
1

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST • MHERST • Department of Computer ScienceDepartment of Computer Science

Emery Berger
University of Massachusetts, Amherst

Advanced Compilers
CMPSCI 710
Spring 2003

Register Allocation

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST • MHERST • Department of Computer ScienceDepartment of Computer Science 2

The Memory Hierarchy

Higher = smaller, faster, closer to CPU
A real desktop machine (mine)

registers

L1 cache

L2 cache

RAM

Disk

8 integer, 8 floating-point; 1-cycle latency

8K data & instructions; 2-cycle latency

512K; 7-cycle latency

1GB; 100 cycle latency

40 GB; 38,000,000 cycle latency (!)

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST • MHERST • Department of Computer ScienceDepartment of Computer Science 3

Managing the Memory Hierarchy

Programmer view: only two levels of memory
Main memory (stores & loads)
Disk (file I/O)

Two things maintain this abstraction:
Hardware

Moves data between memory and caches
Compiler

Moves data between memory and registers

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST • MHERST • Department of Computer ScienceDepartment of Computer Science 4

Overview

Introduction
Register Allocation

Definition
History
Interference graphs
Graph coloring
Register spilling

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST • MHERST • Department of Computer ScienceDepartment of Computer Science 5

Register Allocation: Definition

Register allocation assigns registers to values
Candidate values:

Variables
Temporaries
Large constants

When needed, spill registers to memory

Important low-level optimization
Registers are 2x – 7x faster than cache

Judicious use ⇒ big performance improvements

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST • MHERST • Department of Computer ScienceDepartment of Computer Science 6

Register Allocation: Complications

Explicit names
Unlike all other levels of hierarchy

Scarce
Small register files (set of all registers)
Some reserved by operating system

e.g., “BP”, “SP”…

Complicated
Weird constraints, esp. on CISC architectures
Special registers: zero-load

2

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST • MHERST • Department of Computer ScienceDepartment of Computer Science 7

History

As old as intermediate code
Used in the original FORTRAN compiler (1950’s)
Very crude algorithms

No breakthroughs until 1981!
Chaitin invented register allocation scheme based on
graph coloring

Equivalence first noted by Cocke et al., 1971
Simple heuristic, works well in practice

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST • MHERST • Department of Computer ScienceDepartment of Computer Science 8

Register Allocation Example

Consider this program with six variables:
a := c + d
e := a + b
f := e - 1

with the assumption that a and e die after use
Temporary a can be “reused” after e := a + b
Same with temporary e

Can allocate a, e, and f all to one register (r1):
r1 := r2 + r3
r1 := r1 + r4
r1 := r1 - 1

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST • MHERST • Department of Computer ScienceDepartment of Computer Science 9

Basic Register Allocation Idea

Value in dead temporary not needed for
rest of the computation

Dead temporary can be reused

Basic rule:
Temporaries t1 and t2 can share same register
if at any point in the program at most one of
t1 or t2 is live !

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST • MHERST • Department of Computer ScienceDepartment of Computer Science 10

Algorithm: Part I

Compute live variables for each point:
a := b + c
d := -a
e := d + f

f := 2 * e
b := d + e
e := e - 1

b := f + c

{b}

{c,e}

{b}

{c,f} {c,f}

{b,c,e,f}

{c,d,e,f}

{b,c,f}

{c,d,f}
{a,c,f}

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST • MHERST • Department of Computer ScienceDepartment of Computer Science 11

Register Interference Graph

Two temporaries live simultaneously
Cannot be allocated in the same register

Construct register interference graph
Node for each temporary
Undirected edge between t1 and t2

If live simultaneously at some point in the program

Two temporaries can be allocated to same register
if no edge connects them

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST • MHERST • Department of Computer ScienceDepartment of Computer Science 12

Register Interference Graph:
Example

For our example:
a

f

e

d

c

b

b and c cannot be in the same register
b and d can be in the same register

{b,c,f}
{a,c,f}
{c,d,f}
{c,d,e,f}
{c,e}
{b,c,e,f}
{c,f}
{b}

3

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST • MHERST • Department of Computer ScienceDepartment of Computer Science 13

Register Interference Graph:
Properties

Extracts exactly the information needed to
characterize legal register assignments
Gives global picture of register requirements

Over the entire flow graph
After RIG construction, register allocation is
architecture-independent

Add additional edges in RIG to encode architectural
intricacies

Now what do we do with this graph?
UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST • MHERST • Department of Computer ScienceDepartment of Computer Science 14

Graph Coloring

Graph coloring:
assignment of colors to nodes

Nodes connected by edge have different colors
Equivalently: no adjacent nodes have same
color

Graph k-colorable =
can be colored with k colors

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST • MHERST • Department of Computer ScienceDepartment of Computer Science 15

Register Allocation
Through Graph Coloring

In our problem, colors = registers
We need to assign colors (registers) to graph
nodes (temporaries)
Let k = number of machine registers

If the RIG is k-colorable, there’s a register
assignment that uses no more than k
registers

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST • MHERST • Department of Computer ScienceDepartment of Computer Science 16

Graph Coloring Example

Consider the example RIG
a

f

e

d

c

b

There is no coloring with fewer than 4 colors
There are 4-colorings of this graph

r4

r1

r2

r3

r2

r3

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST • MHERST • Department of Computer ScienceDepartment of Computer Science 17

Graph Coloring Example,
Continued

Under this coloring the code becomes:
r2 := r3 + r4
r3 := -r2
r2 := r3 + r1

r1 := 2 * r2

r3 := r3 + r2

r2 := r2 - 1

r3 := r1 + r4

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST • MHERST • Department of Computer ScienceDepartment of Computer Science 18

Computing Graph Colorings

How do we compute coloring for
interference graph?

NP-hard!
For given # of registers,
coloring may not exist

Solution
Use heuristics (here, Briggs)

4

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST • MHERST • Department of Computer ScienceDepartment of Computer Science 19

Graph Coloring Heuristic

Observation: “degree < k rule”
Reduce graph:

Pick node t with < k neighbors in RIG
Eliminate t and its edges from RIG

If the resulting graph has k-coloring,
so does the original graph

Why?
Let c1,…,cn be colors assigned to neighbors of t in
reduced graph
Since n < k, we can pick some color for t different from
those of its neighbors

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST • MHERST • Department of Computer ScienceDepartment of Computer Science 20

Graph Coloring Heuristic,
Continued

Heuristic:
Pick node t with fewer than k neighbors
Put t on a stack and remove it from the RIG
Repeat until the graph has one node

Start assigning colors to nodes on the stack
(starting with the last node added)

At each step, pick color different from those
assigned to already-colored neighbors

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST • MHERST • Department of Computer ScienceDepartment of Computer Science 21

Graph Coloring Example (1)

Remove a and then d

a

f

e

d

c

b
Stack: {}

Start with the RIG and with k = 4:

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST • MHERST • Department of Computer ScienceDepartment of Computer Science 22

Graph Coloring Example (2)

Now all nodes have fewer than 4 neighbors and
can be removed: c, b, e, f

f

e c

b
Stack: {d, a}

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST • MHERST • Department of Computer ScienceDepartment of Computer Science 23

Graph Coloring Example (2)

Start assigning colors to: f, e, b, c, d, a

b
a

e c r4

fr1

r2

r3

r2

r3

d

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST • MHERST • Department of Computer ScienceDepartment of Computer Science 24

What if the Heuristic Fails?

What if during simplification we get to a
state where all nodes have k or more
neighbors ?
Example: try to find a 3-coloring of the RIG:

a

f

e

d

c

b

5

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST • MHERST • Department of Computer ScienceDepartment of Computer Science 25

What if the Heuristic Fails?

Remove a and get stuck (as shown below)
Pick a node as a candidate for spilling
Assume that f is picked

f

e

d

c

b

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST • MHERST • Department of Computer ScienceDepartment of Computer Science 26

What if the Heuristic Fails?

Remove f and continue the simplification
Simplification now succeeds: b, d, e, c

e

d

c

b

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST • MHERST • Department of Computer ScienceDepartment of Computer Science 27

What if the Heuristic Fails?

During assignment phase, we get to the point when
we have to assign a color to f
Hope: among the 4 neighbors of f,
we use less than 3 colors ⇒ optimistic coloring

f

e

d

c

b r3

r1r2

r3

?

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST • MHERST • Department of Computer ScienceDepartment of Computer Science 28

Spilling

Optimistic coloring failed ⇒ must spill temporary f
Allocate memory location as home of f

Typically in current stack frame
Call this address fa

Before each operation that uses f, insert
f := load fa

After each operation that defines f, insert
store f, fa

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST • MHERST • Department of Computer ScienceDepartment of Computer Science 29

Spilling Example

New code after spilling f
a := b + c
d := -a
f := load fa
e := d + f

f := 2 * e
store f, fa

b := d + e
e := e - 1

f := load fa
b := f + c

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST • MHERST • Department of Computer ScienceDepartment of Computer Science 30

Recomputing Liveness Information

New liveness information after spilling:
a := b + c
d := -a
f := load fa
e := d + f

f := 2 * e
store f, fa

b := d + e
e := e - 1

f := load fa
b := f + c

{b}

{c,e}

{b}

{c,f}
{c,f}

{b,c,e,f}

{c,d,e,f}

{b,c,f}
{c,d,f}
{a,c,f}

{c,d,f}

{c,f}

{c,f}

6

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST • MHERST • Department of Computer ScienceDepartment of Computer Science 31

Recomputing Liveness Information

New liveness info almost as before, but:
f is live only

Between f := load fa and the next instruction
Between store f, fa and the preceding
instruction

Spilling reduces the live range of f
Reduces its interferences
Results in fewer neighbors in RIG for f

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST • MHERST • Department of Computer ScienceDepartment of Computer Science 32

Recompute RIG After Spilling

Remove some edges of spilled node
Here, f still interferes only with c and d

Resulting RIG is 3-colorable

a

f

e

d

c

b

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST • MHERST • Department of Computer ScienceDepartment of Computer Science 33

Spilling, Continued

Additional spills might be required before
coloring is found

Tricky part: deciding what to spill
Possible heuristics:

Spill temporaries with most conflicts
Spill temporaries with few definitions and uses
Avoid spilling in inner loops

All are “correct”

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST • MHERST • Department of Computer ScienceDepartment of Computer Science 34

Conclusion

Register allocation: “must have”
optimization in most compilers:

Intermediate code uses too many temporaries
Makes a big difference in performance

Graph coloring:
Powerful register allocation scheme

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST • MHERST • Department of Computer ScienceDepartment of Computer Science 35

Next Time

Scheduling
Read ACDI Chapter 17

