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Data flow analysis

n Framework for proving facts about program 
at each point
n Point: entry or exit from block (or CFG edge)
n Lots of “small facts”
n Little or no interaction between facts

n Based on all paths through program
n Includes infeasible paths
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Infeasible Paths Example

a = 1;
if (a == 0) {

a = 1;
}
if (a == 0) {

a = 2;
}

n Infeasible paths never actually taken by 
program, regardless of input

n Undecidable to distinguish from feasible
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Data Flow-Based Optimizations

n Dead variable elimination
n a = 3; print a; x = 12; halt ) a = 3; print a; halt

n Copy propagation
n x = y; … use of x ) …use of y

n Partial redundancy
n a = 3*c + d; b = 3*c ) b = 3*c; a=b+d

n Constant propagation
n a = 3; b = 2; c = a+b ) a = 3; b = 2; c = 5
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Data Flow Analysis

n Define lattice to represent facts
n Attach meaning to lattice values
n Associate transfer function to each node

n (f:L!L)

n Initialize values at each program point
n Iterate through program until fixed point
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Lattice-Related Definitions

n Meet function : u
n commutative and associative
n x u x = x

n Unique bottom ? and top > element
n x u ? = ?
n x u > = x

n Ordering: x v y iff x u y = x
n Function f is monotone if 8 x, y:

n x v y implies f(x) v f(y)
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Bit-Vector Lattice

n Meet = bit-vector logical and

111

011 101 110

001 010 100

000

>

?

111 u 111 =
011 u 111 =
000 u 101 =
100 u 011 =
011 u 110 =
001 u110 =
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Constant Propagation Lattice

n Meet rules:
n a u > = a
n a u ? = ?
n constant u constant = constant (if equal)
n constant u constant = ? (if not equal)

n Define obvious transfer functions for 
arithmetic

>

… -2 -1 0 1 2 …
?
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Iterative Data Flow Analysis

n Initialize non-entry nodes to >
n Identity element for meet function

n If node function is monotone:
n Each re-evaluation of node moves down the 

lattice, if it moves at all
n If height of lattice is finite, must terminate
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Constant Propagation Example I

x = true;
if (x)

a = 3;
b = 2;

a = 2;
b = 3;

c = a+b;

then else

n Two choices of “point”:
n Compute at edges

n maximal information

n Compute on entry
n must “meet” data from 

all incident edges
n loses information
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Constant Propagation Example II

n Vector for 
(x,a,b,c)

n Init values to >
n Iterate 

forwards

x = true;
if (x)

a = 3;
b = 2;

a = 2;
b = 3;

c = a+b;

then else

(>,>,>,>)(>,>,>,>)

(>,>,>,>) (>,>,>,>)

(>,>,>,>)

(true,>,>,>) (true,>,>,>)

(true,3,2,>) (true,2,3,>)

(true,?,?,5)
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Accuracy: MOP vs. MFP

n We want “meet-over-all-paths” solution, but 
paths can be infinite if there are loops

n Best we can do in general:
n Maximum Fixed Point solution =

largest solution, ordered by v, that is fixed 
point of iterative computation

n Provides “most information”
n More conservative than MOP
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Distributive Problems

n f is distributive iff
n f(x u y) = f(x) u f(y)
n Doing meet early doesn’t reduce precision

n Non-distributive problems:
n constant propagation

n Distributive problems:
n MFP = MOP
n reaching definitions, live variables
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Reaching Definitions

n Definition : each assignment to variable
n defs(v) represents set of all definitions of v
n Assume all variables scalars

n No pointers
n No arrays

n A definition reaches given point if 9
path to that point such that variable may have 
value from definition
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Data Flow Functions

n Kill(S): facts not true after S just because they were true before
n example: redefinition of variable (assignment)

n Gen(S): facts true after S regardless of facts true before S
n example: assigned values not killed in S

n In(S): dataflow info on entry to S
n In(S) = [p 2 PRED(S) Out (p)
n example: definitions that reach S

n Out(S): dataflow info on exit from S
n Out(S) = Gen(S) [ (In(S) – Kill(S) )
n example: reaching defs after S
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For Reaching Definitions

n For reaching defs , u = [

n Gen(d: v = exp) = {d}
n “on exit from block d, generate new definition”

n Kill(d : v = exp) = defs(v)
n “on exit from block d, definitions of v are killed”

n Computing In(S)
n If S has one predecessor P, In(S) = Out(P )
n Otherwise: In(S) = u P in PRED(S)Out(P )
n Out(Entry ) = {}
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Reaching Definitions Example

parameter a;
parameter b;
x = a*b;
y = a*b;
while (y > a+b) {

a = a+1;
x = a+b;

}

Entry

3: x=a*b;

if y > a+b

5: a = a+1;

Exit

4: y=a*b;

2: parameter b;

1: parameter a;

6: x = a+b;

defs(x) = 
defs(y) =
defs(a) =
defs(b) =
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Analysis Direction

n Forwards analysis:
n start with Entry, compute towards Exit

n Backwards analysis:
n start with Exit, compute towards Entry
n In(S) = Gen(S) [ (Out(S ) – Kill(S ))
n Out(S) = uF in SUCC(S) In(F)

n Backwards problems:
n Live variables: which variables might be read before 

overwritten or discarded
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Next Time

n More data flow analysis


