
Quantifying the Performance of
Garbage Collection vs.

Explicit Memory Management

Matthew Hertz
Canisius College

Emery Berger
University of Massachusetts Amherst

Quantifying the Performance of GC vs. Explicit Memory ManagementQuantifying the Performance of GC vs. Explicit Memory Management

Explicit Memory Management

malloc / new
allocates space for an object

free / delete
returns memory to system

Simple, but tricky to get right
Forget to free memory leak
free too soon “dangling pointer”

Quantifying the Performance of GC vs. Explicit Memory ManagementQuantifying the Performance of GC vs. Explicit Memory Management

Dangling Pointers

Node x = new Node (“happy”);
Node ptr = x;
delete x; // But I’m not dead yet!
Node y = new Node (“sad”);
cout << ptr->data << endl; // sad

Node x = new Node (“happy”);
Node ptr = x;
delete x; // But I’m not dead yet!
Node y = new Node (“sad”);
cout << ptr->data << endl; // sad

Insidious, hard-to-track down bugs

Quantifying the Performance of GC vs. Explicit Memory ManagementQuantifying the Performance of GC vs. Explicit Memory Management

Solution: Garbage Collection

No need to call free
Garbage collector periodically scans
objects on heap
Reclaims unreachable objects

Won’t reclaim objects until it can prove
object will not be used again

Quantifying the Performance of GC vs. Explicit Memory ManagementQuantifying the Performance of GC vs. Explicit Memory Management

No More Dangling Pointers

Node x = new Node (“happy”);
Node ptr = x;
// x still live (reachable through ptr)
Node y = new Node (“sad”);
cout << ptr->data << endl; // happy! ☺

Node x = new Node (“happy”);
Node ptr = x;
// x still live (reachable through ptr)
Node y = new Node (“sad”);
cout << ptr->data << endl; // happy! ☺

So why not use GC
all the time?

Quantifying the Performance of GC vs. Explicit Memory ManagementQuantifying the Performance of GC vs. Explicit Memory Management

Conventional Wisdom

“GC worse than malloc, because…”
Extra processing (collection)
Poor cache performance (ibid)
Bad page locality (ibid)
Increased footprint (delayed reclamation)

Quantifying the Performance of GC vs. Explicit Memory ManagementQuantifying the Performance of GC vs. Explicit Memory Management

Conventional Wisdom

“GC improves performance, by…”
Quicker allocation
(fast path inlining & bump pointer alloc.)
Better cache performance
(object reordering)
Improved page locality
(heap compaction)

Quantifying the Performance of GC vs. Explicit Memory ManagementQuantifying the Performance of GC vs. Explicit Memory Management

Outline

Motivation
Quantifying GC performance

A hard problem

Oracular memory management
Selecting & generating the Oracles

Experimental methodology
Results

Quantifying the Performance of GC vs. Explicit Memory ManagementQuantifying the Performance of GC vs. Explicit Memory Management

Quantifying GC Performance

Apples-to-apples comparison
Examine unaltered applications
Runs differ only in memory manager

Examine impact on time & space

Quantifying the Performance of GC vs. Explicit Memory ManagementQuantifying the Performance of GC vs. Explicit Memory Management

Quantifying GC Performance

Evaluate state-of-art algorithms
Garbage collectors

Generational collectors
Copying collectors

Standard for Java, not compatible with C/C++

Explicit memory managers
Fast, single-threaded allocators

Quantifying the Performance of GC vs. Explicit Memory ManagementQuantifying the Performance of GC vs. Explicit Memory Management

Comparing Memory Managers

BDW
Collector

Node v = malloc(sizeof(Node));
v->data= malloc(sizeof(NodeData));
memcpy(v->data, old->data,

sizeof(NodeData));
free(old->data);
v->next = old->next;
v->next->prev = v;
v->prev = old->prev;
v->prev->next = v;
free(old);

Using GC in C/C++ is easy:

Quantifying the Performance of GC vs. Explicit Memory ManagementQuantifying the Performance of GC vs. Explicit Memory Management

Comparing Memory Managers

BDW
Collector

Node v = malloc(sizeof(Node));
v->data= malloc(sizeof(NodeData));
memcpy(v->data, old->data,

sizeof(NodeData));
free(old->data);
v->next = old->next;
v->next->prev = v;
v->prev = old->prev;
v->prev->next = v;
free(old);

…ignore calls to free.

Quantifying the Performance of GC vs. Explicit Memory ManagementQuantifying the Performance of GC vs. Explicit Memory Management

Comparing Memory Managers

Lea
Allocator

Node node = new Node();
node.data = new NodeData();
useNode(node);
node = null;
...
node = new Node();
...
node.data = new NodeData();
...

Adding malloc/free to Java: not easy…

Quantifying the Performance of GC vs. Explicit Memory ManagementQuantifying the Performance of GC vs. Explicit Memory Management

Comparing Memory Managers

Lea
Allocator

Node node = new Node();
node.data = new NodeData();
useNode(node);
node = null;
...
node = new Node();
...
node.data = new NodeData();
...

... where should free be inserted?

free(node.data)?

free(node)?

Quantifying the Performance of GC vs. Explicit Memory ManagementQuantifying the Performance of GC vs. Explicit Memory Management

Inserting Free Calls

Do not know where programmer
would call free

Hints provided from null-ing pointers
Restructure code to avoid memory leaks?

Tests programming skills, not memory
manager

Want unaltered applications

Quantifying the Performance of GC vs. Explicit Memory ManagementQuantifying the Performance of GC vs. Explicit Memory Management

Oracular Memory Manager

Java

Simulator

C malloc/free

perform actions at
no cost below here

execute program here

allocation

Oracle

Consult oracle to place free calls
Oracle does not disrupt hardware state
Simulator inserts free…

Quantifying the Performance of GC vs. Explicit Memory ManagementQuantifying the Performance of GC vs. Explicit Memory Management

Object Lifetime & Oracle Placement

Oracles bracket placement of frees
Lifetime-based: most aggressive
Reachability-based: most conservative

unreachable

live dead

reachable

freed by
lifetime-based
oracle

freed by
reachability-based

oracle
can be collectedfree(obj)

obj =
new Object;

obj =
new Object;

can be freed

free(obj) free(??)

Quantifying the Performance of GC vs. Explicit Memory ManagementQuantifying the Performance of GC vs. Explicit Memory Management

Reachability Oracle Generation

Java

PowerPC
Simulator

C malloc/free

perform actions at
no cost below here

execute program here

trace
file

allocations,
ptr updates,
prog roots

Merlin
analysis

Illegal instructions mark heap events
Simulated identically to legal instructions

Oracle

Quantifying the Performance of GC vs. Explicit Memory ManagementQuantifying the Performance of GC vs. Explicit Memory Management

Liveness Oracle Generation

Java

PowerPC
Simulator

C malloc/free

perform actions at
no cost below here

execute program here

trace
file

allocations,
mem access,
prog roots

Post-
process

Record allocations, memory accesses
Preserve code, type objects, etc.
May use objects without accessing them

Oracle

Quantifying the Performance of GC vs. Explicit Memory ManagementQuantifying the Performance of GC vs. Explicit Memory Management

Liveness Oracle Generation

Java

PowerPC
Simulator

C malloc/free

perform actions at
no cost below here

execute program here

trace
file

allocation,
mem access,
prog. roots

Post-
process

Record allocations, memory accesses
Preserve code, type objects, etc.
May use objects without accessing them

Oracle

if (f.x == y) { … }

uses address of f.x,
but may not touch f.x or f

Quantifying the Performance of GC vs. Explicit Memory ManagementQuantifying the Performance of GC vs. Explicit Memory Management

Oracular Memory Manager

Java

PowerPC
Simulator

C malloc/free

perform actions at
no cost below here

execute program here

oracle

allocation

Consult oracle before each allocation
When needed, modify instructions to call free
Extra costs hidden by simulator

Quantifying the Performance of GC vs. Explicit Memory ManagementQuantifying the Performance of GC vs. Explicit Memory Management

Experimental Methodology

Java platform:
MMTk/Jikes RVM(2.3.2)

Simulator:
Dynamic SimpleScalar (DSS)
Simulates 2GHz PowerPC processor

G5 cache configuration

Quantifying the Performance of GC vs. Explicit Memory ManagementQuantifying the Performance of GC vs. Explicit Memory Management

Experimental Methodology

Garbage collectors:
GenMS, GenCopy, GenRC, SemiSpace, CopyMS,
MarkSweep

Explicit memory managers:
Lea, MSExplicit (MS + explicit deallocation)

Quantifying the Performance of GC vs. Explicit Memory ManagementQuantifying the Performance of GC vs. Explicit Memory Management

Experimental Methodology

Perfectly repeatable runs
Pseudoadaptive compiler

Same sequence of optimizations
Advice generated from mean of 5 runs

Deterministic thread switching
Deterministic system clock
Use “illegal” instructions in all runs

Quantifying the Performance of GC vs. Explicit Memory ManagementQuantifying the Performance of GC vs. Explicit Memory Management

Execution Time for pseudoJBB

GC performance can be competitive

Quantifying the Performance of GC vs. Explicit Memory ManagementQuantifying the Performance of GC vs. Explicit Memory Management

0%

100%

200%

300%

400%

500%

600%

700%

800%

Lea w/ Reach Lea w/ Li f e MSExpl ici t
w/ Reach

Kingsley GenMS GenCopy CopyMS SemiSpace Mar kSweep

Footprint at Quickest Run

GC uses much more memory

Quantifying the Performance of GC vs. Explicit Memory ManagementQuantifying the Performance of GC vs. Explicit Memory Management

0%

100%

200%

300%

400%

500%

600%

700%

800%

Lea w/ Reach Lea w/ Li f e MSExpl ici t
w/ Reach

Kingsley GenMS GenCopy CopyMS SemiSpace Mar kSweep

Footprint at Quickest Run

GC uses much more memory

1.00
1.38 1.61

5.10
5.66

4.84

7.69
7.09

0.63

Quantifying the Performance of GC vs. Explicit Memory ManagementQuantifying the Performance of GC vs. Explicit Memory Management

Avg. Relative Cycles and Footprint

GC trades space for time

Quantifying the Performance of GC vs. Explicit Memory ManagementQuantifying the Performance of GC vs. Explicit Memory Management

Javac Paging Performance

Much slower in limited physical RAM

Quantifying the Performance of GC vs. Explicit Memory ManagementQuantifying the Performance of GC vs. Explicit Memory Management

pseudoJBB Paging Performance

Lifetime analysis adds little

Quantifying the Performance of GC vs. Explicit Memory ManagementQuantifying the Performance of GC vs. Explicit Memory Management

Summary of Results

Best collector equals Lea's
performance…

Up to 10% faster on some benchmarks

... but uses more memory
Quickest runs use 5x or more memory
At least twice mean footprint

Quantifying the Performance of GC vs. Explicit Memory ManagementQuantifying the Performance of GC vs. Explicit Memory Management

Take-home: Practitioners

GC ok if:
system has more than 3x needed RAM,
and no competition with other processes

GC not so good if:
Limited RAM
Competition for physical memory
Relies upon RAM for performance

In-memory database
Search engines, etc.

Quantifying the Performance of GC vs. Explicit Memory ManagementQuantifying the Performance of GC vs. Explicit Memory Management

Take-home: Researchers

GC performance already good enough
with enough RAM
Problems:

Paging is a killer
Performance suffers when RAM limited

Quantifying the Performance of GC vs. Explicit Memory ManagementQuantifying the Performance of GC vs. Explicit Memory Management

Future Work

Obvious dimensions
Other collectors:

Bookmarking collector [PLDI 05]
Parallel collectors

Other allocators:
New version of DLmalloc (2.8.2)
VAM [ISMM 05]

Other architectures:
Examine impact of cache size

Quantifying the Performance of GC vs. Explicit Memory ManagementQuantifying the Performance of GC vs. Explicit Memory Management

Future Work

Other memory management methods
Regions, reaps

Quantifying the Performance of GC vs. Explicit Memory ManagementQuantifying the Performance of GC vs. Explicit Memory Management

Conclusion

Code available at:
http://www-cs.canisius.edu/~hertzm

