
1

UUNIVERSITYNIVERSITY OFOF MMASSACHUSETTS, ASSACHUSETTS, AAMHERSTMHERST • • DDEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCECIENCE

Emery Berger
University of Massachusetts, Amherst

Advanced Compilers
CMPSCI 710
Spring 2003

Basic Loop Optimizations

UUNIVERSITYNIVERSITY OFOF MMASSACHUSETTS, ASSACHUSETTS, AAMHERSTMHERST • • DDEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCECIENCE 2

Topics

Last time
Optimizations using SSA form

Constant propagation & dead code elimination
Loop invariant code motion

This time
Loop optimizations

Induction variable
Linear test replacement
Loop unrolling
Scalar replacement

UUNIVERSITYNIVERSITY OFOF MMASSACHUSETTS, ASSACHUSETTS, AAMHERSTMHERST • • DDEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCECIENCE 3

Easy Detection
of Loop Induction Variables

Pattern match & check:
Search for “i = i + b” in loop
i is induction variable if no other assignment to i in loop

Pros & Cons:
+ Easy!
- Does not catch all loop induction variables

e.g., “i = a * c + 2”

UUNIVERSITYNIVERSITY OFOF MMASSACHUSETTS, ASSACHUSETTS, AAMHERSTMHERST • • DDEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCECIENCE 4

Taxonomy of Induction Variables

basic induction variable:
only definition in loop is assignment
j = j ± c, where c is loop invariant

mutual induction variable:
definition is linear function of other induction variable i‘:

i = c1 * i‘ ± c2
i = i‘ / c1 ± c2

family of basic induction variable j:
set of induction variables i such that i is always assigned 
linear function of j

UUNIVERSITYNIVERSITY OFOF MMASSACHUSETTS, ASSACHUSETTS, AAMHERSTMHERST • • DDEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCECIENCE 5

Strength Reduction

Replace “expensive” op by “cheaper” one
E.g., replace multiply by addition

Apply to induction variable families
Especially: array indexing

UUNIVERSITYNIVERSITY OFOF MMASSACHUSETTS, ASSACHUSETTS, AAMHERSTMHERST • • DDEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCECIENCE 6

Strength Reduction Algorithm

Let i be induction variable in the family of 
basic induction variable j:

i = c1 * j + c2
Create new variable i’
Initialize in pre-header: i’ = c1*j + c2
Track value of j: after j = j + c3, add i’ = i’ + 
(c1 * c3)



2

UUNIVERSITYNIVERSITY OFOF MMASSACHUSETTS, ASSACHUSETTS, AAMHERSTMHERST • • DDEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCECIENCE 7

Strength Reduction Example

UUNIVERSITYNIVERSITY OFOF MMASSACHUSETTS, ASSACHUSETTS, AAMHERSTMHERST • • DDEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCECIENCE 8

Candidates for Strength Reduction

Induction variable IV multiplied by invariant

Recursively:
IV * IV, IV mod constant, IV + IV

UUNIVERSITYNIVERSITY OFOF MMASSACHUSETTS, ASSACHUSETTS, AAMHERSTMHERST • • DDEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCECIENCE 9

Strength Reduction Algorithm

UUNIVERSITYNIVERSITY OFOF MMASSACHUSETTS, ASSACHUSETTS, AAMHERSTMHERST • • DDEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCECIENCE 10

Strength Reduction Examples

basic induction variable:
only definition in loop is assignment
j = j ± c, where c is loop invariant

mutual induction variable:
definition is linear function of other induction 
variable i‘:

i = c1 * i‘ ± c2
i = i‘ / c1 ± c2

family of basic induction variable j:
set of induction variables i such that i is always 
assigned linear function of j

UUNIVERSITYNIVERSITY OFOF MMASSACHUSETTS, ASSACHUSETTS, AAMHERSTMHERST • • DDEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCECIENCE 11

Linear Test Replacement

Eliminates induction variable!
After strength reduction, loop test is often last 
use of induction variable

Algorithm:
If only use of IV is loop test and its own 
increment, and test is always computed

i.e., only one exit from loop
Replace test with equivalent one:

E.g., “i comp k” ⇒ “i_50 comp k*50”

UUNIVERSITYNIVERSITY OFOF MMASSACHUSETTS, ASSACHUSETTS, AAMHERSTMHERST • • DDEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCECIENCE 12

Linear Test Replacement Example



3

UUNIVERSITYNIVERSITY OFOF MMASSACHUSETTS, ASSACHUSETTS, AAMHERSTMHERST • • DDEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCECIENCE 13

Loop Unrolling

To reduce loop overhead, we can unroll loops

Advantages:
+ Execute fewer total instructions
+ More fodder for common subexpression

elimination, strength reduction, etc.
+ Move consecutive access closer together

Disadvantages:
- Code bloat
- Still updating 

through memory

UUNIVERSITYNIVERSITY OFOF MMASSACHUSETTS, ASSACHUSETTS, AAMHERSTMHERST • • DDEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCECIENCE 14

Scalar Replacement

Problem: register allocators never keep a[i] in register
Idea: trick allocator

Locate patterns of consistent reuse
Replace load with copy into temporary
Replace store with copy from temporary
May need copies at end of loop

E.g., when reuse spans > 1 iteration
Advantages:

Decreases number of loads and stores
Keeps reused values in registers
Big performance impact (2x, 3x!)

UUNIVERSITYNIVERSITY OFOF MMASSACHUSETTS, ASSACHUSETTS, AAMHERSTMHERST • • DDEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCECIENCE 15

Scalar Replacement Example

Scalar replacement exposes the reuse of a[i]
Traditional scalar analysis – inadequate
Use dependence analysis to understand array 
references (later)

UUNIVERSITYNIVERSITY OFOF MMASSACHUSETTS, ASSACHUSETTS, AAMHERSTMHERST • • DDEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCECIENCE 16

Next Time

Common Subexpression Elimination
Read ACDI:

Ch. 12, pp. 343-355
Ch. 13, pp. 378-396


