Object Race Detection

Christoph von Praun and Thomas R. Gross

Laboratory for Software Technology
Department of Computer Science
ETH Zirich
8092 Zurich, Switzerland

ABSTRACT

We present an on-the-fly mechanism that detects access con-
flicts in executions of multi-threaded Java programs. Access
conflicts are a conservative approximation of data races. The
checker tracks access information at the level of objects (0b-
ject races) rather than at the level of individual variables.
This viewpoint allows the checker to exploit specific proper-
ties of object-oriented programs for optimization by restrict-
ing dynamic checks to those objects that are identified by
escape analysis as potentially shared. The checker has been
implemented in collaboration with an “ahead-of-time” Java
compiler.

The combination of static program analysis (escape-
analysis) and inline instrumentation during code generation
allows us to reduce the runtime overhead of detecting ac-
cess conflicts. This overhead amounts to about 16-129% in
time and less than 25% in space for typical benchmark ap-
plications and compares favorably to previously published
on-the-fly mechanisms that incurred an overhead of about a
factor of 2-80 in time and up to a factor of 2 in space.

1. INTRODUCTION

Multi-threaded execution is an attractive option for object-
oriented programs that want to take advantage of multi-
processor platforms. Modern object-oriented programming
languages like Java include support for multi-threading di-
rectly at the language level, and there exist a number of
thread packages for other languages. This move towards
multi-threading is not without risks — such programs may
now contain races, i.e., unordered accesses to a variable such
that at least one access is a write [22]. Races can intro-
duce ambiguity in the execution of parallel programs. The
principal reason for the ambiguity is that the programmer
did not introduce implicit or explicit synchronization to re-
strict the impact of the scheduler on the control-flow of a
multi-threaded program. On certain variables, e.g. locks or

volatile data, races are intentional and can be tolerated. On
other variables however, races can introduce unwanted am-
biguity and such races are termed data races [22] or access
anomalies [9]. We consider data races to be programming
errors.

There exist two principal approaches to support a program-
mer in recognizing and handling data races:

1. Design the programming language such that data races
are by definition impossible (prevention).

2. Accept that the language allows data races but ensure
that data races are noticed at runtime (detection).

Good arguments can be advanced in favor of both ap-
proaches. However, most of today’s programming lan-
guages, including Java, do not adhere to either approach.

Various researchers have proposed prevention solely based
on compile-time analysis and have developed extensions or
annotations to allow compile-time detection of possible data
races, e.g., [2, 11, 8, 30], but it will be a while before
one of these improvements becomes practical and is widely
adopted. In the meantime, there exist collections of “best
practice” recommendations on structuring a multi-threaded
program to avoid data races, but such recommendations
are hardly enforceable by a compiler. Therefore another
research thrust focuses on detection of races with tools that
determine at runtime the presence (or absence) of data races
(e.g., [26, 25, 19]).

However, the more general an environment such a runtime
checker attempts to handle (e.g., by dealing with any multi-
threaded program that is admitted by the operating sys-
tem), the more overhead (and the less information) must
be expected. We therefore restrict our attention to multi-
threaded Java programs, since this language standardizes
the format of multi-threading. (Another reason is that there
exist portable multi-threaded programs that we can use.)
This restriction also allows us to consider the complete tool
chain from the compiler to the execution environment for
opportunities to engage in data race detection.

Any on-the-fly approach to data race detection must bal-
ance two positions: to be practical, the runtime overhead

must be controlled; yet if fewer information is processed or
recorded at runtime, accuracy is lost (and either real data
races are overlooked or false races are reported). Compile-
time approaches have almost no time constraints but may
still provide only an approximation. Therefore we investi-
gate a combination of compile-time and runtime methods:
we use compile-time analysis to identify data that cannot be
involved in a data race (because the data are thread-local)
and then use runtime mechanisms to disambiguate the cases
that static information cannot resolve. The novel aspect
of this paper is the custom-tailored interaction of compiler
and runtime environment. The solution proposed here has
been implemented in the context of an “ahead-of-time” Java
compiler, and we present empirical data that demonstrate
its effectiveness.

2. ON-THE-FLY RACE DETECTION

A principal problem of known on-the-fly data race detection
mechanisms is that they incur considerable runtime over-
head in space and time. Previous work reports a slowdown
by a factor of 2-80 of the original program [20, 23, 26, 25].
The high runtime overhead is one reason why on-the-fly race
detectors have not enjoyed widespread use. Many previous
data race detectors, however, have been overly ambitious
and have not restricted the class of parallel programs that
they can handle. Since our objective is to provide data race
detection for Java programs, we can optimize the runtime
overhead by taking advantage of the restricted context. We
start with a discussion of the two major techniques for on-
the-fly race detection and then illustrate how previous ap-
proaches waste cycles for many practical applications. This
observation is the starting point of our integrated approach
to race detection (Section 3).

2.1 \Verifying access ordering

The first approach to on-the-fly data race detection is di-
rectly based on the definition of data races as unordered ac-
cesses to a variable such that at least one access is a write.
The main idea then is to record information about the or-
dering of the current execution. A checker based on this
approach must record only information that is necessary to
determine possible simultaneity of accesses to variables. Es-
sential means in this context that there must be enough
information to allow the checker to distinguish an access or-
dering that is introduced by a scheduler decision from an
ordering that is enforced by program semantics.

This detection mechanism is general and can be applied to
different forms of synchronization in parallel programs, e.g.,
fork-join and also lock-based synchronization. The ordering
of accesses must be checked relative to program synchro-
nization, i.e., based on a model of logical time. However,
the need to deal with logical time complicates the imple-
mentation and introduces costly data structures to track
accesses and the approximative program ordering. For long-
running applications, the amount of accumulated informa-
tion becomes a critical issue. Various optimizations have
been proposed to mitigate the memory demands [19]. An-
other significant problem is the execution cost per access
check that verifies if the current and all previous accesses
are ordered. Mellor-Crummey reduced the cost of individual

access checks through a well-designed numbering of logical
time [19]. Then, in later work, Mellor-Crummey employed
static analysis for the Fortran source programs and thereby
prevented the overhead in the first place by reducing the
number of accesses that must be instrumented [20].

2.2 \Verifying a locking discipline

The second principal approach to on-the-fly detection ab-
stracts from the issues of logical time and ordering and is
based on the observation that programs obeying a locking
discipline are free from data races. A locking discipline
ensures that accesses to shared data are only done inside
critical sections. Critical sections are implemented through
locks; therefore the locking discipline demands that accesses
to a shared variable must be consistently protected by one
common lock. A simple algorithm is able to verify this prop-
erty for each access to a shared variable.

This approach, however, is restricted to parallel programs
with lock-based synchronization. It has been initially pro-
posed and used by [6, 9] and was the foundation for sev-
eral implementations of on-the-fly [9, 26] as well as static
race checkers [30, 8, 11]. To verify the locking discipline,
one must determine the protection relation among locks and
variables. A conservative approximation of this relation can
be inferred from locksets that are associated with shared
variables. A lockset keeps track of all common locks held
during accesses, and this set must not become empty. For
a detailed description see, e.g., Savage et al. [26]. This ap-
proach is inherently less costly than the approaches based
on access ordering, as no information on program ordering
must be maintained, and the code for access checks is lim-
ited to simple operations on typically small locksets. Since
the space demand of approaches based on access ordering is
a significant problem, we focus our attention on techniques
that employ locksets.

2.3 Accuracy

The runtime overhead is not the only issue of concern for
on-the-fly detection. Another concern is the loss of accuracy
due to the approximative nature of the detection. Loss of
accuracy is caused by data races that are possible according
to the program’s semantics but are not recognized by the
detection algorithm, and by races that are reported yet are
not possible in any program execution. However, accuracy
is an inherent problem for any kind of race detection.

We use the terminology of Netzer and Miller [22] and use
the term feasible races for all data races that are possible
according to program semantics (all inputs, all schedules).
An ideal race detection scheme would determine all and only
feasible races at once. The precise ordering relation of ac-
cesses, as defined by the semantics of a parallel program,
can however in general not be determined [21, 14]. Thus,
practical race detection mechanisms must rely on an approx-
imation and thus are (1) unable to determine all feasible data
races and (2) also report false races that are artifacts of the
approximation and do not represent true access conflicts.

class InputRace extends Thread {
static int raceSubject;
static int input;
public static main(String args[]) {
input = System.currentTimeMillis();
new InputRace().start();
new InputRace().start();
}
public void int run() {
if (input % 2 == 0)
raceSubject = ... ;
// input dependent data race

Figure 1: Input-dependent data race.

class ScheduleRace extends Thread {
static int raceSubject;
static int i;
public static main(String args[]) {
new ScheduleRace(1).start();
new ScheduleRace(2).start();
}
int id;
ScheduleRace(int id) { this.id = id; }
public void run() {
int tmp;
synchronized(getClass()) {
tmp = ++i;
}
if (tmp == id)
raceSubject = ... ;
// scheduling dependent data race

Figure 2: Scheduling-dependent data race.

2.3.1 Feasible data races

An on-the-fly verification of the locking discipline is always
based on a specific program execution, and thus checking
is generally limited to those control flows that are allowed
by the specific input. Figure 1 illustrates a program with
a race that depends on the program input. It is thus de-
sirable to have at least a race detection technique that can
safely determine the feasibility of access anomalies on a cer-
tain input with a single run (i.e., has the SISE Single Input,
Single Ezecution property). Dinning [9] mentions that the
SISE property can be violated for programs that have inter-
nal non-determinism [10]. For such programs, the update
sequence of variables depends on the scheduler. The actual
situation is unfortunately worse such that the SISE prop-
erty is not guaranteed even for programs that are internally
determinate like the one depicted in Figure 2. The reason
that the data race occurs in some runs and not in others is
the existence of a general race that determines which data
is accessed [22].

class Example {
private int[] al = new int[100];
private void fill(int[] a) {
for (int i = 0; i < 100; ++i)

alil = 1i;
}
void fillInstancel() {
£ill(al);
}
void fillInstance2() {
for (int i = 0; i < 100; ++i) al[i] = i;
}
void fillLocall() {
int[] a2 = new int[100];
£il1l(a2);
}
void fillLocal2() {
int[] a2 = new int[100];
for (int i = 0; i < 100; ++i) a2[i] = i;

Figure 3: Race detection in different static and dy-
namic contexts.

2.3.2 False data races

A violation of the locking discipline might be reported al-
though no actual race occurred. Such a false race occurs if
access ordering is not controlled though explicit synchroniza-
tion but indirectly, e.g., by passing access tokens between
threads. The producer-queue-consumer setup is a good ex-
ample for a programming idiom that may be subject to re-
porting of false races.

2.4 Opportunities for new approaches

Data race detection is frequently considered as a general,
system-level mechanism, similar to low-level memory man-
agement. The race detector acts as intermediary between
a black-box application and the memory system. The de-
tector focuses solely on memory access and synchronization
events. An indication of this view is that most on-the-fly
race detectors (except ParaScope [19], which is based on
Fortran source-code instrumentation) are based on binary
instrumentation. These implementation decisions may have
been motivated by efficiency concerns. But this low-level
view creates unnecessary problems if access to the source
code is an option for the detector. Consider the program in
Figure 3 and assume that multiple threads invoke methods
fillInstance[1]2] on the same instance of class Example.
Since none of the methods are synchronized there could be
data races involving accesses to the integer array.

If the detection system employs a low-level view, data race
detection incurs more or less the same runtime overhead
for all methods, as all accesses to heap-allocated data are
checked (ordering or lockset). However, some of these checks
are redundant and others are dispensable for practical pur-
poses.

A check is redundant if it tests a condition that has al-
ready been evaluated, e.g., at compile-time. We observe that
some of the data is thread-local and thus can be exempted
from checking (stack-data, array a2 in fillLocal2). Several
static analyses for Java programs have been reported that
conservatively determine if reference variables only refer to
thread-local data [3, 4, 7, 33]. Checks for array access in
fillLocal2 are thus redundant.

A check is dispensable if it tests a condition that provides
no new information. This observation is related to data en-
capsulation in object-oriented programs: an access to array
al is only possible indirectly through the invocation of one
of the fillInstance methods. This observation can be ex-
ploited to replace 100 array access checks with one check
for a method access. The checks of the array accesses in-
side fillInstance2 are dispensable because the information
“race on fillInstance2 or al” carries — for all practical
purposes — the identical information as “access race on al
for index 0...99”.

Thus, it is promising to consider high-level language source
information and the access context when deciding how and
where to instrument a program for on-the-fly checking. This
information provides a way to lower the overhead of on-the-
fly race detection.

Another aspect that justifies a fresh look at on-the-fly race
detection is that several previous race detectors were de-
signed with scientific applications in mind. But parallel
programs are also common and important for network or
server-based applications. For such applications, the main
targets for race detection are not arrays, but structures and
objects linked through references. Java, e.g., allows a user to
limit accesses to objects structures at compile-time. Such a
structure then results in foreseeable access patterns at run-
time. Lea [16] refers to this property as confinement.

2.5 Object-oriented programs

Object-oriented programs encapsulate related data, i.e.,
data that is read and modified together, into a common
abstraction, namely the object. In a (Java-based) object-
oriented world, it is thus reasonable to define objects as the
unit of protection (or attention) — not individual variables.
This generalization of the protection focus is safe, because
all accesses to instance variables must be done through an
object reference, and a conflict can be detected at the ob-
ject level. From the viewpoint of data race detection, such
a generalization is conservative because accesses of differ-
ent threads to different instance variables cannot be distin-
guished. Of course, a false race will be reported in such a
case, but if objects play a significant role in the data space
of a program, this tradeoff may be justified. (Interestingly,
since Java treats multi-dimensional arrays as arrays of ob-
jects, only accesses to 1-dimensional arrays are generalized.)
We use the term object race in the following to refer to this
conservative approximation of a data race.

3. DETECTION OF OBJECT RACES

Our data race detection mechanism is based on the verifica-
tion of a locking discipline (Section 2) for objects. The lock-

ing discipline is strengthened such that all ordinary fields
of an object must be consistently protected by the same
lock, not only by a lock as the original discipline (Section
2.2) required. Final and volatile fields are exempted from
this discipline. Section 3.1 discusses issues and optimiza-
tions that relate to static program properties. Section 3.2
addresses runtime issues. Section 4 then discusses specific
implementation choices and limitations.

3.1 Confinement

Confinement is a static program property that structurally
guarantees, based on data encapsulation provided by the
programming language, that at most one activity /thread at
a time can possibly access a given object [16, Ch. 2.3]. Thus,
confinement can be exploited at compile-time to reduce the
amount of instrumentation needed at runtime.

First, escape analysis is used to identify reference variables
that only refer to thread-local objects. Subsequently, only
accesses through non-thread-local reference variables are in-
strumented.

Second, shifting the viewpoint to the object level allows us
to enhance the notion of “access” and consider, in addition
to instance variables, also accesses to methods as carriers
of the confinement property. Thus, as accesses to instance
variables and methods through the this reference are tran-
sitively protected by the accessing method, we can suppress
their instrumentation.

Third, transitive protection can also be assumed for objects
that do not escape and are only reachable through private
instance variables. Such objects are object-local, and races
on such objects can only occur in combination with a race
on the enclosing object.

Class variables are treated according to the same model
as instance variables assuming protection by the respective
class instance.

3.2 Ownership model

A design goal for our detection system is to carry out ex-
pensive lockset operations only for those objects that are
actually shared. Thus, at runtime, we keep track of threads
that have accessed an object. This information is kept in an
abstract state associated with each object, i.e., the owner-
ship state. State transitions are triggered by object accesses.
In this section, we present the ownership model and its op-
erational semantics as actions of the race detection checker
associated with state transitions. These actions constitute
the object access protocol. The actual implementation of
this protocol is described in Section 4.2. The states and
transitions of the ownership model for objects are shown in
Figure 4. This model is an extension of the model of the
Eraser system [26]. The model has the following states:

Virgin: Initial state after object allocation and during the
execution of constructors. Concurrent access is con-
sidered an error.

Ezclusive: State after constructor execution. The owner
remains the same as in state virgin. Access by a non-
owner thread is a request for ownership transfer. Ac-
cess to objects in this state is treated as if they are
thread-local, until known otherwise.

Ezclusive2: State after ownership transfer; the second
owner can, like the first owner, access the object as if
no concurrency is present. Accesses by other threads,
including the first owner, lead the object to a shared
state.

Shared read: The object may experience concurrent read
access. Accesses are tracked by updating the lockset
associated with the object. No conflicts occur, even if
the lockset becomes empty.

Shared modified: The object may experience concurrent
read and write accesses and must thus be consistently
protected by at least a single lock: the lockset associ-
ated with the object is updated with every access, and
a conflict is reported if the set becomes empty.

Conflict: An access conflict has been observed for this ob-
ject; it is not subject to further access checks.

The model specifically accounts for two properties that we
would like to provide for Java objects. First, the distinc-
tion of the states wirgin and ezclusive allows us to identify
conflicting accesses during object construction. Initializa-
tion semantics are particularly critical in this situation [31,
24]. Second, it is common that initialization and use of
objects are logically separated (through implicit or explicit
synchronization). Common programming idioms that fall
into this scenario are the hand-off protocol [16] and the well-
known task-queue. In such cases, the second owner should
not be burdened with access checks necessary in a shared
state. Thus, we defer the transition to shared through an
intermediary state ezclusive2. Our benchmark applications
show that many objects that are exposed to concurrency
are actually visited by at most two threads, and these visits
occur in strict sequence (Section 5).

3.3 Accuracy

Checking races at the level of objects instead of individual
variables entails the possibility of reporting false races as
pointed out in Section 2.5.

An additional source of inaccuracy is introduced through
the fact that the recording of access information is delayed,
i.e., the creation and update of locksets is not done un-
til a shared state is reached. Since we postpone noting a
shared state for an object, we may introduce a dependence
on the scheduler, because malicious accesses can be hid-
den by the ezclusive—ezclusive2 or ezclusive2—sshared tran-
sitions due to unfortunate scheduler decisions. Therefore a
malicious access may remain undetected. Savage et al. men-
tion this problem as well but experience supports the view
that this decision (to delay considering data as shared un-
til proven necessary) does more good than bad for practical
purposes [26].

constructor
end

first
thread r/iw

first
thread r/iw

s new —>
second
. thread r/iw

~. first owner .-

N -

no owner ~~. °Wner

an N second
thread riw other < thread r/'w
thread w ‘hotber
any thread thread 1 .
r/w (conflict) SN
an
any thread threa):i r

riw (no conflict) any thread w

Figure 4: Ownership model.

3.4 Memory model

Generally, we would like to characterize the feasibility of
data races as a program property independently of the mem-
ory model. This is however not possible, since the synchro-
nization of program control flow and the memory view are
two tangled issues, and the foundation of our race detec-
tion mechanism is based on the notion of protected program
regions delimited by synchronization, i.e., critical sections.
Depending on the synchronization semantics (which is part
of the memory model), the scope of a critical region could
deviate at runtime from its static specification in the pro-
gram text. The current definition of the Java memory model
allows for such enlargement of a protection region: the end
of a synchronized block imposes a one-way memory bar-
rier that allows, e.g., an assignment statement following this
block to be hoisted inside the synchronized block [18, Ch. 8.8
and 8.13] and thus wrongly appear inside the critical region
at runtime. This on-the-fly race detection mechanism thus
imposes two requirements on the synchronization primitives.

e First, no actual races shall remain undetected due to
the synchronization semantics. This situation could
occur if a protection region is extended at compile- or
runtime beyond its specification in the program code.

e Second, we would like to ensure that synchronization
semantics do not mislead the race detection mecha-
nism such that it reports additional races that were
not feasible according to program semantics. For this
to happen, an access would have to be moved outside
its protecting region such that a violation of the lock-
ing discipline can be detected at runtime.

Our compiler and execution platform do not apply optimiza-
tions that violate these two constraints. (Although the JVM
specification allows the first transformation, such a transfor-
mation is best avoided since it is likely to cause subtle prob-
lems: if the transformation has been applied, a program

may work but may fail after recompilation in a different
environment. The second transformation, if done by a com-
piler with a correct view of a program’s data space, will pass
by undetected. However, should the compiler’s view of the
data space be incorrect, our system will report a program
error although in reality there is a compiler error.) A more
general discussion of memory model issues in the context of
data race detection can be found in [1].

Besides its influence on race detection mechanisms and accu-
racy, the memory model must also be considered for compile-
and runtime optimizations that are enabled through the
awareness of concurrency properties. An important con-
cern is therefore the coupling of synchronization for control
flow and the memory view: even if program-analysis (static)
or execution-observation (dynamic) suggests that no threads
act as unwanted control-flow intruders, and thus locking can
be omitted, synchronization of memory view may still be
necessary [4, Section 6.2].

4. IMPLEMENTATION
4.1 Overview

The implementation of an on-the-fly race detector requires
additional runtime data structures that hold information,
e.g., about the states and locks held by threads, the owner-
ship state of objects, and their locksets. These data struc-
tures are themselves shared among threads and subject to
data races. It is critical for an efficient implementation to
make access to those meta-data thread-safe while not intro-
ducing too much overhead through additional synchroniza-
tion.

Our tool chain operates as follows: Java source files are
translated into JVM byte code that is analyzed and instru-
mented and then mapped to x86 native code. The design of
the byte code reader is adopted from Bothner [5]. The in-
strumentation for race detection uses escape information as
obtained through a data-flow analysis developed by Bogda
and Holzle [4]. The escape analysis assumes a static en-
vironment in which all classes are known at compile-time.
The backend is based on LCC’s pattern-matching code gen-
erator generator [12]. The Java library and parts of the
runtime system including the garbage collector stem from
GNU libgcj version 2.95.1 [13].

4.2 Obiject access protocol

The object access protocol implements the ownership model
described in Section 3.2: it regulates the access to objects
and arrays by different threads, and maintains meta-data
structures associated with the race detection. Figure 4
defines the abstract protocol states and their transitions.
There are three phases in the lifecycle of an object which
have a fundamental impact on the actions and performance
of object access:

First owner: Immediately prior to constructor invocation,
the owner thread initializes the object header with its
thread-id (first). Threads accessing this object com-
pare their own thread-id, with the id in the object
header. Equality grants immediate access, inequality

activates the following access protocol: (1) If the owner
thread has terminated, the accessing thread may in-
herit the object, i.e., it becomes the first owner and
can immediately proceed with the execution. (2) If the
owner thread is active, the accessing thread sends an
asynchronous notification for ownership transfer and
blocks. The owner polls for such notifications and
eventually releases ownership to the accessing thread
that now becomes the second owner. This idea is
taken from the handling of asynchronous cache co-
herence messages in Shasta [27]. Polling is done at
method return. (3) If the owner is blocked (e.g., due
to a monitorenter, join, sleep, or wait), the access-
ing thread steals the object and becomes the second
owner. Whenever an object is stolen, we make sure
that no thread transits from blocked to active.

For cases (2) and (3), we require that the first owner
has no active method invocations on the object. This
condition is necessary because the owner loses the pro-
tection context assumed for accesses through this ref-
erences. If there are active stack frames, (2) and (3)
report an object race; then the target object is ad-
vanced to state conflict and has no owner'.

Second owner: Like phase first owner, except that in cases
(2) and (3), ownership is revoked altogether such that
the accessed object has from then on no owner.

No owner: The first access in the shared state determines
the initial lockset associated with an object. Every
subsequent access verifies the locking discipline though
lockset refinement, i.e., intersection of the locks held
by the accessing thread with the lockset attached to
the accessed object. A race is reported if the lockset
becomes empty and there was at least one write since
the object is shared. Subsequently, a transition to state
conflict avoids further lockset operations.

This protocol handles access to (array) fields and methods,
and our implementation conservatively treats method access
like writes. Monitor access is considered independently from
the ownership state of the accommodating object. From the
viewpoint of race detection, lock variables are then similar to
volatiles such that lock access to an object that is currently
visited by another thread is not considered as an object race.
For synchronized methods, first the lock, and then the object
access is handled.

The ownership model has the following consequences for the
implementation of the access protocol:

e The states constitute a monotonic hierarchy, where
initial states are strongest with regard to the con-
straints they impose on object access. Strong states
(first and second owner) grant privileges to the owner
in terms of access performance. Weaker states enable
access for foreign threads. For typical applications,
few objects actually get into a weak state (Section 5).

!This transition is an implementation issue and is not shown
in the conceptual model of Figure 4.

o If foreign threads access outdated ownership informa-
tion (e.g., due to a weak memory model), their access
behavior is strictly more conservative, i.e., they request
a transition to a state that is already reached. Owner
threads however, must never execute the access pro-
logue based on outdated ownership information. In the
implementation, we ensure this condition by requir-
ing that owners themselves transit objects to weaker
states. Owners that lost an object through stealing
must synchronize their memory view after unblocking.

e Concurrent access can be safely recognized by the ob-
ject access protocol. This fact leads to an awareness of
threads on the sharing of the data they access and may
provide an opportunity to explicitly establish specific
coherence properties for the memory view of individual
threads.

The additional synchronization introduced through the ob-
ject access protocol is however not without problems:

e First, starvation is avoided through stealing objects;
this action is a necessity of the implementation.

e Second, delaying an object access due to the access
protocol must not interfere with explicit synchroniza-
tion in the program such that cyclic wait conditions
occur. This situation is avoided by handling all state
transition requests before blocking on explicit program
synchronization. If a thread is blocked, its objects may
be stolen by other threads. Thus, blocked threads can-
not lock out other threads in the object access proto-
col.

e Ownership transfer incurs an overhead of one thread-
switch.

The object access protocol is not appropriate in the pres-
ence of real-time requirements because accesses to variables,
methods, or arrays that are not explicitly exempted from the
object access protocol (e.g., through a volatile modifier)
may block.

4.3 Code instrumentation

The code generator inserts inline code at variable and
method access sites and within method definitions to branch
to routines implementing the object access protocol. The
code sequences are designed such that the most frequent
cases are handled most efficiently and do not require a li-
brary call. To implement this instrumentation, we enhanced
the x86 code-generator and specified code templates corre-
sponding to inline code. Instrumentation of an access to
a non-this and non thread-/object-local object requires 14
instructions (3 are executed in case ezclusive, 7 in case con-
flict). Polling of access requests at method exit costs 9 in-
structions (4 are executed if no message must be handled).
Passing the thread-id through a register between methods
requires 2 and 6 instructions for the caller and callee, re-
spectively; this overhead could be significantly reduced if
the thread-id were made available by the threading subsys-
tem in a global register.

exclusive shared conflict
class var r/w 1.4/1.2 | 27.5/38.4 | 2.0/1.6
instance var r/w 1.2/1.2 | 23.1/28.1 | 1.5/1.4

class method 1.2 4.6 1.2

inst. method stat/dyn | 2.4/2.2 | 12.5/11.3 | 2.4/2.2
array (no bc) r/w 1.2/1.0 | 12.2/17.9 | 1.4/1.1
array (bc) r/w 1.2/1.2 | 10.0/16.8 | 1.3/1.3
monitor (enterexit) 4.6 4.6 4.6

Table 1: Cost of accesses that are instrumented
for race detection relative to the baseline compiler
(r:read, w:write). The columns distinguish the own-
ership state of the accessed object.

In addition to the insertion of inline code, we allocate 4
bytes in the header of each object that are used to track
ownership state and owner thread. Locksets are allocated
lazily together with the monitor lock.

4.4 Micro-benchmarks

‘We use micro-benchmarks to determine the execution over-
head of the instrumentation. The benchmark exercises dif-
ferent accesses inside a loop of 107 iterations. Execution
has been done on a Pentium III/933 with 256 MB main
memory. Table 1 lists the cost of access through the object
access protocol. The numbers represent the relative execu-
tion time, i.e., accesses that are not instrumented for race
detection correspond to 1.0. We report data dependent on
the ownership state of the accessed object. For accesses to
class and instance variables that are in an exclusive state,
the additional cost of the state check in the object header is
largely hidden by the processor cache (the header field and
the accessed variable are in the same cache line). The cache
effect is most evident for the performance of array accesses:
the repeated race check (load and compare header of the ar-
ray) is always served from the cache, whereas linear access to
individual positions of a 4 MB array does not hit the cache
(no data prefetch). Write accesses benefit from buffering
[15]. For method accesses, most of the overhead stems from
the instrumentation inside the method definition (that had
otherwise an empty body in this micro-benchmark). The
data for class methods include a check for class initializa-
tion which is mandatory for Java’s class loading semantics.
For instance methods, we distinguish invocations that are
resolved statically and through dynamic dispatch; as the
cost of the latter is generally higher, the relative overhead
of the race check instrumentation is lower.

Access to ezclusive and conflict objects is solely handled
by inline codes and thus significantly faster than access
to shared objects. The overhead for shared objects stems
mainly from the implementation of locksets, which are based
on the STL [28] set data type. The overhead of moni-
tor access stems from maintaining a lock-nest-counter, and
adding/removing the target lock from the set of locks cur-
rently held by the thread. Additional costs can occur be-
cause a thread must ensure that all pending requests for
ownership transfer are processed before it possibly blocks
(deadlock avoidance).

5. EXPERIENCE

For all benchmarks and instrumentation variants, we do not
use optimization in our compiler to clarify the effect of the
instrumentation. The application but not the Java class li-
braries are instrumented. This setup can be a problem for
the race checker if accesses from library methods are in-
volved in races; such races are overlooked. Our experience
with the benchmark applications at hand and the detected
object races (Section 5.3) demonstrate, however, that the
exclusion of library procedures is not a concern for the eval-
uation here.

The effect of the partial instrumentation on the execution
performance reported in Section 5.4 is marginal because the
specific benchmarks at hand spend most of their execution
in the application code. For comparison, we report also
performance numbers for gcj, the GNU Java compiler [13],
version 2.95.2, with different levels of optimization (O0 and
02).

5.1 Benchmarks description

The object-race checker has been applied and evaluated for
five application kernels, ‘elevator’, ‘hedc’, ‘mtrt’, ‘sor’, and
‘tsp’.

‘elevator’ is a real-time discrete event simulator. The appli-
cation consists of 500 LOC and is used as an example in a
course on concurrent programming. Elevators are modeled
as individual threads that poll directives from a central con-
trol instance. Communication through the control board is
synchronized through locks. The configuration used for this
evaluation simulates 4 elevators.

HEDC is a warehouse for scientific astro-physics data devel-
oped at ETH [29]. The benchmark ‘hedc’ represents an ap-
plication kernel that implements a meta-crawler for search-
ing multiple Internet archives in parallel. In the benchmark
configuration, 4 principal threads issue random queries to
2 archives each. The individual queries are handled by
reusable worker threads. Result aggregation is followed by
a short random sleep interval of 0-200 ms; this ensures that
principal threads work out of sync. The application employs
a library for concurrent programming by Doug Lea [17], in
particular the Pooled-Executor pattern. The workload and
memory access pattern of this application kernel are typical
for Internet server applications and similar to applications
based on alternative mechanisms such as Java Servlets.

‘mtrt’ is multi-thread raytrace application from the JVM98
benchmark [32]. The configuration used executed with 2
threads. Synchronization is solely applied during initializa-
tion of the threads and their copy of the “world”.

‘sor’ (Successive Over-Relaxation over a 2D grid), and ‘tsp’
(Traveling Salesman Problem) are data- and task-parallel
applications with data access patterns of scientific codes; in
‘sor’, synchronization among threads is based on a barrier
rather than on locks. ‘sor’ may thus be atypical for OO-
based multi-threaded server applications that are the target
of our checker; it nevertheless demonstrates the effective-
ness and low overhead of our approach for applications with

extensive data sharing.

5.2 Instrumentation

Table 2 lists runtime statistics for object and array accesses.
Accesses are classified according to declaration properties of
the accessed variable and properties of the reference vari-
able through which the access is performed. The distinction
is done to quantify the number of accesses that are instru-
mented.

First, access to final and volatile variables is reported sepa-
rately. The remaining accesses are categorized into ‘static’
(class variables and methods), ‘this’, ‘thread-local’, ‘object-
local’, and ‘other’. Accesses of categories ‘static’ and ‘this’
are immediately obtained from the program. ‘thread-local’
and ‘object-local’ accesses are conservatively classified ac-
cording to escape and aliasing properties of the access target.
The group ‘thread-local’ includes targets that do not escape
and do not alias with method parameters or a return value.
‘object-local’ includes accesses through private fields that do
not escape in any method of the defining class. Escape infor-
mation is computed through a context- and flow-insensitive
whole program analysis according to [4]. Accesses that do
not fall into any aforementioned category belong to ‘other’.
For array accesses of category ‘other’, we additionally dis-
tinguish if array elements have primitive or reference type.
Every access site is reported once, namely in the first cate-
gory matching from the top of the table.

Accesses that fall into category ‘static’, ‘other’, or ‘other
primtype’ have been instrumented; the sum of these num-
bers is reported as ‘total instrumented’.

5.3 Detection accuracy

For the evaluation of the detection accuracy, we investigate
over- and under-reporting relative to actual data races that
occurred during an execution. We do not account for inac-
curacy due to input- and scheduling-dependences (Section
2.3.1) that may lead to races that are possible according
to program semantics but not manifested in an execution
history.

5.3.1 Under-reporting

Section 3.3 discusses the possibility of under-reporting, i.e.,
a possible scenario that lets the checker miss an object race
that actually occurred at runtime. Such a situation is due
to a specific schedule of accesses (first all accesses from one
thread, then all accesses of the other thread) that lead to
an ownership transfer instead of a race report in our model.
Similarly, our model does not report object races if the other
involved thread has already terminated.

Table 3 summarizes the frequence of specific incidents during
object access; row ‘inherit’ reports the number of accesses to
objects owned by threads that terminated. For the example
applications, all cases of inherit resulted in benign races,
such that either the access order is well-determined (e.g.,
access after join), or the order is irrelevant (e.g., method
access to immutable objects). Repeated application runs
reproduced the same race reports, although the order of race
reports varied sometimes due to scheduling.

variable reference elevator | hedc | mtrt | sor tsp
field accesses
final 0.1 0.6 - - -
volatile - 0.1 - - -
ordinary static - 2.2 - - 29.8
ordinary this 34.7 32.9 | 47.8 | 37.5 | 39.2
ordinary thread-local - - - - -
ordinary object-local - - - - -
ordinary other 9.3 8.5 - - -
array accesses
ordinary thread-local - - 1.1 - -
ordinary object-local 18.5 - 7.3 - -
ordinary other reftype - 0.1 3.3 | 312 | 5.6
ordinary other primtype 0.1 25.9 - 31.2 | 24.4
method accesses
static 0.6 3.5 - - -
this 18.5 5.4 4.2 - 1.0
thread-local 0.2 3.1 0.9 - -
object-local 0.1 - 0.2 - -
other 18.0 17.7 | 35.2 - -
total instrumented 28.0 57.8 | 35.2 | 31.2 | 54.2

Table 2: Runtime characteristics of object and array accesses. All numbers are reported as percentage of the

3

overall number of accesses, or ‘-’ if negligible or null.

The configuration of the race checker used in the tests omit-
ted checks for accesses to arrays containing reference vari-
ables; thus races on such arrays might be overlooked. This
omission of checking is not an inherent property of the mech-
anism, but rather an implementation decision and optimiza-
tion that has been done with respect to Java’s jagged array
implementation.

5.3.2 Over-reporting

There are two major sources of over-reporting:

First, a violation of the locking discipline does not necessar-
ily imply an object race. E.g., in a producer-consumer sce-
nario threads are implicitly synchronized through the shared
buffer (‘false races’, Section 2.3.2). This inaccuracy is inher-
ent to the lockset-approach of data race detection.

Second, detecting races at the unit of objects rather than
variables can lead to races reports that are not data races.
Such a scenario occurs, e.g., if distinct members of the same
instance are accessed by different threads. The same ap-
plies if threads access distinct regions of one array object.
This factor of inaccuracy is specific to our approach of race
detection.

The detection of an object-race is a runtime incident and is
reported in Table 3. Category ‘block’ specifies the number
of ownership transfers that block the accessing thread ac-
cording to case (2) in the protocol (Section 4.2). ‘lockset’
counts the total number of lockset operations. In category
‘overlapping’ (cases (2) and (3)), accesses to the same ob-
ject overlap in time; e.g., one thread accesses a field of an
object on which another thread is executing a method. In
the category ‘empty lockset’, an object race is concluded
from a violation of the locking discipline; the conflicting ac-
cesses do not not overlap at runtime. Depending on the
execution schedule, certain races can be reported in differ-
ent categories in different executions. Access conflicts are

elevator | hedc | mtrt | sor tsp
access protocol
block 0 78 5 2 540
lockset 18221 425 5 4501 | 55282206
inherit 0 60 0 1000 0
overlapping 0 44 1 2 2
empty lockset 5 63 2 4 200

Table 3: Runtime incidents of the object access pro-
tocol.

reported once per object.

For the ‘elevator’ application, accesses with empty lockset
occur for class methods of the control panel: the methods do
not keep reentrant state and thus can be independently ac-
cessed by the elevator threads; this ‘object race’ detected on
the class instance implementing the control panel is hence
benign. In addition, the invocation of the unsynchronized
method size() in the debug output of the four elevator
threads caused an object race on the java.util.Vector in-
stance associated with each elevator. The application ben-
efits from the ‘second owner’ concept because the elevator
threads including their private auxiliary structures are ini-
tialized by a startup thread; the elevator thread accesses it-
self and its auxiliary structures in the role of a second owner.
Suppressing the second owner concept leads to reporting 8
additional object races that are not actual races but fall into
the category of object/thread initialization where access or-
der is well-determined even without synchronization.

The majority of empty locksets reported for ‘hedc’ stem from
accesses to stateless/immutable objects. The selection and
combination of query results makes extensive use of objects
for date-, time-, and number formatting; these and other fac-
tory instances are typically not altered after their initializa-
tion and thus cannot be subject of harmful races. Another
common pattern that can lead to benign object races is can-
cellation [16]. Cancellation is used to asynchronously notify

an activity (represented by the object that is subject of the
race) through a method call or field update. Almost half of
the overlapping object accesses are benign and are due to
cancellation. The reminder resulted from access to objects
that combined methods and data for different purposes: part
of the object’s interface is thread-safe/synchronized, another
part is not. No harmful races have been possible in the ac-
tual implementation and use of this structure. Nevertheless,
the race checker has called the attention to an unfavorable
design that easily allowed or provoked harmful data races in
the presence of inheritance and code reuse.

The raytracer ‘mtrt’ showed several benign object races, e.g.,
on a global counter of active threads (the variable is read and
written by multiple threads and was apparently used for de-
bugging; it is however not declared volatile) and another one
on the output canvas object (not an actual race because the
worker threads fill different regions of a pixel array managed
by the canvas).

In ‘sor’, overlapping object access occurs when threads syn-
chronize on a Barrier object that is reachable through a
global variable of the class containing the main method.
Four violations of the locking policy occur when the worker
threads access the shared multidimensional int-arrays.
These violations result from data parallelism in this applica-
tions and are not actual data races: the order of accesses to
the same segments of the arrays is well-determined through
barrier synchronization, not through explicit locking. The
1000 cases of ‘inherit’ result from a final iteration of the
main thread over the data to compute a checksum.

The large number of violations of the locking policy in ‘tsp’
stems from different threads accessing a collection of objects
representing the most promising routes found. For some
cases these races are benign, i.e, they might cause unnec-
essary work to be done but maintain correctness of the re-
sult. Some races however involved updates that could be
lost, leading to incorrect results. Thus, the checker identi-
fied a synchronization problem in the implementation of this
benchmark that has led to a fix with a read-write lock.

For well-designed OO programs that respect the guidelines
of data encapsulation (e.g. ‘hedc’), a large fraction of false
race reports could be avoided if the language allowed to
explicitly declare methods as thread-safe, thus exempting
them from checking. In the tests, we have explicitly sup-
pressed the instrumentation of accesses to library methods
and classes that are commonly used as if they were thread-
safe. Examples are java.io.PrintStream.println, or ac-
cess to immutable objects, e.g., of class java.lang.String.
Checking for accesses to instance variables can be suppressed
through final and volatile declarations.

5.4 Execution performance

We report on the runtime overhead due to race detection
for ‘mtrt’, ‘sor’ and ‘tsp’; ‘elevator’ and ‘hedc’ are not com-
putationally bound. The runtime overhead is influenced by
(1) the number of accesses that are instrumented and (2)
the ownership state of the accessed object. Table 4 cate-
gorizes runtime object accesses along dimensions similar to

elevator | hedc | mtrt | sor tsp
not instr.
field 34.8 33.6 | 479 | 37.5 | 39.2
array 18.5 0.1 11.6 | 31.2 5.6
method 19.5 16.1 5.5 - 1.0
own
field 0.1 8.7 - - 0.1
array 0.1 25.7 - 31.1 | 18.8
method 0.1 11.6 | 35.0 - -
foreign
field 9.2 0.2 - - -
array - 0.1 - - 5.6
method 8.9 0.1 - - -
conflict
field - 1.8 - - 29.7
array - - - 0.1 -
method 8.9 1.9 - - -

Table 4: Execution statistics of object accesses. Ac-
cess frequencies are reported as percentage of the
overall number of accesses, or ‘-’ if negligible or null.

Table 1: accesses are either not instrumented (‘not instr.’)
or instrumented. The latter category is further divided with
respect to the ownership relation of accessing thread and ac-
cessed object: accesses fall in category ‘own’ if the accessing
thread created the object or has previously gained owner-
ship. Accesses are ‘foreign’ if the owner and accessing thread
do not match; first time access of a thread could lead to an
ownership transfer (ezclusive— ezclusive2), or ownership in-
heritance (exclusive— exclusive, exclusive2— exclusive2). If
the object is shared, a lockset operation is necessary (Table
3, ‘lockset’). Finally, accesses fall in category ‘conflict’ if an
object race has been previously found on the access target.

The large number of non-instrumented array accesses in ‘sor’
stems from Java’s jagged multi-dimensional array implemen-
tation: access to an array element requires one indirection
per array dimension; in a two-dimensional array, the first
indirection, namely an access to the reference of the array
representing a row, is not instrumented.

Table 5 lists the overall number of objects (‘virgin+excl.’)
and the ownership states reached by those. Each object in
the lower categories is also included in the numbers for the
upper categories. We observe that a relatively small fraction
of objects is accessed by more than two threads (categories
exclusive2, shared, and conflict).

The ownership model reflects this sharing pattern of objects
in multi-threaded programs: ‘mtrt’ barely advances any ob-
jects beyond the ezclusive state. The ‘sor’ application is
different and benefits from the concept of ownership trans-
fer: the majority of accesses go to objects in state ezclusive2.
Without the ‘second owner’ concept, nearly all objects (ar-
rays that are part of the multi-dimensional array contain-
ing the application data) would transit first to state shared,
then to conflict, because synchronization is based on a bar-
rier and not on locks. Hence, the ‘second owner’ concept
avoids a large number of false race reports in this scenario.

Table 6 shows execution times for different compilers and
compiler configurations. We use ‘no RD’ (our compiler with-

| elevator | hedc | mtrt | sor | tsp
virgin+excl. 107 3137 | 6457830 | 1015 | 15053

exclusive2 37 264 9 1009 538
shared 29 127 3 6 478
conflict 5 107 3 6 202

Table 5: Allocated objects and ownership states
reached.

mtrt | sor | tsp

ezecution time [s]

gcj -00 21.2 | 41| 176
gcj -02 154 | 1.7 | 11.2
no RD 223 | 3.7 | 8.0
RD 411 | 43 | 18.3

relative overhead [%] | 84 16 | 129
RD all thread-local 35.7 | 3.8 | 83
RD all instr. 48.5 | 4.8 | 21.2
RD single owner 41.0 | 4.7 | 16.1

Table 6: Runtime performance of compiler and in-
strumentation variants.

out race detection and optimizations) as base for the cost
of race detection. We have executed every configuration 5
times and report the average. The data for ‘RD’ refer to
the instrumentation and execution of race detection as ex-
plained in previous sections, including the omission of access
instrumentation for ‘this’, thread-local, and object-local ref-
erence variables. The overhead of ‘RD’ is reported relative
to ‘no RD’.

The data for ‘RD all thread-local’ and ‘RD all instr.” specify
the execution times for various amounts of access instrumen-
tation. For ‘RD all instr.’, all static accesses and accesses
through reference variables are instrumented. The data for
‘RD all thread-local’ omit instrumentation to all heap-based
objects. This number gives a lower bound for the execution
performance effected by a better analysis for determining
confinement of objects with respect to other objects and
threads. These two artifact configurations solely serve to
demonstrate the effect of instrumentation omission. Race
detection is either incorrect or inefficient for such executions.

We have also executed the benchmarks in a runtime imple-
mentation that skips the ‘second owner’ state (Table 6, row
‘RD single owner’). The ‘second owner’ model improves the
performance of ‘sor’ moderatly because arrays can be ac-
cessed in state ezclusive? instead of conflict (Table 1). For
properly synchronized applications that are based on locks,
this effect would be more pronounced if objects are, due to
‘second owner’, accessed in state ezclusive2 instead of shared.
The performance of ‘tsp’ is degraded due to additional own-
ership transfers (and hence thread-switches) of objects that
are subject to conflicts.

The execution times for ‘tsp’ fluctuated due to non-
determinism in the thread-scheduling and the corre-
sponding reduction of the cutoff boundary (for ‘RD”:
min. 16.1, max. 20.3, avg. 18.3). The overhead (Table 6)
is due to the frequent invocation of lockset operations, as is
evidenced by Table 3. These invocations are the result of
properly synchronized accesses to shared data.

The slowdown of ‘mtrt’ is, although most objects remain
in ‘exclusive’ state (Table 5), due to the large fraction of
checked method accesses (Table 2).

Our general observation for parallel applications is that the
overhead of race-detection is roughly proportional to the
frequency of access to actually shared objects.

The relative overhead might be higher if standard compiler
optimizations are applied before instrumentation. On mul-
tiprocessor platforms, the speedup of applications may be
tampered through race detection when threads accessing for-
eign objects are blocked.

5.5 Memory overhead

Besides the runtime effect, shifting the granularity level of
race detection to objects also significantly reduces the mem-
ory overhead: four additional bytes in the object header
increase the total amount of memory by at most 25%. The
memory necessary for locksets is negligible for the evaluated
applications: the maximum number of allocated locksets has
been typically 2-50 with a peak of 423 for ‘tsp’.

6. CONCLUSIONS

This paper presented a pragmatic low-cost approach to race
detection for object-oriented programs. The system makes
objects the unit of interest and therefore checks access con-
flicts at the object level. Inherent to such a strategy is the
risk to report a large number of false races. Static escape
analysis allows us to reduce the number of objects that must
be checked. However, in practice, even more checks can be
suppressed by recognizing that accesses to instance variables
and methods through the this references do not require in-
strumentation. An interesting aspect is that the execution
of many of the bookkeeping instructions of the checker is
hidden by the organization of the platform processor.

One reason why an efficient implementation of access checks
is possible is that the compiler interleaves user and run-
time (checker) instructions. A pure VM could not realize
these benefits; a JIT compiler that enjoys access to escape
information can pursue the same strategy. The other cru-
cial aspect is the optimization of the ownership model for
objects. Programs that employ an orderly transition of ob-
jects from a first thread to a second thread pay only a low
price for access checks. Of course, programs with a single
user thread also benefit from this feature. Only accesses to
objects that are truly shared pay the full price of maintain-
ing ownership information. However, since the number of
such objects seems to be limited for many applications, the
overall runtime impact is tolerable.

Even applications that cannot accept any execution over-
head can benefit from this tool during program development
and testing. As our experience with a few sample program
illustrates, programs sometimes exhibit races. Some races
may be benign (and their reports could be suppressed by a
programmer with exacter definitions of member properties),
but other races may either point to a programming error
or suggest an improvement in data structures or patterns.
Of course, no amount of testing can replace continuous race

detection.

Multi-processor PCs are today common in many environ-
ments, and developers need tools to identify problems in
multi-threaded Java programs. The compiler/runtime sys-
tem approach presented here is particularly well suited for
programs with a structure based on objects. As object-
oriented programs take increased advantage of parallelism,
we expect that at some time data race detection will be as
routinely performed as bound checks for array accesses.

Acknowledgments
We thank M. Corti, O. Trachsel, and D. Zogg for their con-
tributions to the compiler system. We would like to ac-
knowledge detailed and valuable comments from J.-D. Choi
and A. Greenhouse. We also wish to thank the reviewers for
their helpful comments.

7. REFERENCES
[1] S. Adve, M. Hill, B. Miller, and R. Netzer. Detecting
data races on weak memory systems. In Proc. of the
Annual Int’l Symp. on Computer Architecture
(ISCA’91), pages 234-243, May 1991.

D. Bacon, R. Strom, and A. Tarafdar. Guava: A
dialect of Java without data races. In Proc. of the
ACM Conf. on Object-Oriented Programming,
Systems, Languages, and Applications

(OOPSLA 2000), pages 382-400, Oct. 2000.

[2

—

3

—_

B. Blanchet. Escape analysis for object-oriented
languages - Application to Java. In Proc. of the ACM
Conf. on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA’99), pages
20-34, Denver, CO, Nov. 1999.

[4] J. Bogda and U. Holzle. Removing unnecessary
synchronization in Java. In Proc. of the ACM
Conf. on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA’99), pages
35-46, Nov. 1999.

[5] P. Bothner. A gce-based Java implementation. In
Proc. of IEEE COMPCON 97, pages 174-178, Feb.
1997.

[6] D. Callahan, K. Kennedy, and J. Subhlok. Analysis of
event synchronization in a parallel programming tool.
In Proc. Second ACM SIGPLAN Symp. on Principles
and Practice of Parallel Programming, pages 21-30,
Mar. 1990.

[7] J. Choi, M. Gupta, M. Serrano, V. Sreedhar, and
S. Midkiff. Escape analysis for Java. In Proc. of the
ACM Conf. on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA’99),
pages 1-19. ACM Press, Nov. 1999.

(8

=

D. Detlefs, K. Rustan, M. Leino, G. Nelson, and
J. Saxe. Extended static checking. Research Report
159, Compaq SRC, 1998.

[9] A. Dinning and E. Schonberg. Detecting access
anomalies in programs with critical sections. In
Proc. of 1991 ACM/ONR Workshop on Parallel and
Distributed Debugging, pages 85-96, Santa Cruz, CA,
Dec. 1991.

[10] P. Emrath and D. Padua. Automatic detection of
nondeterminacy in parallel programs. In Proc. of the
ACM Workshop on Parallel and Distributed
Debugging, pages 89-99, Madison, Wisconsin, Jan.
1989.

[11] C. Flanagan and S. Freund. Type-based race detection
for Java. In Proc. of the ACM Conf. on Programming
Language Design and Implementation (PLDI 2000),
pages 219-229, June 2000.

[12] C. Fraser, D. Hanson, and T. Proebsting. Engineering
a simple, efficient code generator generator. ACM
Letters on Programming Languages and Systems,
1(3):213-226, Sept. 1992.

[13] GNU Software. gcj - The GNU compiler for the Java
programming language. http://gcc.gnu.org/java, 2000.

[14] D. Helmbold and C. McDowell. A taxonomy of race
detection algorithms. Technical Report
UCSC-CRL-94-35, University of California, Santa
Cruz, Computer Research Laboratory, Sept. 1994.

[15] Intel Corporation. Intel architecture optimization
manual. http://developer.intel.com/design/
PentiumIII/manuals/, 2001.

[16] D. Lea. Concurrent Programming in Java, Second
Edition. Addison-Wesley Publishing Company, Inc.,
Reading, Massachusetts, 1999.

[17] D. Lea. Package util.concurrent.
http://g.oswego.edu/dl/classes/EDU /oswego/cs/dl/
util/concurrent/intro.html, 2001.

[18] T. Lindholm and F. Yellin. The Java Virtual Machine
Specification, Second Edition. Addison-Wesley
Publishing Company, Inc., Reading, Massachusetts,
1999.

[19] J. Mellor-Crummey. On-the-fly detection of data races
for programs with nested fork-join parallelism. In
Proc. of Supercomputer Debugging Workshop ’91,
pages 24-33, Nov. 1991.

[20] J. Mellor-Crummey. Compile-time support for efficient
data race detection in shared-memory parallel
programs. In B. P. Miller and C. McDowell, editors,
Proc. of the Workshop on Parallel and Distributed
Debugging, pages 129-139, May 1993.

[21] R. Netzer and B. Miller. On the complexity of event
ordering for shared-memory parallel program
executions. Technical Report TR 908, Computer
Sciences Department, University of Wisconsin,
Madison, WI, Jan. 1990.

[22] R. Netzer and B. Miller. What are race conditions?
Some issues and formalizations. ACM Letters on
Programming Languages and Systems, 1(1):74-88,
Mar. 1992.

[23] D. Perkovic and P. Keleher. Online data-race
detection via coherency guarantees. In Proc. of the
2nd Symp. on Operating Systems Design and
Implementation (0SDI’96), pages 47-57, Oct. 1996.

[24] W. Pugh. Fixing the Java memory model. In Proc. of
the ACM Java Grande Conference, pages 8998, June
1999.

[25] M. Ronsse and K. D. Bosschere. Non-intrusive
on-the-fly data race detection using execution replay.
In Proc. of AADEBUG 2000, Fourth International
Workshop on Automated Debugging, pages 148-163,
Aug. 2000.

[26] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and
T. Anderson. Eraser: A dynamic data race detector
for multi-threaded programs. In Proc. of the ACM
Symp. on Operating Systems Principles (SOSP ’97),
pages 27-37, Oct. 1997.

[27] D. Scales, K. Gharachorloo, and C. Thekkath. Shasta:
A low overhead, software-only approach for
supporting fine-grain shared memory. In Proc. of
Seventh Intl. Conf. on Architectural Support for
Programming Languages and Operating Systems
(ASPLOS ’96), pages 174-185, Oct. 1996.

[28] A. Stepanov and M. Lee. The Standard Template
Library. Technical report, Hewlett-Packard Company,
1994.

[29] E. Stolte, C. von Praun, G. Alonso, and T. Gross.
Design of a data warehouse for the HESSI solar
observer. Project report, ETH Zurich, Department of
Computer Science, Nov. 2000.

[30] SunSoft. lock lint user’s guide, 1994.

[31] The Java Memory Model. Mailing list and web page.
http://www.cs.umd.edu/ pugh/java/memoryModel,
2000.

[32] The Standard Performance Evaluation Corporation.
SPEC JVM98 Benchmarks.
http://www.spec.org/osg/jvm98, 1996.

[33] J. Whaley and M. Rinard. Compositional pointer and
escape analysis for Java programs. In Proc. of the
ACM Conf. on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA’99),
pages 187-206, Nov. 1999.

