Advanced Compilers
CMPSCI 710
Spring 2003

Data flow analysis

Emery Berger
University of Massachusetts, Amherst

UNIVERSITY OF MASSACHUSETTS, AMHERST + DEPARTMENT OF COMPUTER SCIENCE

Infeasible Paths Example

if (a’=: 0 {

if (a==0) {

= Infeasible paths never actually taken by
program, regardless of input

= Undecidable to distinguish from feasible

UNIVERSITY OF MASSACHUSETTS, AMHERST » DEPARTMENT OF COMPUTER SCIENCE

Data flow analysis

= Framework for proving facts about program
at each point

= Point: entry or exit from block (or CFG edge)
= Lots of “small facts”
= Little or no interaction between facts
= Based on all paths through program
= Includes infeasible paths

UNIVERSITY OF MASSACHUSETTS, AMHERST + DEPARTMENT OF COMPUTER SCIENCE.

Data Flow Analysis

= Define lattice to represent facts

= Attach meaning to lattice values

= Associate transfer function to each node
=« (FLEL)

= Initialize values at each program point

= |terate through program until fixed point

UNIVERSITY OF MASSACHUSETTS, AMHERST + DEPARTMENT OF COMPUTER SCIENCE

Data Flow-Based Optimizations

= Dead variable elimination
= a=3; print & x = 12; halt) a = 3; print &; halt
= Copy propagation
s X =Y ...ueof x) ...useof y
= Partial redundancy
=a=23*c+d; b=3*c) b=23*%;a=b+d
= Constant propagation
sa=3b=2c=ath)a=3b=2c=5

UNIVERSITY OF MASSACHUSETTS, AMHERST + DEPARTMENT OF COMPUTER SCIENCE

Lattice-Related Definitions

= Meet function: u
= commutative and associative
= XUX=X
= Unique bottom ? and top > element
s Xu?=7?
= XU>=X
= Ordering: x vy iff x uy=x
= Function f is monotone if 8 x, y:
= X Vv yimplies f(x) v f(y)

UNIVERSITY OF MASSACHUSETTS, AMHERST + DEPARTMENT OF COMPUTER SCIENCE

11lulll=
Ollulll=
000 u101=
100u011=
011u110=
001ullo=

= Meet = bit-vector logical and

UNIVERSITY OF MASSACHUSETTS, AMHERST + DEPARTMENT OF COMPUTER SCIENCE

Iterative Data Flow Analysis

= Initialize non-entry nodes to >
= Identity element for meet function
= |f node function is monotone:

= Each re-evaluation of node moves down the
lattice, if it moves at all

= If height of lattice is finite, must terminate

Constant Propagation Lattice

= Meet rules: z
. =-2-1012 .
maU>=a P

mau?="7?
= constant u constant = constant (if equal)
= constant u constant = 72 (if not equal)

= Define obvious transfer functions for
arithmetic

UNIVERSITY OF MASSACHUSETTS, AMHERST + DEPARTMENT OF COMPUTER SCIENCE.

UNIVERSITY OF MASSACHUSETTS, AMHERST » DEPARTMENT OF COMPUTER SCIENCE

Constant Propagation Example |

= Two choices of “point™:
= Compute at edges
= maximal information
= Compute on entry

= must “meet” data from
all incident edges

= |oses information

UNIVERSITY OF My USETTS, AMHERST + DEPARTMENT OF COMPUTER SCIENCE

Constant Propagation Example Il

= Vector for

X = true;
if (9

(X a,b C) (true,>>>) (true,>>,>)
= Init values to >
= lterate

forwards (true,3,2,>) (true.2,3.5)

(true,?,?,5)

UNIVERSITY OF MASSACHUSETTS, AMHERST + DEPARTMENT OF COMPUTER SCIENCE

Accuracy: MOP vs. MFP

= We want “meet-over-all-paths” solution, but
paths can be infinite if there are loops
= Best we can do in general:
= Maximum Fixed Point solution =
largest solution, ordered by v, that is fixed
point of iterative computation
= Provides “most information”

= More conservative than MOP

UNIVERSITY OF MASSACHUSETTS, AMHERST + DEPARTMENT OF COMPUTER SCIENCE

= fis distributive iff

= f(x uy)=f(x) ufly)

= Doing meet early doesn’t reduce precision
= Non-distributive problems:

= constant propagation
= Distributive problems:

= MFP = MOP

= reaching definitions, live variables

UNIVERSITY OF MASSACHUSETTS, AMHERST + DEPARTMENT OF COMPUTER SCIENCE

Reaching Definitions
= Definition: each assignment to variable
= defs(v) represents set of all definitions of v
= Assume all variables scalars

= No pointers

= No arrays

= A definition reaches given point if 9
path to that point such that variable may have
value from definition

UNIVERSITY OF MASSACHUSETTS, AMHERST + DEPARTMENT OF COMPUTER SCIENCE.

Data Flow Functions

= Kill(S): facts not true after S just because they were true before
= example redefinition of variable (assignment)

= Gen(S): facts true after S regardless of facts true beforeS
= example: assigned values not killed inS

= In(S): dataflow info on entry toS
= In(S) = [, 2prens) OU(P)
= example definitions that reach S

= Out(S): dataflow info on exit fromS
= Out(9) = Gen(S) L (In(S)—Kill(S))
= example reaching defs after S

UNIVERSITY OF MASSACHUSETTS, AMHERST » DEPARTMENT OF COMPUTER SCIENCE

For Reaching Definitions

= For reaching defs, u = [
= Gen(d: v =exp) = {d}

= “on exit from block d, generate new definition”
w Kill(d: v = exp) = defs(y)

= “on exit from block d, definitions of v are killed”
= Computing In(S)

= IfS has one predecessor P, In(S) = Out(P)

= Otherwise: In(S) =u 50utP)

~ ™PinPRED

= Out(Entry) = {3

UNIVERSITY G ETTS, AMHERST » DEPARTMENT OF COMPUTER SCIENCE

Reaching Definitions Example

parameter a;
parameter b;
x = a*b;
y = a*b;
while (y > atb) {
a = atl;
X = atb;

>

1: parameter a;

2: parameter b;

3: x=a*b;

ify > ath
defs(x) =
defs(y) =
defs(a) =

UNIVERSITY HUSETTS, AMHERST + DEPARTMENT OF COMPUTER SCIENCE

Analysis Direction

= Forwards analysis:
= start with Entry, compute towards Exit
= Backwards analysis:
= start with Exit, compute towards Entry
= In(S) = Gen(S) [(Out(S)- Kill(S))
= Out(S) =ug;, suces) In(F)
= Backwards problems:

= Live variables: which variables might be read before
overwritten or discarded

HUSETTS, AMHERST » DEPARTMENT OF COMPUTER SCIENCE

Next Time

= More data flow analysis

UNIVERSITY HUSETTS, AMHERST + DEPARTMENT OF COMPUTER SCIENCE

