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The Memory Hierarchy

Higher = smaller, faster, closer to CPU
A real desktop machine (mine)

registers

L1 cache

L2 cache

RAM

Disk

8 integer, 8 floating-point; 1-cycle latency

8K data & instructions; 2-cycle latency

512K; 7-cycle latency

1GB; 100 cycle latency

40 GB; 38,000,000 cycle latency (!)
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Managing the Memory Hierarchy

Programmer view: only two levels of memory
Main memory (stores & loads)
Disk (file I/O)

Two things maintain this abstraction:
Hardware

Moves data between memory and caches
Compiler

Moves data between memory and registers
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Overview

Introduction
Register Allocation

Definition
History
Interference graphs
Graph coloring
Register spilling
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Register Allocation: Definition

Register allocation assigns registers to values
Candidate values:

Variables
Temporaries
Large constants

When needed, spill registers to memory

Important low-level optimization
Registers are 2x – 7x faster than cache

Judicious use ⇒ big performance improvements
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Register Allocation: Complications

Explicit names
Unlike all other levels of hierarchy

Scarce
Small register files (set of all registers)
Some reserved by operating system

e.g., “BP”, “SP”…

Complicated
Weird constraints, esp. on CISC architectures
Special registers: zero-load
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History

As old as intermediate code
Used in the original FORTRAN compiler (1950’s)
Very crude algorithms

No breakthroughs until 1981!
Chaitin invented register allocation scheme based on 
graph coloring

Equivalence first noted by Cocke et al., 1971
Simple heuristic, works well in practice
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Register Allocation Example

Consider this program with six variables:
a := c + d
e := a + b
f := e - 1

with the assumption that a and e die after use
Temporary a can be “reused” after e := a + b
Same with temporary e

Can allocate a, e, and f all to one register (r1):
r1 := r2 + r3
r1 := r1 + r4
r1 := r1 - 1
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Basic Register Allocation Idea

Value in dead temporary not needed for
rest of the computation

Dead temporary can be reused

Basic rule: 
Temporaries t1 and t2 can share same register
if at any point in the program at most one of 
t1 or t2 is live !
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Algorithm: Part I

Compute live variables for each point:
a := b + c
d := -a
e := d + f

f := 2 * e
b := d + e
e := e - 1

b := f + c

{b}

{c,e}

{b}

{c,f} {c,f}

{b,c,e,f}

{c,d,e,f}

{b,c,f}

{c,d,f}
{a,c,f}
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Register Interference Graph

Two temporaries live simultaneously
Cannot be allocated in the same register

Construct register interference graph
Node for each temporary
Undirected edge between t1 and t2

If live simultaneously at some point in the program

Two temporaries can be allocated to same register
if no edge connects them
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Register Interference Graph: 
Example

For our example:
a

f

e

d

c

b

b and c cannot be in the same register
b and d can be in the same register

{b,c,f}
{a,c,f}
{c,d,f}
{c,d,e,f}
{c,e}
{b,c,e,f}
{c,f}
{b}
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Register Interference Graph:
Properties

Extracts exactly the information needed to 
characterize legal register assignments
Gives global picture of register requirements

Over the entire flow graph
After RIG construction, register allocation is 
architecture-independent

Add additional edges in RIG to encode architectural 
intricacies

Now what do we do with this graph?
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Graph Coloring

Graph coloring:
assignment of colors to nodes

Nodes connected by edge have different colors
Equivalently: no adjacent nodes have same 
color

Graph k-colorable =
can be colored with k colors
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Register Allocation
Through Graph Coloring

In our problem, colors = registers
We need to assign colors (registers) to graph 
nodes (temporaries)
Let k = number of machine registers

If the RIG is k-colorable, there’s a register 
assignment that uses no more than k 
registers
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Graph Coloring Example

Consider the example RIG
a

f

e

d

c

b

There is no coloring with fewer than 4 colors
There are 4-colorings of this graph

r4

r1

r2

r3

r2

r3
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Graph Coloring Example, 
Continued

Under this coloring the code becomes:
r2 := r3 + r4
r3 := -r2
r2 := r3 + r1

r1 := 2 * r2

r3 := r3 + r2

r2 := r2 - 1

r3 := r1 + r4
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Computing Graph Colorings

How do we compute coloring for 
interference graph?

NP-hard!
For given # of registers,
coloring may not exist

Solution
Use heuristics (here, Briggs)
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Graph Coloring Heuristic

Observation: “degree < k rule”
Reduce graph:

Pick node t with < k neighbors in RIG
Eliminate t and its edges from RIG

If the resulting graph has k-coloring,
so does the original graph

Why?
Let c1,…,cn be colors assigned to neighbors of t in 
reduced graph
Since n < k, we can pick some color for t different from 
those of its neighbors
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Graph Coloring Heuristic,
Continued

Heuristic:
Pick node t with fewer than k neighbors
Put t on a stack and remove it from the RIG
Repeat until the graph has one node

Start assigning colors to nodes on the stack 
(starting with the last node added)

At each step, pick color different from those 
assigned to already-colored neighbors
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Graph Coloring Example (1)

Remove a and then d

a

f

e

d

c

b
Stack: {} 

Start with the RIG and with k = 4:
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Graph Coloring Example (2)

Now all nodes have fewer than 4 neighbors and 
can be removed: c, b, e, f

f

e c

b
Stack: {d, a} 
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Graph Coloring Example (2)

Start assigning colors to: f, e, b, c, d, a

b
a

e c r4

fr1

r2

r3

r2

r3

d
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What if the Heuristic Fails?

What if during simplification we get to a 
state where all nodes have k or more 
neighbors ?
Example: try to find a 3-coloring of the RIG:

a

f

e

d

c

b
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What if the Heuristic Fails?

Remove a and get stuck (as shown below)
Pick a node as a candidate for spilling
Assume that f is picked

f

e

d

c

b
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What if the Heuristic Fails?

Remove f and continue the simplification
Simplification now succeeds: b, d, e, c

e

d

c

b

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST  • MHERST  • Department of Computer ScienceDepartment of Computer Science 27

What if the Heuristic Fails?

During assignment phase, we get to the point when 
we have to assign a color to f
Hope: among the 4 neighbors of f,
we use less than 3 colors ⇒ optimistic coloring

f

e

d

c

b r3

r1r2

r3

?
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Spilling

Optimistic coloring failed ⇒ must spill temporary f
Allocate memory location as home of f

Typically in current stack frame 
Call this address fa

Before each operation that uses f, insert
f := load fa

After each operation that defines f, insert
store f, fa
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Spilling Example

New code after spilling f
a := b + c
d := -a
f := load fa
e := d + f

f := 2 * e
store f, fa

b := d + e
e := e - 1

f := load fa
b := f + c
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Recomputing Liveness Information

New liveness information after spilling:
a := b + c
d := -a
f := load fa
e := d + f

f := 2 * e
store f, fa

b := d + e
e := e - 1

f := load fa
b := f + c

{b}

{c,e}

{b}

{c,f}
{c,f}

{b,c,e,f}

{c,d,e,f}

{b,c,f}
{c,d,f}
{a,c,f}

{c,d,f}

{c,f}

{c,f}
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Recomputing Liveness Information

New liveness info almost as before, but:
f is live only

Between f := load fa and the next instruction
Between store f, fa and the preceding 
instruction

Spilling reduces the live range of f
Reduces its interferences
Results in fewer neighbors in RIG for f
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Recompute RIG After Spilling

Remove some edges of spilled node
Here, f still interferes only with c and d

Resulting RIG is 3-colorable

a

f

e

d

c

b
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Spilling, Continued

Additional spills might be required before 
coloring is found

Tricky part: deciding what to spill
Possible heuristics:

Spill temporaries with most conflicts
Spill temporaries with few definitions and uses
Avoid spilling in inner loops

All are “correct”
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Conclusion

Register allocation: “must have” 
optimization in most compilers:

Intermediate code uses too many temporaries
Makes a big difference in performance 

Graph coloring:
Powerful register allocation scheme

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST  • MHERST  • Department of Computer ScienceDepartment of Computer Science 35

Next Time

Scheduling
Read ACDI Chapter 17


