If another

B9 rarigs _
running
2
concurrently, processor2 [
P processes processor 3 -
may eXeCUte processor 4
on P, <P I —
processors T1/2 time

= Desired execution time =T,/P,
= Linear speedup

= Statically partitioned program may fall
far short:

= In this example, execution =T./2,
butP, =3

UNIVERSITY OF MASSACHUSETTS AMHERST » Department of Computer Science

Static Partitioning

Vol Ve 2Vl

——1deal

- mm(1024)
1u(2048)

— barnes(16K,10)

- heat(4K,512,100)

4 8 12 16 20 24 28

Pprocesses

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

32

Program partitions work into (user-level) threads to expose all
parallelism. Computation may create millions of threads, all
dynamically scheduled through two levels

Each computation has a

threads (user-level) thread
scheduler that maps its
threads to its processes

processes
Kernel maps all

kernel processes to all

processors

processors

Define processor average P, of computation as time-
average number of processors on which computation
executes, as determined by the kernel.

Goal: execution time T = T./P,, irrespective of kernel scheduling.

UNIVERSITY OF MASSACHUSETTS AMHERST » Department of Computer Science

Multithreaded computation modeled as dag (directed
acyclic graph)

e Each node represents one executed
instruction and takes one time unit to
execute.

e Assume single source node and
out-degree at most 2

* Work T; = number of nodes.
Critical-path length T_ = length
of a longest (directed) path

e Node is ready if all of its
ancestors have been executed.
Only ready nodes can be
executed.

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

Hood uses a non-blocking work stealer
whose execution time T satisfies the following bounds:

T_ = critical-path length, theoretical minimum execution time
with infinitely many processors

Theory: E[T] = O(T,/P, + T_PIP,).

e Kernel assumed to be adversary
e Bound optimal to within constant factor

e Forany £€>0, we have T=0(T,/P, + (T_+1g(1/¢))PIP,)
with probability at least 1—¢&

Practice: T=T,/P,+T_PIP,.

* We have T'= T,/P, whenever P is small relative to
average parallelism, T',/T_.

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

2111 1C
Each process maintains “pool” of
ready threads organized as a
deque (double-ended queue)
with a top and a bottom
Process obtains work by
popping the bottom-most
thread from its deque and &) Q) &) Q)
executing that thread g 2 g 2

e If the thread blocks or terminates, then the process pops
another thread.

e If the thread creates or enables another thread, then the
process pushes one thread on the bottom of its deque and
continues executing the other.

If a process finds that its deque is empty, then it becomes a thief
and steals the top-most thread from the deque of a randomly
chosen victim process.

UNIVERSITY OF MASSACHUSETTS AMHERST » Department of Computer Science

Implementation of work stealing with following
features:

1 deques implemented with non-blocking
synchronization

e Instead of locks, atomic load-test-store
machine instructions are used. Examples:
load-linked/store—-conditional
and compare—and-swap.

e There exists constant ¢ (=10) such that if
process performs a deque operation, then
after executing c¢ instructions, some process
has succeeded in performing deque
operation

2 Each process, between consecutive steal
attempts, performs a yield system call

UNIVERSITY OF MASSACHUSETTS AMHERST » Department of Computer Science

process
about to

execute this

node is

swapped out.

N ,

M steal
E work

executed
nodes

<J

g8 16 8 16 8 16
Iu barnes heat

Processes spin
making steal
attempts, but all
deques empty

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

—mm(1024)

1u(2048)
~barnes(16K,10)
- heat(4K,512,100)
—— msort(32M)

—ray()

4 8 12 16 20 24 28
Processes

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

32

At each time stepi =1, 2, ..., T, the kernel chooses to
schedule any subset of the P processes, and those scheduled
processes execute one instruction. Let p; denote the number
of processes scheduled at step i.

Processor average defined by P, = L Zp,

T
Execution time given by T = 1 2. Di

T
«T>T,/P,, because le,- >T,.
1=

T
T >T_PIP,, because kernel can force le,- >T_P.
1=

There must be at least 7' steps i with p; # 0, and for each
such step, the kernel can schedule p, = P processes.

UNIVERSITY OF MASSACHUSETTS AMHERST » Department of Computer Science

Greedy Schedules

A schedule is greedy if at each step i, the number of nodes executed is
equal to the minimum of p; and the number of ready nodes.

Theorem: Any greedy schedule has length at most
T./P,+T_PIP,.

T

Proof: We prove that >, p;<T,+ T, P. Ateach step
i=1

each scheduled process pays one token.

e If the process executes a node, then it places a
token in the work bucket. Execution ends with
T, tokens in the work bucket.

work
bucket

e Otherwise, the process places a token in the
idle bucket. There are at most T’ steps at idle
which a process places a token in the idle w bucket
bucket, and at each such step at most P tokens
are placed in the idle bucket. -

UNIVERSITY OF MASSACHUSETTS AMHERST » Department of Computer Science

Theorem: The non-blocking work stealer runs in
expected time O(T,/P, + T_PIP,).

Proof sketch' Let S denote the number of steal attempts. We
prove thatZ Pi=0(T,+S) and E[S] = O(T,_P). At each step
each scheduled process pays one token.

e If the process 1s “working,” then it work
places a token in the work bucket. bucket
Execution ends with O(T,) tokens in
the work bucket.

» Otherwise, the process places a token in steal

the steal bucket. Execution ends with bucket
O(S) tokens in the steal bucket.

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

/‘\ e An edge (u,v) is an

enabling edge if the
execution of u made v
ready. Node u is the
designated parent of v.

e The enabling edges
form an enabling
tree.

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

Structural Lemma

For any deque, at all times during the execution of the work-
stealing algorithm, the designated parents of the nodes in the
deque lie on a root-to-leaf path in the enabling tree.

Consider any process at any time during the
execution.

* v, 1s the ready node of the thread that is being
executed.

* v, V, ..., V, are the ready nodes of the threads in
the process’s deque ordered from bottom to top.

Fori=0,1,...,k, node u, is the designated
parent of v,.

Then fori=1, 2, ..., k, node u, is an ancestor of
u,_, in the enabling tree.

UNIVERSITY OF MASSACHUSETTS AMHERST » Department of Computer Science

We use a potential function to bound the number of steal attempts.

At each step i, each ready node u has potential @(u) = 37="®_ where
d(u) is the depth of u in the enabling tree.

The potential @, at step 7 is the sum of all ready node potentials.

e The deques are top-heavy: the top-most
node contributes a constant fraction.

e With constant probability, P steal
attempts cause the potential to
decrease by a constant fraction.

e The initial potential is @, = 37,
and it never increases.

* The expected number of steal
attempts until the potential
w, decreases to 0 1s O(T_P). -

UNIVERSITY OF MASSACHUSETTS AMHERST » Department of Computer Science

oJdnFTald=M\"/[e]o(=

Execution time: T <c¢,T,/P, +c,T_PIP, .

Utilization: h > Iy .
P,\.T c¢Ty+c,T P The ratio
P/(T,IT) 1s the
> 1 normalized
e+ ,P/(TyIT,) number of
processes.

For all multithreaded applications and all input
problems, the utilization can be lower bounded as a
function of one number, the normalized number of
processes.

We test this claim with a synthetic application, knary,
that produces a wide range of work and critical-path
lengths for different inputs.

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

Knary Utilization

Utilization measured on 8-processor Sun Ultra Enterprise 5S000.

No other program is running, so P, = min{8, P}.

1

o
N

Utilization

~
N

0.1

» knary

— model(c¢,=1, ¢,=1)
model(c,=1.1, ¢,=2)

1e-5 0.0001 0.001 0.01 0.1 1 10

Normalized processes

100

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

Application Utilization

Utilization measured on 8-processor Sun Ultra Enterprise 5000.

No other program is running, so P, = min{8, P}.

1 .| ——
0.8
0.6
= mm(1024)
S 04 1u(2048)
§ barnes(16K,10)
= s+ heat(4K,512,100)
= + msort(32M)
0.2 > ray()
— model(¢=1, ¢,=1)
model(c,=1.1, ¢,=2)
0.1

1e-5 0.0001 0.001 0.01 0.1 1 10 100
Normalized processes

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

speedup

9

o

— ideal
- mm(1024)

1u(2048)
—=barnes(16K,10)
== heat(4K,512,100)
—— msort(32M)

—ray()

e i —

jm————

| 4 8 12 16 20 24 28
Processes

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

32

To test the model when the number of processors varies over
time, we run the test applications concurrently with a
synthetic application, cycler.

Repeatedly, cycler creates a random number 2

of processes, each of which runs for a random
amount of time.

e Each process repeatedly increments a shared P
counter.

e At regular intervals, the counter value and a
timestamp are written to a buffer.

For any time interval, we can look at the counter

values at the start and end to determine the
processor average P,(cycler) for cycler

over that interval.

UNIVERSITY OF MASSACHUSETTS AMHERST » Department of Computer Science

Utilization measured on 8-processor Sun Ultra Enterprise 5000.

Cycler is also running, so P, = min{8 — P,(cycler), P}.
1

0.8
0.6
a
L 04
=
<
o
.E; . knary *®
- MR
0.2 — model(c¢,=1, ¢,=1) .
model(c,=1.1, ¢,=2) * s S,
.0
0.1 . . : . . :
1e-5 0.0001 0.001 0.01 0.1 1 10 100

Normalized processes

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

Utilization measured on 8-processor Sun Ultra Enterprise 5000.

Cycler is also running, so P, = min{8 — P,(cycler), P}.

0.4

Utilization

0.2

0.1

1e-5 0.0

= mm(1024)
1u(2048)
barnes(16K,10)

s+ heat(4K,512,100)

+ msort(32M)

* ray()

— model(¢=1, ¢,=1)

model(c,=1.1, ¢,=2)

001 0.001 0.01 0.1 1 10
Normalized processes

100

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

VY IIC

= Non-blocking work stealer provides
predictable, good performance on
commodity OS

= Related work (OS side):

= coscheduling
= process control

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

Coscheduling (gang scheduling) -
all computation’s processes scheduled to run in parallel

A

processor 1

processor 2

processor 3

processor 4

> fime

© For some computation mixes, coscheduling not
effective. Example: Computation with 4 processes and
computation with 1 process on a 4-processor machine

© Resource-intensive may require coscheduling for high
performance. Example: Data-parallel programs with
large working sets

UNIVERSITY OF MASSACHUSETTS AMHERST » Department of Computer Science

process new process
killed created

With process control, each
computation creates and
kills processes dynamically:
always runs with number of
processes equal to number
of processors assigned to it.

processor 1
processor 2
processor 3

processor 4

N
>

time

Process control & non-blocking work stealer complement each other

e \With work stealing, new process can be created at any time,
and process can be killed when its deque is empty

e \With non-blocking work stealer, little penalty for operating
with more processes than processors

* Process control can help keep P close to P,.

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

' '
4

= Next week: Spring Break
= Week after that: travel

= Plenty of time to work on homework
(due 29t") and...

= Project report: describe your proposed
work and implementation plan,
including division of responsibilities if
appropriate, and timeline with
milestones.

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

