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= Last time:
= Parallel language taxonomy
= Cilk parallel programming language
= “"Work-first” principle

L Today:
=« Multiprogrammed multiprocessors
= "Hood"” library
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= Program partitions ——
ok T ey smong
P (light-weight)
processes , ’ ‘ \

= a.k.a. kernel threads

= Each process performs
T./P work

; process 1 process?2  process3 process 4

processor 1

= At runtime, P
processors execute P
processes in parallel

= Time=T/P
> = linear speedup

processor 2

processor 3

processor 4

Tl: /4 time

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science



Multiproagr mmm

= If another

B9 rarigs _
running
2
concurrently, processor2 [
P processes processor 3 -
may eXeCUte processor 4
on P, <P I —
processors T1/2 time

= Desired execution time =T,/P,
= Linear speedup

= Statically partitioned program may fall
far short:

= In this example, execution =T./2,
butP, =3
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Static Partitioning

Vol Ve 2Vl

——1deal

- mm(1024)
1u(2048)

— barnes(16K,10)

- heat(4K,512,100)

4 8 12 16 20 24 28

Pprocesses

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

32




Program partitions work into (user-level) threads to expose all
parallelism. Computation may create millions of threads, all
dynamically scheduled through two levels

Each computation has a

threads (user-level) thread
scheduler that maps its
threads to its processes

processes
Kernel maps all

kernel processes to all

processors

processors

Define processor average P, of computation as time-
average number of processors on which computation
executes, as determined by the kernel.

Goal: execution time T = T./P,, irrespective of kernel scheduling.
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Multithreaded computation modeled as dag (directed
acyclic graph)

e Each node represents one executed
instruction and takes one time unit to
execute.

e Assume single source node and
out-degree at most 2

* Work T; = number of nodes.
Critical-path length T_ = length
of a longest (directed) path

e Node is ready if all of its
ancestors have been executed.
Only ready nodes can be
executed.
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Hood uses a non-blocking work stealer
whose execution time T satisfies the following bounds:

T_ = critical-path length, theoretical minimum execution time
with infinitely many processors

Theory: E[T] = O(T,/P, + T_PIP,).

e Kernel assumed to be adversary
e Bound optimal to within constant factor

e Forany £€>0, we have T=0(T,/P, + (T_+1g(1/¢))PIP,)
with probability at least 1—¢&

Practice: T=T,/P,+T_PIP,.

* We have T'= T,/P, whenever P is small relative to
average parallelism, T',/T_.
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2111 1C
Each process maintains “pool” of
ready threads organized as a
deque (double-ended queue)
with a top and a bottom
Process obtains work by
popping the bottom-most
thread from its deque and & ) Q ) & ) Q )
executing that thread g 2 g 2

e If the thread blocks or terminates, then the process pops
another thread.

e If the thread creates or enables another thread, then the
process pushes one thread on the bottom of its deque and
continues executing the other.

If a process finds that its deque is empty, then it becomes a thief
and steals the top-most thread from the deque of a randomly
chosen victim process.
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Implementation of work stealing with following
features:

1 deques implemented with non-blocking
synchronization

e Instead of locks, atomic load-test-store
machine instructions are used. Examples:
load-linked/store—-conditional
and compare—and-swap.

e There exists constant ¢ (=10) such that if
process performs a deque operation, then
after executing c¢ instructions, some process
has succeeded in performing deque
operation

2 Each process, between consecutive steal
attempts, performs a yield system call
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At each time stepi =1, 2, ..., T, the kernel chooses to
schedule any subset of the P processes, and those scheduled
processes execute one instruction. Let p; denote the number
of processes scheduled at step i.

Processor average defined by P, = L Zp,

T
Execution time given by T = 1 2. Di

T
«T>T,/P,, because le,- >T,.
1=

T
T >T_PIP,, because kernel can force le,- >T_P.
1=

There must be at least 7' steps i with p; # 0, and for each
such step, the kernel can schedule p, = P processes.
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Greedy Schedules

A schedule is greedy if at each step i, the number of nodes executed is
equal to the minimum of p; and the number of ready nodes.

Theorem: Any greedy schedule has length at most
T./P,+T_PIP,.

T

Proof: We prove that >, p;<T,+ T, P. Ateach step
i=1

each scheduled process pays one token.

e If the process executes a node, then it places a
token in the work bucket. Execution ends with
T, tokens in the work bucket.

work
bucket

e Otherwise, the process places a token in the
idle bucket. There are at most T’ steps at idle
which a process places a token in the idle w bucket
bucket, and at each such step at most P tokens
are placed in the idle bucket. -
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Theorem: The non-blocking work stealer runs in
expected time O(T,/P, + T_PIP,).

Proof sketch' Let S denote the number of steal attempts. We
prove thatZ Pi=0(T,+S) and E[S] = O(T,_P). At each step
each scheduled process pays one token.

e If the process 1s “working,” then it work
places a token in the work bucket. bucket
Execution ends with O(T,) tokens in
the work bucket.

» Otherwise, the process places a token in steal

the steal bucket. Execution ends with bucket
O(S) tokens in the steal bucket.
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/‘\ e An edge (u,v) is an

enabling edge if the
execution of u made v
ready. Node u is the
designated parent of v.

e The enabling edges
form an enabling
tree.
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Structural Lemma

For any deque, at all times during the execution of the work-
stealing algorithm, the designated parents of the nodes in the
deque lie on a root-to-leaf path in the enabling tree.

Consider any process at any time during the
execution.

* v, 1s the ready node of the thread that is being
executed.

* v, V, ..., V, are the ready nodes of the threads in
the process’s deque ordered from bottom to top.

Fori=0,1,...,k, node u, is the designated
parent of v,.

Then fori=1, 2, ..., k, node u, is an ancestor of
u,_, in the enabling tree.
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We use a potential function to bound the number of steal attempts.

At each step i, each ready node u has potential @(u) = 37="®_ where
d(u) is the depth of u in the enabling tree.

The potential @, at step 7 is the sum of all ready node potentials.

e The deques are top-heavy: the top-most
node contributes a constant fraction.

e With constant probability, P steal
attempts cause the potential to
decrease by a constant fraction.

e The initial potential is @, = 37,
and it never increases.

* The expected number of steal
attempts until the potential
w, decreases to 0 1s O(T_P). -
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oJdnFTald=M\"/[e]o(=

Execution time: T <c¢,T,/P, +c,T_PIP, .

Utilization: h > Iy .
P,\.T c¢Ty+c,T P The ratio
P/(T,IT ) 1s the
> 1 normalized
e+ ,P/(TyIT,)  number of
processes.

For all multithreaded applications and all input
problems, the utilization can be lower bounded as a
function of one number, the normalized number of
processes.

We test this claim with a synthetic application, knary,
that produces a wide range of work and critical-path
lengths for different inputs.
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Knary Utilization

Utilization measured on 8-processor Sun Ultra Enterprise 5S000.

No other program is running, so P, = min{8, P}.
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Application Utilization

Utilization measured on 8-processor Sun Ultra Enterprise 5000.

No other program is running, so P, = min{8, P}.
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speedup
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To test the model when the number of processors varies over
time, we run the test applications concurrently with a
synthetic application, cycler.

Repeatedly, cycler creates a random number 2

of processes, each of which runs for a random
amount of time.

e Each process repeatedly increments a shared P
counter.

e At regular intervals, the counter value and a
timestamp are written to a buffer.

For any time interval, we can look at the counter

values at the start and end to determine the
processor average P,(cycler) for cycler

over that interval.
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Utilization measured on 8-processor Sun Ultra Enterprise 5000.

Cycler is also running, so P, = min{8 — P,(cycler), P}.
1
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Utilization measured on 8-processor Sun Ultra Enterprise 5000.

Cycler is also running, so P, = min{8 — P,(cycler), P}.
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VY IIC

= Non-blocking work stealer provides
predictable, good performance on
commodity OS

= Related work (OS side):

= coscheduling
= process control
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Coscheduling (gang scheduling) -
all computation’s processes scheduled to run in parallel

A

processor 1

processor 2

processor 3

processor 4

> fime

© For some computation mixes, coscheduling not
effective. Example: Computation with 4 processes and
computation with 1 process on a 4-processor machine

© Resource-intensive may require coscheduling for high
performance. Example: Data-parallel programs with
large working sets
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process new process
killed created

With process control, each
computation creates and
kills processes dynamically:
always runs with number of
processes equal to number
of processors assigned to it.

processor 1
processor 2
processor 3

processor 4

N
>

time

Process control & non-blocking work stealer complement each other

e \With work stealing, new process can be created at any time,
and process can be killed when its deque is empty

e \With non-blocking work stealer, little penalty for operating
with more processes than processors

* Process control can help keep P close to P,.
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= Next week: Spring Break
= Week after that: travel

= Plenty of time to work on homework
(due 29t") and...

= Project report: describe your proposed
work and implementation plan,
including division of responsibilities if
appropriate, and timeline with
milestones.
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