
CMPSCI 691W Parallel and Concurrent Programming Spring 2006

Lecture 2: February 6
Lecturer: Emery Berger Scribe: Richard Chang

2.1 Overview

This lecture gives an introduction to processes and threads. Specifically, it covers how both can be used for
parallel programming and concurrency. Both can be used to hide latency, maximize CPU utilization and
handle mutiple, asynchronous events. Issues such as programming style, communication, and synchronization
are discussed. The trade-offs of using either are discussed, and a bake-off of using processes vs. threads is
presented.

2.2 Processes

A process can be thought of as a program in execution running on an operating sytem. It consists of an
execution context (program counter, registers), an address space, an open files list, process id, group id,
etc. Processes can be used for parallel programming by spawning processes to execute concurrently and
using some form of inter-process communication to allow them to share data. We will examine the APIs
for creating processes, methods of inter-process communication (IPC), and some example programs that
illustrate these concepts.

2.2.1 Process API

On UNIX operating systems new processes are created using the fork() [6] system call. Fork() creates
a new copy of the current process. The original process (parent) and the newly created process (child)
execute the same program that the parent process was prior to fork() being called, but the return value of
the fork() call will differ in the parent and child processes. The return value of the fork() in the parent
process will be the process id (pid) of the child process. The return value of the fork() in the child process
will be 0. This allows the programmer to specify different behavior for the parent process and the child
process.

Because processes created using fork() continue to execute the same program that their parent was, the
exec() [6] system call is often used to replace the current process with a executable program after fork()
has been called. Figure 2.1 shows the source code for a C++ program that uses fork() and exec() to
create a new process and execute a new program. On line 8, the name of the program to be executed by the
child process is read from stdin using a call to gets(). Then a call to fork() is made which creates a new
process which is a copy of the current process. Both the child and the parent execute concurrently. The if
statement on line 10, checks the return value of the fork() call. If the return value is 0, then the process
currently executing is the child, and a call to execlp() is made to run the program whose name was read
from stdin. In the case when the return value of the fork() call was non-zero, then the currently executing
process is the parent and the value returned by fork() is the pid of the child process. The parent process
will sleep for 1 minute, and then wait until the child process terminates.

2-1

2-2 Lecture 2: February 6

1 #include <unistd.h>
2 #include <sys/wait.h>
3 #include <stdio.h>
4

5 main() {
6 int parentID = getpid(); /* ID of this process */
7 char prgname[1024];
8 gets(prgname); /* Read the name of the program we want to start */
9 int cid = fork();

10 if (cid == 0) { /* I’m the child process */
11 execlp(prgname, prgname, 0); /* Load the program */
12 /* If the program named prgname can be started, we never get
13 to this line, because the child program is replaced by prgname */
14 printf("I didn’t find program %s\n", prgname);
15 } else { /* I’m the parent process */
16 sleep(1); /* Give my child time to start. */
17 waitpid(cid, 0, 0); /* Wait for my child to terminate. */
18 printf("Program %s finished\n", prgname);
19 }
20 }

Figure 2.1: An example program using fork() and exec()

On Windows operating systems, processes are not created by forking the current process. Instead, new pro-
cesses are created using the function CreateProcess() [2] which takes 10 arguments that specify parameters
such at the name of the application to execute and process attributes.

2.2.2 Translation Lookaside Buffer

Translation lookaside buffer (TLB) is a fast, fully associative memory that is used as a buffer for virtual
address to physical address translation [7]. Entries in a process’s page table are buffered in TLB in order
to speed up memory address translation. If a page number is found in TLB, then the frame number can
quickly be determined, but if a page number is not found in a TLB and the page table in memory has to be
queried, and a TLB miss has occured which can lead to a huge performance loss.

Because the entries in a TLB are process specific, whenever a context switch occurs all of the TLB entries
become invalid. This leads to what is a called a TLB shootdown. Initially after a context switch, the entries
in the TLB are incorrect because processes have distinct address spaces. This means that memory accesses
after a process context switch will be very expensive because of all of the TLB misses that occur.

2.2.3 Copy-on-write

When fork() is called, conceptually all resources of the parent process are copied for the child process to
have its own address space, execution context, etc. This would potentially mean that all of the page frames
used by the parent would have to be copied, and then if exec() was called to run a new program, all those
copied pages for the child would be invalidated. In order to avoid this, fork() is usually implemented using
copy-on-write [1]. Instead of copying the page frames of the parent as new copies for the child, the parent

Lecture 2: February 6 2-3

1 #include <unistd.h>
2

3 int main() {
4 int pfds[2];
5 pipe(pfds);
6 if (!fork()) {
7 close(1); /* close normal stdout*/
8 dup(pfds[1]); /* make stdoutsame as pfds[1] */
9 close(pfds[0]); /* we don’t need this */

10 execlp("ls", "ls", NULL);
11 } else {
12 close(0); /* close normal stdin*/
13 dup(pfds[0]); /* make stdinsame as pfds[0] */
14 close(pfds[1]); /* we don’t need this */
15 execlp("wc", "wc", "-l", NULL);
16 }
17 }

Figure 2.2: An example program using pipes for IPC

and child processes initially share page frames. While these page frames are shared, their data cannot be
modified, so after a call to fork() all shared page frames are marked as read-only. When either process
attempts to write to a read-only shared page a new copy is made for that process. The original page frame
is then writable to the other process.

2.2.4 Inter-process Communication

Processes can communicate using the system calls we have already seen. One can think of the input to
a process as its state before calling fork(). Processes can provide simple output by passing an integer
argument to the exit() function. This value can be read by another process using the wait() system call.

There are also methods of communication that allow running processes to communicate during execution.
These methods of inter-process communication (IPC) include signals, pipes, sockets, and mmap.

Signals allow processes to send and receive integer values. While there are user-defined signals in UNIX,
signals are not terrible useful for parallel or concurrent programming. They are mainly intended for interupts
and not general communication.

Using pipes is a method of IPC that is easy and fast. They can be used much like using pipes on the UNIX
commandline to communicate between processes. Figure 2.2 shows an example program that uses pipes to
redirect the output of a call to ls to be the input to a call to wc -l. This has the same effect as running ls
| wc -l on the commandline in UNIX.

Sockets can be used for IPC, but they do require explicit message passing. One benefit of sockets is that
processes that are communicating over sockets can be distributed over networks. Running a program written
using sockets on a local machine is usually quite efficient while giving the programmer the option to distribute
that program over a network.

Mmap() is a UNIX system call that allows files to be mapped to memory. This system call can be used
for IPC by having multiple processes map the same file to their own distinct address spaces [6]. This way

2-4 Lecture 2: February 6

1 #include <pthread.h>
2

3 void * run (void * d) {
4 intq = ((int) d);
5 intv = 0;
6 for (inti = 0; i < q; i++) {
7 v = v + expensiveComputation(i);
8 }
9 return (void *) v;

10 }
11

12 main() {
13 pthread_tt1, t2;
14 intr1, r2;
15 pthread_create(&t1, run, 100);
16 pthread_create(&t2, run, 100);
17 pthread_join(&t1, (void *) &r1);
18 pthread_join(&t2, (void *) &r2);
19 printf(r1 = %d, r2 = %d\n, r1, r2);
20 }

Figure 2.3: An example program using pipes for IPC

changes made in the address space of one process that map to the shared file would be reflected in the others
that are mapping the same file. Because the mapped file is in memory, disk I/O is avoid and this is relatively
efficient. Synchronization can be handled by the flock() system call. When a process wants to ensure that
no other processes are writing to the shared file, it can obtain a file lock on that file using flock(). It should
be noted that calls to flock() are very expensive.

2.3 Threads

A thread consists of a thread ID, program counter, register values and a stack[7]. Unlike processes which
each have a distinct address space, threads share the same address space, files, sockets, etc. Similarly to
processes, threads can be used for parallel programming. We will now discuss how threads can be created,
how they communicate, and will see an example program using threads on a UNIX operating system.

2.3.1 Threads API

On UNIX operating systems, the threads API used is called pthreads, which stands for POSIX threads.
Threads are created using the function pthread create() which takes as an argument the name of the
function that should be excuted as a separate thread. The function pthread join() is used to wait for a
thread to complete. All threads created using pthread create() in a given process execute within that
process.

Figure 2.3 shows the an example program that creates two new threads to execute an expensive computation.
Because the pthreads API[5] specifies that arguments passed to a function to be started as a new thread

Lecture 2: February 6 2-5

must be a single void * pointer, the function run() is defined to take a void * pointer. The main() function
creates two threads that will run for 100 iterations each. Then, the main thread waits for both threads to
finish executing and prints their results.

In Windows there is a function that is used to create threads called CreateThread()[3] which takes 6
parameters that specify attributes like function to be executed and stack size.

2.3.2 Thread Communication

In threads, everything is shared except stacks, registers, and thread-specific data. The old way of accessing
this thread-specific data was to use the pthread setspecific and pthread getspecific to access and
modify data that a programmer wanted to be specific to each thread, and thus not shared. A newer way to
achieve the same result is to declare a variable using the static thread modifier. This type of declartion
means that variables defined in this way will be thread-specific.

Because data is shared among threads by default, updates to this data must be sychronized. Mutual exclusion
to allow only one thread in a critical section are a time can be enforced using calls to pthread mutex lock(&l)
and pthread mutex unlock(&l). Critical sections of code that contain updates to shared data can be
wrapped in a pair of those calls to obtains a lock and then release it.

2.4 Bake-off

There are trade-offs in almost all design descisions, and the same can be said of using either process or
threads for parallel programming. There is not one correct answer for all situations. Whether it is best
threads or processes for parallel programming is situation dependent.

2.4.1 Performance

Much of the performance of threads and processes is determined by the time and work done when a context
switch occurs to execute a new thread or process.

Context switches for threads a much cheaper because the only data that needs to be stashed and loaded is
the registers, the program counter, stack pointer. All other data is shared amongst threads.

For processes all of that data must be stashed and loaded, plus the process context must be stashed and
loaded. The TLB shootdown mentioned earlier occurs as well, which causes performance hits every time a
page in memory is accessed until the TLB is repopulated with entries for the new process. Because context
switches for processes are so expensive, longer time quanta are required to overcome the cost of the context
switch. There is a trade-off between time quanta and system responsiveness. Longer time quanta usually
means the system is less repsonsive.

2.4.2 Flexibility

Processes are much more flexible than using threads. It is very easy to spawn processes remotely. Parallel
programming using sockets and processes can very easily be distributed across a local network or the internet.
One downside to using processes is that communication must be done explicitly (sockets) or through some
kind of hack (mmap).

2-6 Lecture 2: February 6

Threads, on the other hand, communicate through memory and must be on the same machine which reduces
their flexibility. Also, many programmers find it difficult to ensure that their code is thread-safe, which means
that their code maintains data consistency even when being executed concurrently by mutiple threads[7].

2.4.3 Robustness

Processes in general are much more robust because they are isolated from other processes. In principle if
one process dies then the other processes which are executing can just continue to execute with no effect.
Apache[4], an open source web server, comes in two versions. The Apache 1.x branch is implemented using
multiple processes to handle requests from users. This allows for more robustness. If a user’s request causes
a process to die, then the server can continue to execute and serve other users’ requests.

Conversely, threads are not as robust as processes. If a thread crashes because of a deference of NULL for
example, then the entire process terminates. Apache version 2.x is implemented using multiple threads to
handle requests from users. The motivation behind this design decision is to increase performance because
as we have already seen context switches from threads are much cheaper than for processes. The downside
of this descision is the loss in robustness. If a thread crashes, the whole server (process) might terminate.

References

[1] D. Bovet and M. Cesati. Understanding the Linux Kernel. O’Reilly, 2002.

[2] Microsoft Corporation.
process and thread functions: Createprocess, 2005.
http://msdn.microsoft.com/library/default.asp?
url=/library/en-us/dllproc/base/createprocess.asp.

[3] Microsoft Corporation.
process and thread functions: Createthread, 2005.
http://msdn.microsoft.com/library/default.asp?
url=/library/en-us/dllproc/base/createthread.asp.

[4] The Apache Software Foundation. Welcome! the apache http server project, 2005.
http://httpd.apache.org/.

[5] Lawerence Livermore National Laboratory. Posix threads programming, 2006.
http://www.llnl.gov/computing/tutorials/pthreads/.

[6] M. McKusick, K. Bostic, M. Karels, and J. Quarterman. The Design and Implementation of the 4.4 BSD
Operating System. Addison-Wesley, 1996.

[7] A. Silberschatz, P. Galvin, and G. Gagne. Applied Operating System Concepts. John Wiley and Sons,
2000.

