
Scalable Load Distribution and Load Balancing for
Dynamic Parallel Programs

E. Berger and J. C. Browne
Department of Computer Science

University of Texas at Austin
Austin, Texas 78701 USA
01-512-471-{9734,9579}

{emery,browne}@cs.utexas.edu

ABSTRACT
This paper reports design and preliminary evaluation
of an integrated load distribution-load balancing
algorithm which was targeted to be both efficient and
scalable for dynamically structured computations. The
computation is represented as a dynamic hierarchical
dependence graph. Each node of the graph may be a
subgraph or a computation and the number of
instances of each node is dynamically determined at
runtime. The algorithm combines an initial
partitioning of the graph with application of
randomized work stealing on the basis of subgraphs to
refine imbalances in the initial partitioning and
balance the additional computational work generated
by runtime instantiation of subgraphs and nodes.
Dynamic computations are modeled by an artificial
program (k-nary) where the amount of parallelism is
parameterized. Experiments on IBM SP2s suggest
that the load balancing algorithm is efficient and
scalable for parallelism up to 10,000 parallel threads
for closely coupled distributed memory architectures.

Keywords scalable, load distribution, load
balancing, work stealing

1. INTRODUCTION
The motivation for this research is the emergence of
dynamically structured computations executing on
dynamic parallel and distributed resource sets.
Maintenance of a "good" balance of work across
processing elements is essential for such
computational systems.

The parallel programs most in need of effective load
distribution and load balancing (LD/LB) are those
which are both large and dynamically structured.
LD/LB is often rendered even more difficult by the
constraints on moving of units of computation created
by the large volumes of data often associated with the
units of computation. Scalability of LD/LB algorithms
have received relatively little attention.

Little attention has been paid to combining load
distribution and load balancing for parallel programs
which dynamically create and delete units of
computation during execution.

This paper proposes a load distribution/load balancing
(LD/LB) algorithm which combines an initial static
graph partitioning with dynamic thread level workload
distribution by the “work stealing” algorithm [3,4].
Work stealing is attractive as a dynamic scheduling
algorithm since it can be shown to be optimal under
plausible circumstances and because it admits
derivation of bounding values for important problem
parameters. This study, while it is ultimately
experimental, is based on theoretical models of the
variants of work stealing which we use.

We describe several methods of load distribution
based on simple (non-optimal) but plausible graph
partitioning and analyze the effect of combining these
methods with work-stealing. We show that integration
of work-stealing with load distribution improves
performance, and that by combining work-stealing
with a load distribution algorithm which utilizes
information on data locality in the graph, we get the
best performance improvement. It is further shown
that the algorithm scales according to the definition of
scalability given following.
Load Distribution – A load distribution is an
assignment of work to a set of processing elements.

Load Balancing – Load balancing is the process of
transferring units of work among processing elements
during execution to maintain balance across
processing elements.

Scalability - A scalable LD/LB Algorithm must be
both efficient in execution and must attainment load
balance for high degrees of parallelism and large
numbers of processing units. Let n be the number of
units of computation which are to be executed during
the execution of the total computation. Let p be the
number of processors over which the units of
computation are to be distributed. Scalability efficient
implies that the total time taken to execute the LD/LB
method should be negligible for small values of n and
should grow no faster than O(p) for large values of n
and p. Scalability effective implies that the degree of
load balance attained should be independent of n and
p.

2. ALGORITHM DEFINITION
2.1 Overview
The most commonly used load distribution algorithms
are based on graph partitioning algorithms
[references]. We adopt the representation of
computations as directed acyclic graphs (dags) where
arcs represent dependencies (serial and parallel) and
nodes represent computations.
Let w be the total amount of computation, or work in
the dag. Let d be the depth of the dag (the critical
path of the computation). Then w corresponds to the
runtime for a serial execution of the program, while d
is the runtime on an infinite-processor machine.
Let s (=speedup) be the runtime for a serial execution
divided by the runtime for a parallel execution. Then
the maximum s for p processors maxs(p) = w/(w/p +
d) (It’s not possible to do better than to do all of the
work in parallel and then add the critical path). Let
degree of parallelism be the maximum exploitable
parallelism in a given computation. This corresponds
to the maximum possible speedup on an infinite
number of processors (maxs()) = w/d.

The central result of [3,4] states that for any dag, if
work-stealing is used to schedule computations, the
expected runtime on p processors T_p = w/p +
{O}(d). However, this result ignores the problem of
load distribution, that is, the mapping of processes to
processors. While the Cilk model of [4] allows
computations to be executed on any processor, for
many high-performance codes, processes must be
more or less permanently assigned to processors
because they rely on large amounts of data that would
be expensive to move.

We describe several methods of load distribution
based on simple (non-optimal) but plausible graph
partitioning and analyze the effect of combining these
methods with work-stealing. We show that integration
of work-stealing with load distribution improves
performance, and that by combining work-stealing
with a load distribution algorithm which utilizes
information on data locality in the graph, we get the
best performance improvement. It is further suggested
that the algorithm scales according to the definition of
scalability given preceding.

2.2 Program Representation
Effective load distribution algorithms for the class of
computations of concern here must include
consideration of data access patterns. The
representation of the program which is used as the
basis for partitioning is a dynamic, hierarchical
structured dependence or data flow graph. The
program representation we have chosen is the CODE
[2,7] graph-oriented parallel programming language.
A program can be constructed via a graphical user
interface by placing nodes representing computations
(typically calls to C or C++ functions) or subgraphs (a
basic node is a degenerate case of a subgraph) and
connecting them with arcs which represent both data

and control flow. A CODE program is referred to as a
graph. A graph may contain any number of nodes,
each corresponding to a subgraph or an alias to a
subgraph (thereby permitting recursion). CODE nodes
contain firing rules that determine when the node is
ready to be executed, the computation to be executed,
and routing rules that determine where data should be
sent after the computation. They may also contain
static (i.e., persistent) variables and automatic
variables. CODE graphs are dynamic}: new nodes and
subgraphs may be created at runtime (each
instantiation of a new object has one or more indices
associated with it).

 The CODE model of computation is general and
architecture-neutral. Programs written in CODE may
be compiled for execution on shared-memory
multiprocessors (SMP’s), distributed-memory (DMPs)
or cluster architecture multiprocessors. The problem
is providing an efficient and scalable mechanism for
executing CODE programs on DMP’s and on clusters.

2.3 Load Distribution Algorithms
Because CODE graphs are dynamic, instantiations of
graphs and computation nodes occur at runtime and it
is not known at compile-time how many objects will
be created: placement of these objects must be
managed at runtime.

2.3.1 Load Distribution at the Node Level
Vokkarne [11] describes an initial distributed version
of CODE which maps objects to processors after the
manner of the early versions of the widely used PVM
[6] distributed programming environment. We use
this mode of initial distribution as a basis for
discussion of the issues in partitioning graphs of
dynamic programs where the nodes may have
substantial data associated with them. Each object has
a path, defined as the list of graphs (with their indices)
which contain the object plus the object name and its
indices. The path sum is defined as the sum of the
indices along the path plus the unique identifiers of
every object. The object (i.e., execution and storage
associated with the object) is placed on processor
number (path sum/mod(N)), where N is the total
number of processors and processors are indexed {0
…N-1}. The algorithm we used is different in a small
but important way. The "path sum" is defined as the
product of the indices. This is important for
scalability since mod(N) of the original path sum will
generate substantial variations in workload for large
numbers of processors.

This algorithm which we subsequently refer to as
node-level mapping has possibly serious flaws for
graphs with substantial communication among nodes:
(i) It destroys locality. Objects are dispersed across all
processors, and no attempt is made to ensure that
objects which are ``close together'' (e.g., in the same
graph) are kept together. Opportunities for avoiding
unnecessary communication are not exploited and in
fact are almost inevitably discarded. This is only

acceptable if communication is very small compared
to computation.
(ii) It makes load balancing difficult. Since objects
have a fixed processor assignment, it is not possible to
balance the computational load among processors by
moving computations.
(iii) Additionally, in the original formulation, the same
nodes in recursive graphs would end up mapped to the
same processor. This problem can be readily fixed.
Since this failure can occur whenever the unique ID
and the number of processors are not relatively prime,
it can be solved by requiring unique ID’s to be prime
numbers larger than the pre-defined maximum number
of processors. In the experiments, this modification
has been made to the node-level mapping algorithm.

2.3.2 Load Distribution at the Graph Level
To avoid unnecessary communication, we also
distinguish two types of computation nodes: static and
stateless nodes. A static node has state that must be
persistent. A node is static iff it has any static
variables declared or if any firing rule depends on two
or more inputs simultaneously (therefore, it must have
a home processor). Stateless nodes may be executed
on any processor -- they are analogous to pure
function calls.

To avoid destroying locality, we change the mapping
algorithm so that only subgraphs are distributed. All
nodes inside a subgraph will be mapped onto the same
processor; the subgraphs (with their nodes) will be
distributed randomly across all processors using the
path sum algorithm described above (this is equivalent
to computing the path sum by omitting the object’s
name and indices when the object is not a subgraph).
This has the important effect of limiting
communication to inter-graph arcs.

The major drawback to the graph-level mapping
algorithm described above is that if there is a high
degree of parallelism within a single graph, this
parallelism will not be exploited. Intuitively, it seems
that a load balancing scheme would help.

2.4 Work Stealing Model
To address load imbalance, we augment the placement
algorithm with work stealing. Work-stealing, as
mentioned above, is a provably optimal load-
balancing mechanism [3] It functions as follows: when
a processor is idle, it sends out a request for work to
another processor chosen at random. If this processor
is busy, it rejects the request and the idle processor
must try again. However, if the request is accepted, the
idle processor becomes a thief and the busy processor
a victim. Work is stolen from the busy processor’s
work queue and is executed by the thief. The thief
then returns the results of the execution to the victim.

The work-stealing algorithm is slightly altered for
CODE. Every processor gets two work queues: a
heavy queue and a light queue. The heavy queue
contains static nodes while the light queue contains
stateless nodes. Local execution prefers the heavy

queue, while theft prefers the light queue. This is done
to reduce communication costs: while work-stealing a
stateless node just requires a unique identifier for the
node and its inputs, work-stealing a static node also
requires two-way communication of the node’s state.

Further, CODE attempts to first do work-stealing
locally (among other processors on an SMP). If this
fails and no remote work-stealing requests are
outstanding, a remote work-steal request is sent to a
random machine on the network. This machine checks
only one of its processors’ queues for work, and
transmits work if some is found or a work-steal denial
message otherwise.

3. Experimental Evaluation
We first define the experiments and then give a brief
summary of the results from one experiment.

3.1 Experiment Definition
To evaluate the scalability, efficiency, and
architecture-neutrality of this system, we wrote a
CODE version of the knary benchmark [4]. This
benchmark allows the creation of graphs with a wide
range of degrees of parallelism so we can verify
scalability with respect to the degree of parallelism.
The knary(h,d,s) synthetic benchmark grows a tree of
height h and degree d in which for each non-leaf node,
the first s children are generated serially and the
remaining children are generated in parallel. When it
generates a node, the program first executes a fixed
number of iterations of ‘‘work’’ before generating the
children.

Parameters Degree of
Parallelism

Maximum
Speedup for 64
processors

(4,6,0) 64.75 32.18
(3,14,0) 70.33 33.3
(3.16,0) 91 37.57
(3,18,0) 114.33 41.03
(3,20,0) 140.33 43.95
(4,8,0) 146.25 44.52
(4.10,0) 277.75 52.01
(5,6,0) 311 53.07

Table 1 - Parameterization of knary workload

One of the advantages of knary is that it is possible to
analytically solve for the work and critical path, as
well as to place a loose upper bound on achievable
speedup on a given number of processors.
w(h,d,s) = (dh - 1) / (d - 1),
d(h,d,s) = (sh - 1) / (s - 1).
By choosing d and s appropriately, we can vary the
degree of parallelism and thereby test our algorithms
to ensure that as parallelism grows, speedup
approaches the maximum possible speedup. We graph
speedup (w/T_p) versus degree of parallelism
(w(h,d,s) / d(h,d,s)). Table 1 defines the knary
workloads for some of the experiments described
following. The entries in the table are

 (i) parameters = (height, parallel degree, serial
degree).
(ii) Degree of parallelism = work / critical path.
(iii) Maximum speedup = work / (work / 64 + critical
path) { Amdahl’s formula }

3.2 Experimental Results
We have made runs on several different platforms.
The results of interest come largely from the IBM SP2
which is a commonly used platform for large parallel
computations. The SP2 used for the results reported
herein were obtained on 64 processors of a 128
processor configuration at the NSF NPACI
Computation Facility. The metric we report is
speedup on 64 processors. Using the knary
benchmark enables us to estimate the maximum
possible speedup for a given workload on a given
configuration. (Zero time communication is assumed
for the computation of maximum possible speedup.)
Figure 1 gives the speedup for the benchmark
specified by knary cases given in Table 1. There are
several features of interest in Figure 1. The first is that
both load distribution and work stealing are important
in attaining scalable load balancing. The most
important feature is that as the number of threads
(degree of parallelism) grows the speedup attained by
the best load balancing algorithms remain close to the
maximum possible speedup. Bearing in mind that the
maximum possible speedup assumes no
communication time, that there is some
communication cost in the benchmark and that the
runs are being made on 64 processors of a 128
processor machine with the workload on the other 64
processors sharing the switch resource the asymptotic
speedup obtained is quite satisfactory. (The
granularity of the units of computation on this run was
chosen to be large (six seconds) to minimize the
effects of communication costs.) The dip in the
speedup in the range of degree of parallelism of 100-
150 is due to the large granularity of the computations.
Recall that CODE uses run-to-completion scheduling
for computation nodes. Therefore the 6 second
granularity combined with a degree of parallelism
close to the number of processors means that work
steals are delayed so that some processors cannot
obtain work. This anomaly will be corrected by
separating communication management and
computation into separate threads. Additional
experiments will be made with this extended version
of CODE. The mapping strategies we studied include
node-mapping (where nodes are mapped across
processors using their path hash function), graph
mapping (where graphs and all nodes within them are
mapped), and a variant of graph-mapping where non-
static computation nodes are always mapped locally,
that is, to any processor that wants to execute it.

The results shown indicate that work-stealing plus
graph-mapping provides the best speedup for high
degrees of parallelism. The non-work-stealing runs are
virtually indistinguishable, and perform substantially
worse, as expected. It is clear that work-stealing in

combination with mappings improves their
performance substantially.

It was somewhat surprising that graph-mapping with
local non-statics performed somewhat more poorly
than graph-mapping alone. We attribute this to the
large grain size. For a smaller granularity of
computation, the savings in communication costs
(required to obtain work via work-stealing) is more
significant than the load imbalance that can result.
With large grain computations (especially because of
latency in message-handling), it is more important to
maintain an effective load balance.

4. Related Work
Space precludes any significant discussion of related
work. The only system described in the literature with
almost all of the above characteristics is Paralex [1].
Paralex is a distributed system that, like CODE, is a
graphical, coarse-grain dataflow programming system.
Paralex, like CODE, performs an initial mapping of
tasks to processors that is subsequently revised by
dynamic load balancing. However, the Paralex model
is a quite restricted model of parallelism: the dataflow
graph must be acyclic (while CODE graphs may be
cyclic and can even support recursion), and the graph
itself is static. Further, the load balancing mechanism
is very restricted: load can only be migrated among
those processors that host the same replicated tasks In
the case when no replication is used, no dynamic load
balancing is performed.

We know of two other systems that are similar to
CODE, in that the schemes they use for mapping are
similar. Feitelson and Rudolph [5] describe a system
that performs partially distributed scheduling. the
intent of their system is different (to enable distributed
gang-scheduling of very coarse-grain tasks), their
mapping scheme is similar to CODE’s, although theirs
is restricted to static task graphs. The other somewhat
similar system is described by Subhlok [8, 9, 10]. It
provides mapping for task and data parallel programs
by generating a static task graph from a source
program and then partitioning the static task graph
among processors. It is a feedback-driven system that
allows refinement of mappings for better load
balancing (using communication and memory
requirements as parameters for mapping), but these
mappings are entirely static.

5. Acknowledgements
This work was supported by DARPA/ITO under
Contract N66001-97-C-8533, End to End
Performance Modeling of Large Heterogeneous
Adaptive Parallel/Distributed Computer and
Communication Systems

6. REFERENCES
[1] Babaoglu, O., et. al.: Parallel Computing in
Networks of Workstations with Paralex. IEEE
Transactions on Parallel and Distributed Systems .
7:4, April 1996, pp. 371-384

0

10

20

30

40

50

60

50 100 150 200 250 300 350

Sp
ee

du
p

Degree of parallelism

Knary - Speedup (64 processors): grain = 6s

Ideal speedup
Work stealing, map graph
Work stealing, map node

Work stealing, map graph, local non-statics
No work stealing, map node

No work stealing, map graph, local non-statics

 Figure 1 - Speedups for knary cases in Table 1 on IBM SP2

[2] Berger, E. The CODE Visual Parallel Programming System,
WWW page. http://www.cs.utexas.edu/users/code.

[3] Blumofe, R. and Leiserson, C.E. Scheduling Multithreaded
Computations by Work Stealing. Proceedings of the 35th
Annual Symposium on Foundations of Computer Science
(FOCS), pages 356-368 (Santa Fe, New Mexico, November 20-
22, 1994.)

[4] Blumofe,R., et.al. Cilk: An Efficient Multithreaded Runtime
System. The Journal of Parallel and Distributed Computing,
37(1), pages 55-69, August, 1996

 [5] Feitelson, D.G. and Rudolph, L. Mapping and Scheduling
in a Shared Parallel Environment Using Distributed Hierarchical
Control, Proceedings of the 1990 International Conference on
Parallel Processing. Volume 1: Architecture, pp. 1-8

[6] Geist, A. et al., PVM3 User’s Guide and Reference Manual,
Oak Ridge National Laboratory, Tennessee, 1994.

[7] Newton, P. The CODE 2.0 Graphical Parallel Programming

Language, Proceedings of the 1992 International Conference on
Supercomputing, (Washington, DC, July 1992), pp. 167-177

 [8] Subhlok, J. and Yang, B. A New Model for Integrated
Nested Task and Data Parallel Programming", Proceedings of
the ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming,(Las Vegas, NV, June 1997) pp.1-12

[9] Subhlok,J and Vondran, G. Optimal Mapping of Sequences
of Data Parallel Tasks, Fifth ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, (Santa
Barbara, CA, July 19-21), pp.134-143",August 1995",

[10] Subhlok, J., el.al. Programming Task and Data Parallelism
on a Multicomputer Proceedings of the Fourth ACM SIGPLAN
Symposium on Principles and Practice of Parallel
Programming" (May, 1993","San Diego, CA)

[11] Vokkarne, R.. Distributed Execution Environments for the
CODE 2.0 Parallel Programming System}, Master’s Thesis,
University of Texas at Austin, Department of Computer
Sciences, 1994.

