
CMPSCI 691W Parallel and Concurrent Programming Spring 2006

Lecture 12: April 3
Lecturer: Emery Berger Scribe: Alex Epshteyn

12.1 Message Passing

12.1.1 Why distribute?

• SMPs have lots of memory but just one bus, which is a bottleneck

• whenever the task doesn’t fit into each processor’s cache, performance degrades

12.1.2 Distributed Memory Computation

• no shared global memory; local memory at each processor

• communication over network

• have to explicitly partition shared data

12.1.3 Message Passing (MP)

Pros:

• can communicate just the minimum of data needed

• each node utilizes its own bus

Cons:

• unnatural to program

• very hard to debug

12.1.4 Portability

• in the past each vendor provided a different MP architecture, which became obsolete in a few years

• code could not be shared between different institutions

• different cluster architectures

– Supercomputers

– Communicating SMPs

– Beowulf clusters - cheap boxes wired togetheron the same network

12-1



12-2 Lecture 12: April 3

12.1.5 Message Passing Interface (MPI)

• library approach for platform independence

• bindings for popular languages

• hardware vendors provide own implementation

Drawback:

• performance of the same program can vary greatly on different platforms, since cluster architectures
may be optimized for differing kinds of communication

12.1.6 MPI Execution Model

• spawn the same program on each processor

• the program has to find out which node it is to determine what to do

12.1.7 MPI Communication

1. point-to-point: MPI Send, MPI Recv

2. broadcast: MPI Bcast

3. “reflection”:

(a) MPI Comm size - returns the number of processors participating

(b) MPI Comm rank - ”which processor am I?”

4. misc:

(a) MPI Init - initializes communication

(b) MPI Finalize - closes communication

Exercise: Write a program which passes a message in a ring from node 0 to 1 to 2 ... to N

Use MPI communication calls:

MPI Recv(data ptr, count MPI INT, prevId, o, MPI COMM WORLD);

MPI Send(data ptr, count MPI INT, nextId, o, MPI COMM WORLD);


