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More SSA

n Last time
n dominance
n SSA form

n Today
n Computing SSA form
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Criteria for Inserting φ Functions

n Brute-force: Insert one φ function for each 
variable at every join point (point in CFG with 
more than one predecessor)
n Wasteful

n When should we insert φ function for a 
variable a at node z of the CFG?
n Intuitively: add φ if there are two definitions of 

a that can reach the point z through distinct 
paths
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Path Convergence Criterion
[Cytron-Ferrante ‘89]

Insert φ function for variable a at node z if
all the following conditions are true:
1. There is a block x that defines a
2. There is a block y ≠ x that defines a
3. There are non-empty paths x→z and y→z
4. Paths x→z and y→z don’t have nodes in common

other than z
5. The node z does not appear within both x→z

and y→z prior to the end, but it may appear
in one or the other.

Note: The start node contains an 
implicit definition of every variable.
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Iterated Path-Convergence 
Criterion

The φ function itself is a definition of a. 
Therefore the path-convergence criterion

is a set of equations that must be satisfied.

while there are nodes x, y, z satisfying conditions 1-5
and z does not contain a φ function for a

do inserta← φ(a0, a1, …, an) at node z

This algorithm is extremely costly, because it
requires the examination of every triple of

nodes x, y, z and every path from 
x to z and from y to z.

Can we do better?
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Dominance Reviewed

n Node x dominates node w
if every path from the start node to w
must go through x

n Node x strictly dominates node w
if x dominates w and x ≠ w



2

UUNIVERSITYNIVERSITY OFOF MMASSACHUSETTS, ASSACHUSETTS, AAMHERSTMHERST • • DDEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCECIENCE 7

Dominance Property
of SSA Form

n In SSA form, definitions dominate uses:
n If x is used in φ function in block n

Ø def of x dominates every predecessor of n

n If x is used in non-φ statement in block n
Ø def of x dominates n

n The dominance frontier of node x:
n nodes w such that x dominates predecessor of 

w, but x does not strictly dominate w
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Example
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What is the dominance frontier of node 5?
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Example
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First we must find all nodes that 
node 5 strictly dominates.
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Example

A node w is in the dominance frontier of node 5 
if 5 dominates a predecessor of w, but 5 does not strictly
dominatew itself. What is the dominance frontier of 5?
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Example
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DF(5) = {4, 5, 12, 13}

A node w is in the dominance frontier of node 5 
if 5 dominates a predecessor of w, but 5 does not strictly
dominates w itself. What is the dominance frontier of 5?
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Dominance Frontier Criterion

Dominance Frontier Criterion:
If a node x contains a definition of variable a,
then any node z in the dominance frontier of
x needs a φ function for a.

Can you think of an intuitive explanation 
for why a node in the dominance frontier 

of another node must be a join node? 
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Example
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If a node (12) is in the 
dominance frontier of 

another node (5), 
than there must be
at least two paths 
converging to (12). 

These paths must be 
non-intersecting, and
one of them (5,7,12)

must contain a node strictly
dominated by (5).
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Dominator Tree

To compute the dominance frontiers, we first compute
the dominator tree of the CFG.

There is an edge from node x to node y in the 
dominator tree if node x immediately dominates node y.

I.e., x dominates y≠x, and x does not
dominate any other dominator of y.

Dominator trees can be computed 
using the Lengauer-Tarjan algorithm

in O(E α(E,N)) time
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Example: Dominator Tree
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Control Flow Graph

Dominator Tree
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Local Dominance Frontier

Cytron-Ferrante define the local dominance frontier
of a node n as:

DF local[n] = successors of n in the CFG that are not
strictly dominated by n
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Example:
Local Dominance Frontier
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Control Flow Graph

In the example, what are
the local dominance
frontiers of nodes 5, 6 and 7?

DF local[5] = ∅
DF local[6] = {4,8}
DF local[7] = {8,12}

DF local[n] = successors of n in the CFG not strictly dominated by n
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Dominance Frontier
Inherited From Its Children

The dominance frontier of a node n is formed by its
local dominance frontier plus nodes that are passed up
by the children of n in the dominator tree. 

The contribution of a node c to its parents’ dominance 
frontier is defined as [Cytron-Ferrante, 1991]:

DF up[c] = nodes in the dominance frontier
of c that are not strictly dominated by 
the immediate dominator of c
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Example:
Up Dominance Frontier
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Control Flow Graph

In the example, what are
the contributions of nodes
6, 7, and 8 to its parent

dominance frontier?

First we compute
the DF and immediate
dominator of each node:
DF[6] = {4,8}, idom(6)= 5
DF[7] = {8,12}, idom(7)= 5
DF[8] = {5,13}, idom(8)= 5
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Example: 
Up Dominance Frontier
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Control Flow Graph

First, we compute
the DF and the immediate
dominator of each node:
DF[6] = {4,8}, idom(6)= 5
DF[7] = {8,12}, idom(7)= 5
DF[8] = {5,13}, idom(8)= 5

Now, we check for the 
DFup condition: 
DFup[6] = {4}
DFup[7] = {12}
DFup[8] = {5,13}

DFup[c] = nodes in DF[c] not strictly dominated by idom(c)
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Dominance Frontier
Inherited From Its Children

The dominance frontier of a node n is formed by its
local dominance frontier plus nodes that are passed up
by the children of n in the dominator tree. 
Thus the dominance frontier of a node n is defined 
as [Cytron-Ferrante, 1991]:

[ ] [ ]
[ ]

[ ]cDFnDFnDF up
nDTchildrenc

local
∈

∪∪=
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Example: Local Dominance 
Frontier
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Control Flow Graph

What is DF[5]?

Remember that:

DF local[5] = ∅
DFup[6] = {4}
DFup[7] = {12}
DFup[8] = {5,13}
DTchildren[5] = {6,7,8}
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Example: Local Dominance 
Frontier
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Control Flow Graph

What is DF[5]?

Remember that:

DF local[5] = ∅
DFup[6] = {4}
DFup[7] = {12}
DFup[8] = {5,13}
DTchildren[5] = {6,7,8}

Thus, DF[5] = {4, 5, 12, 13}
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Computing Dominance Frontiers

n Use  DFlocal and DFup

for X 2 bottom-up traversal of dominance tree
DF(X) Ã ∅
for Y 2 Succ(X)

// local
if idom(Y) ≠ X then DF(X) Ã DF(X) [ {Y}

for Z 2 Children(X)
for Y 2 DF(Z)

// up
if idom(Y) ≠ X then DF(X) Ã DF(X) [ {Y}
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Join Sets

In order to insert φ-nodes for a variable x that is 
defined in a set of nodes S={n1, n2, …, nk} we need
to compute the iterated set of join nodes of S.

Given a set of nodes S of a control flow graph G, 
the set of join nodes of S, J(S), is defined as follows:

J(S) ={z ∈ G| ∃ two paths Pxz and Pyz in G that
have z as its first common node,
x ∈ S and y ∈ S} 

UUNIVERSITYNIVERSITY OFOF MMASSACHUSETTS, ASSACHUSETTS, AAMHERSTMHERST • • DDEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCECIENCE 26

Iterated Join Sets

Because a φ-node is itself a definition of a variable,
once we insert φ-nodes in the join set of S, we need
to find out the join set of S ∪ J(S). 
Thus, Cytron-Ferrante define the iterated join set
of a set of nodes S, J+(S), as the limit of the sequence:

( )
( )ii JSJJ

SJJ

∪=

=

+1

1
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Iterated Dominance Frontier
We can extend the concept of dominance frontier
to define the dominance frontier of a set of nodes as:

)()( XDFSDF
SX∈

= Υ

Now we can define the iterated dominance frontier,
DF+(S), of a set of nodes S as the limit of the sequence:

( )ii DFSDFDF
SDFDF

∪=
=

+1

1 )(
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Location of φ-Nodes
Given a variable x that is defined in a set of nodes 
S={n1, n2, …, nk} the set of nodes that must receive
φ-nodes for x is J+(S).

An important result proved by Cytron-Ferrante is that:

( ) ( )SDFSJ ++ =

Thus we are really interested in computing 
the iterated dominance frontier of a set of nodes.
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Algorithms to Compute
Φ Node Placement
The algorithm to insert φ-nodes, due to Cytron and
Ferrante (1991), computes the dominance frontier
of each node in the set S before computing the
iterated dominance frontier of the set. 

In 1994, Shreedar and Gao proposed a simple,
linear algorithm for the insertion of φ-nodes.

In the worst case, the combination of the dominance
frontier of the sets can be quadratic in the number 
of nodes in the CFG. Thus, Cytron-Ferrante’s
algorithm has a complexity O(N2).
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Sreedhar and Gao’s DJ Graph
1

13

2

3

4
12

10 11

9

8

6 7

5

1

3

6 7

10 11

4 5 12 92 13

8
Control Flow Graph

Dominator Tree
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Sreedhar and Gao’s DJ Graph
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Control Flow Graph

Dominator Tree

D nodes
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Sreedhar and Gao’s DJ Graph
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Control Flow Graph

Dominator Tree

D nodes

J nodes
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Shreedar-Gao’s Dominance 
Frontier Algorithm

DominanceFrontier(x)
0:   DF[x] = ∅
1:   foreach y ∈ SubTree(x) do
2:        if((y → z == J-edge) and
3:                    (z.level ≤ x.level))
4:          then DF[x] = DF[x] ∪ z 1
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What is the DF[5]?
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Shreedar-Gao’s Dominance 
Frontier Algorithm

DominanceFrontier(x)
0:   DF[x] = ∅
1:   foreach y ∈ SubTree(x) do
2:        if((y → z == J-edge) and
3:                    (z.level ≤ x.level))
4:          then DF[x] = DF[x] ∪ z 1
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SubTree(5) = {5, 6, 7, 8}

Initialization: DF[5] = ∅

UUNIVERSITYNIVERSITY OFOF MMASSACHUSETTS, ASSACHUSETTS, AAMHERSTMHERST • • DDEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCECIENCE 35

Shreedar-Gao’s Dominance 
Frontier Algorithm

DominanceFrontier(x)
0:   DF[x] = ∅
1:   foreach y ∈ SubTree(x) do
2:        if((y → z == J-edge) and
3:                    (z.level ≤ x.level))
4:          then DF[x] = DF[x] ∪ z 1
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SubTree(5) = {5, 6, 7, 8}

There are three edges
originating in 5: 

{5→6, 5→7, 5→8}
but they are all D-edges

Initialization: DF[5] = ∅
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Shreedar-Gao’s Dominance 
Frontier Algorithm

DominanceFrontier(x)
0:   DF[x] = ∅
1:   foreach y ∈ SubTree(x) do
2:        if((y → z == J-edge) and
3:                    (z.level ≤ x.level))
4:          then DF[x] = DF[x] ∪ z 1

3

6 7

10 11

4 5 12 92 13

8

SubTree(5) = {5, 6, 7, 8}

There are two edges
originating in 6: 

{6→4, 6→8}
but 8.level > 5.level

Initialization: DF[5] = ∅
After visiting 6: DF = {4}
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Shreedar-Gao’s Dominance 
Frontier Algorithm

DominanceFrontier(x)
0:   DF[x] = ∅
1:   foreach y ∈ SubTree(x) do
2:        if((y → z == J-edge) and
3:                    (z.level ≤ x.level))
4:          then DF[x] = DF[x] ∪ z 1

3
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8

SubTree(5) = {5, 6, 7, 8}

There are two edges
originating in 7: 
{7→8, 7→12}

again 8.level > 5.level

Initialization: DF[5] = ∅
After visiting 6: DF = {4}

After visiting 7: DF = {4,12}
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Shreedar-Gao’s Dominance 
Frontier Algorithm

DominanceFrontier(x)
0:   DF[x] = ∅
1:   foreach y ∈ SubTree(x) do
2:        if((y → z == J-edge) and
3:                    (z.level ≤ x.level))
4:          then DF[x] = DF[x] ∪ z 1

3

6 7

10 11

4 5 12 92 13

8

SubTree(5) = {5, 6, 7, 8}

There are two edges
originating in 8: 
{8→5, 8→13}

both satisfy cond. in steps 2-3

Initialization: DF[5] = ∅
After visiting 6: DF = {4}

After visiting 7: DF = {4,12}
After visiting 8: DF = {4, 12, 5, 13}

UUNIVERSITYNIVERSITY OFOF MMASSACHUSETTS, ASSACHUSETTS, AAMHERSTMHERST • • DDEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCECIENCE 39

Shreedhar-Gao’s φ-Node Insertion 
Algorithm

Using the D-J graph, Shreedhar and Gao propose
a linear time algorithm to compute the iterated
dominance frontier of a set of nodes.

A important intuition in Shreedhar-Gao’s algorithm is:

If two nodes x and y are in S, and y is an
ancestor of x in the dominator tree, than if we
compute DF[x] first, we do not need to recompute
it when computing DF[y].
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Shreedhar-Gao’s φ-Node Insertion 
Algorithm

Shreedhar-Gao’s algorithm also use a work list
of nodes hashed by their level in the dominator
tree and a visited flag to avoid visiting the
same node more than once. 

The basic operation of the algorithm is similar to
their dominance frontier algorithm, but it requires
a careful implementation to deliver the linear time
complexity.
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Dead-Code Elimination in SSA 
Form

Only one definition for each variable
) if the list of uses of the variable is empty, 
definition is dead

When a statement v← x ⊕ y is eliminated because
v is dead, this statement must be removed from
the list of uses of x and y, which might cause
those definitions to become dead.

Thus we need to iterate the dead code elimination 
algorithm.
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Simple Constant Propagation in 
SSA
If there is a statement v ← c, where c is a constant,
then all uses of v can be replaced for c.

A φ function of the form v ← φ(c1, c2, …, cn) where all
ci are identical can be replaced for v ← c.

Using a work list algorithm in a program in SSA form,
we can perform constant propagation in linear time

In the next slide we assume that x, y, z are variables
and a, b, c are constants.
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Linear Time Optimizations
in SSA form

Copy propagation: The statement x ← φ(y) or the statement
x ← y can be deleted and y can substitute every use of x.

Constant folding: If we have the statement x ← a ⊕ b, we can 
evaluate c ← a ⊕ b at compile time and replace the 
statement for x ← c

Constant conditions: The conditional if a < b gotoL1 elseL2
can be replaced for gotoL1 or goto L2, according to the
compile time evaluation of a < b, and the CFG, use lists,
adjust accordingly

Unreachable Code: eliminate unreachable blocks.
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Next Time

n Implementing other optimizations with SSA
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Single Assignment Form

i=1 ;
j=1;
k=0;
while(k<100)

{
if(j<20)

{
j=i;
k=k+1;

}
else

{
j=k;
k=k+2;

}
}

return j;
}

i ← 1
j ← 1
k← 0

j ← i
k ← k+1

j ← k
k ← k+2

return jif j<20

if k<100

B1

B2

B3

B5 B6

B4

B7
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Single Assignment Form

i=1 ;
j=1;
k=0;
while(k<100)

{
if(j<20)

{
j=i;
k=k+1;

}
else

{
j=k;
k=k+2;

}
}

return j;
}

i ← 1
j ← 1
k1← 0

j ← i
k3 ← k+1

j ← k
k5 ← k+2

return jif j<20

if k<100

B1

B2

B3

B5 B6

B4

B7
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Single Assignment Form

i=1 ;
j=1;
k=0;
while(k<100)

{
if(j<20)

{
j=i;
k=k+1;

}
else

{
j=k;
k=k+2;

}
}

return j;
}

i ← 1
j ← 1
k1← 0

j ← i
k3 ← k+1

j ← k
k5 ← k+2

return jif j<20

if k<100

k4 ← φ (k3,k5)

B1

B2

B3

B5 B6

B4

B7
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Single Assignment Form

i=1 ;
j=1;
k=0;
while(k<100)

{
if(j<20)

{
j=i;
k=k+1;

}
else

{
j=k;
k=k+2;

}
}

return j;
}

i ← 1
j ← 1
k1← 0

j ← i
k3 ← k+1

j ← k
k5 ← k+2

return jif j<20

k2 ← φ (k4,k1)
if k<100

k4 ← φ (k3,k5)

B1

B2

B3

B5 B6

B4

B7
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Single Assignment Form

i=1 ;
j=1;
k=0;
while(k<100)

{
if(j<20)

{
j=i;
k=k+1;

}
else

{
j=k;
k=k+2;

}
}

return j;
}

i ← 1
j ← 1
k1← 0

j ← i
k3 ← k2+1

j ← k
k5 ← k2+2

return jif j<20

k2 ← φ (k4,k1)
if k2<100

k4 ← φ (k3,k5)

B1

B2

B3

B5 B6

B4

B7
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Single Assignment Form

i=1 ;
j=1;
k=0;
while(k<100)

{
if(j<20)

{
j=i;
k=k+1;

}
else

{
j=k;
k=k+2;

}
}

return j;
}

i1 ← 1
j1 ← 1
k1← 0

j3 ← i1
k3 ← k2+1

j5 ← k2
k5 ← k2+2

return j2if j2<20

j2 ← φ (j4,j1)
k2 ← φ (k4,k1)
if k2<100

j4 ← φ (j3,j5)
k4 ← φ (k3,k5)

B1

B2

B3

B5 B6

B4

B7
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Example:
Constant Propagation

i1 ← 1
j1 ← 1
k1← 0

j3 ← i1
k3 ← k2+1

j5 ← k2
k5 ← k2+2

return j2if j2<20

j2 ← φ (j4,j1)
k2 ← φ (k4,k1)
if k2<100

j4 ← φ (j3,j5)
k4 ← φ (k3,k5)

B1

B2

B3

B5 B6

B4

B7

i1 ← 1
j1 ← 1
k1← 0

j3 ← 1
k3 ← k2+1

j5 ← k2
k5 ← k2+2

return j2if j2<20

j2 ← φ (j4,1)
k2 ← φ (k4,0)
if k2<100

j4 ← φ (j3,j5)
k4 ← φ (k3,k5)

B1

B2

B3

B5 B6

B4

B7
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Example:
Dead-code Elimination

i1 ← 1
j1 ← 1
k1← 0

j3 ← 1
k3 ← k2+1

j5 ← k2
k5 ← k2+2

return j2if j2<20

j2 ← φ (j4,1)
k2 ← φ (k4,0)
if k2<100

j4 ← φ (j3,j5)
k4 ← φ (k3,k5)

B1

B2

B3

B5 B6

B4

B7

j3 ← 1
k3 ← k2+1

j5 ← k2
k5 ← k2+2

return j2if j2<20

j2 ← φ (j4,1)
k2 ← φ (k4,0)
if k2<100

j4 ← φ (j3,j5)
k4 ← φ (k3,k5)

B2

B3

B5 B6

B4

B7
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Constant Propagation and Dead 
Code Elimination

j3 ← 1
k3 ← k2+1

j5 ← k2
k5 ← k2+2

return j2if j2<20

j2 ← φ (j4,1)
k2 ← φ (k4,0)
if k2<100

j4 ← φ (1,j5)
k4 ← φ (k3,k5)

B2

B3

B5 B6

B4

B7

j3 ← 1
k3 ← k2+1

j5 ← k2
k5 ← k2+2

return j2if j2<20

j2 ← φ (j4,1)
k2 ← φ (k4,0)
if k2<100

j4 ← φ (j3,j5)
k4 ← φ (k3,k5)

B2

B3

B5 B6

B4

B7
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Example:
Is this the end?

But block 6 is never
executed! How can we

find this out, and simplify
the program?

SSA conditional constant
propagation finds the 
least fixed point for the

program and allows 
further elimination of

dead code. 

k3 ← k2+1 j5 ← k2
k5 ← k2+2

return j2if j2<20

j2 ← φ (j4,1)
k2 ← φ (k4,0)
if k2<100

j4 ← φ (1,j5)
k4 ← φ (k3,k5)

B2

B3

B5 B6

B4

B7
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Example:
Dead code elimination

k3 ← k2+1 j5 ← k2
k5 ← k2+2

return j2if j2<20

j2 ← φ (j4,1)
k2 ← φ (k4,0)
if k2<100

j4 ← φ (1,j5)
k4 ← φ (k3,k5)

B2

B3

B5 B6

B4

B7

B4

k3 ← k2+1

return j2

j2 ← φ (j4,1)
k2 ← φ (k4,0)
if k2<100

j4 ← φ (1)
k4 ← φ (k3)

B2

B5

B7
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Example: Single  Argument φ-
Function Elimination

k3 ← k2+1

return j2

j2 ← φ (j4,1)
k2 ← φ (k4,0)
if k2<100

j4 ← φ (1)
k4 ← φ (k3)

B2

B5

B7

B4

k3 ← k2+1

return j2

j2 ← φ (j4,1)
k2 ← φ (k4,0)
if k2<100

j4 ← 1
k4 ← k3

B2

B5

B7

B4
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Example: Constant and Copy 
Propagation

k3 ← k2+1

return j2

j2 ← φ (j4,1)
k2 ← φ (k4,0)
if k2<100

j4 ← 1
k4 ← k3

B2

B5

B7

k3 ← k2+1

return j2

j2 ← φ (1,1)
k2 ← φ (k3,0)
if k2<100

j4 ← 1
k4 ← k3

B2

B5

B7

B4B4
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Example: 
Dead Code Elimination

k3 ← k2+1

return j2

j2 ← φ (1,1)
k2 ← φ (k3,0)
if k2<100

j4 ← 1
k4 ← k3

B2

B5

B7

B4

k3 ← k2+1

return j2

j2 ← φ (1,1)
k2 ← φ (k3,0)
if k2<100

B2

B5

B4
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Example: 
φ-Function Simplification

k3 ← k2+1

return j2

j2 ← φ (1,1)
k2 ← φ (k3,0)
if k2<100

B2

B5

B4

k3 ← k2+1

return j2

j2 ← 1
k2 ← φ (k3,0)
if k2<100

B2

B5

B4
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Example: 
Constant Propagation

k3 ← k2+1

return j2

j2 ← 1
k2 ← φ (k3,0)
if k2<100

B2

B5

B4

k3 ← k2+1

return 1

j2 ← 1
k2 ← φ (k3,0)
if k2<100

B2

B5

B4
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Example: 
Dead Code Elimination

k3 ← k2+1

return 1

j2 ← 1
k2 ← φ (k3,0)
if k2<100

B2

B5

B4 return 1 B4
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Next Time


