Dynamic Reasoning

Neil Immerman

College of Information and Computer Sciences

UMass Amherst

people.cs.umass.edu/~immerman/

Descriptive Complexity

- Descriptive Complexity
- Dichotomy

- Descriptive Complexity
- Dichotomy
- Dynamic Complexity

- Descriptive Complexity
- Dichotomy
- Dynamic Complexity
- SAT Solvers

- Descriptive Complexity
- Dichotomy
- Dynamic Complexity
- SAT Solvers
- Computer Software: Crisis and Opportunity

- Descriptive Complexity
- Dichotomy
- Dynamic Complexity
- SAT Solvers
- Computer Software: Crisis and Opportunity

Personal perspective

 $\bigcup_{k=1}^{\infty} \mathrm{DTIME}[n^k]$

P is a good mathematical wrapper for "truly feasible".

NTIME[t(n)]: a mathematical fiction

input w

$$|w| = n$$

Many optimization problems we want to solve are NP complete.

NP

 ∞

k=1

Restrict attention to the complexity of computing individual bits of the output, i.e., **decision problems**.

Restrict attention to the complexity of computing individual bits of the output, i.e., **decision problems**.

How hard is it to **check** if input has property S?

Restrict attention to the complexity of computing individual bits of the output, i.e., **decision problems**.

How hard is it to **check** if input has property S?

How rich a language do we need to express property S?

Restrict attention to the complexity of computing individual bits of the output, i.e., **decision problems**.

How hard is it to **check** if input has property S?

How rich a language do we need to **express** property *S*?

There is a constructive isomorphism between these two approaches.

Interpret Input as Finite Logical Structure

Binary
$$A_w = (\{p_1, ..., p_8\}, S)$$

String $S = \{p_2, p_5, p_7, p_8\}$
 $w = 01001011$

Vocabularies:
$$\tau_g = (E^2, s, t)$$
, $\tau_s = (S^1)$

First-Order Logic

input symbols: from τ

variables: x, y, z, \dots

boolean connectives: \land, \lor, \neg **quantifiers:** \forall, \exists

numeric symbols: $=, \leq, +, \times, \min, \max$

$$\alpha \equiv \forall x \exists y (E(x, y)) \in \mathcal{L}(\tau_g)$$

$$\beta \equiv \exists x \forall y (x \leq y \land S(x)) \in \mathcal{L}(\tau_s)$$

$$eta \equiv S(\min) \in \mathcal{L}(au_s)$$

Second-Order Logic

$$\Phi_{3-\text{color}} \equiv \exists R^1 G^1 B^1 \forall x y ((R(x) \lor G(x) \lor B(x)) \land (E(x,y) \to (\neg(R(x) \land R(y)) \land \neg(G(x) \land G(y)))))$$

$$\land \neg(B(x) \land B(y)))))$$

Second-Order Logic

Fagin's Theorem: $NP = SO\exists$

$$\Phi_{3-\text{color}} \equiv \exists R^1 G^1 B^1 \forall x y ((R(x) \lor G(x) \lor B(x)) \land (E(x,y) \to (\neg(R(x) \land R(y)) \land \neg(G(x) \land G(y)))))$$

$$\land \neg(B(x) \land B(y)))))$$

Addition is First-Order

$$Q_{+}: STRUC[\tau_{AB}] \to STRUC[\tau_{s}]$$

$$A \qquad a_{1} \quad a_{2} \quad \dots \quad a_{n-1} \quad a_{n}$$

$$B \qquad + \quad b_{1} \quad b_{2} \quad \dots \quad b_{n-1} \quad b_{n}$$

$$S \qquad S_{n-1} \quad S_{n}$$

Addition is First-Order

$$Q_+: \mathrm{STRUC}[\tau_{AB}] \to \mathrm{STRUC}[\tau_s]$$

$$C(i) \equiv (\exists j > i) \Big(A(j) \wedge B(j) \wedge (\forall k.j > k > i) (A(k) \vee B(k)) \Big)$$

Addition is First-Order

$$Q_+: \mathrm{STRUC}[\tau_{AB}] \to \mathrm{STRUC}[\tau_s]$$

$$C(i) \equiv (\exists j > i) \Big(A(j) \wedge B(j) \wedge (\forall k.j > k > i) (A(k) \vee B(k)) \Big)$$

$$Q_{+}(i) \equiv A(i) \oplus B(i) \oplus C(i)$$

Parallel Machines:

 $CRAM[t(n)] = CRCW-PRAM-TIME[t(n)]-HARD[n^{O(1)}]$

 $\mathsf{CRAM}[t(n)] = \mathsf{CRCW}\text{-}\mathsf{PRAM}\text{-}\mathsf{TIME}[t(n)]\text{-}\mathsf{HARD}[n^{O(1)}]$ Assume array $A[x]: x = 1, \dots, r$ in memory.

 $CRAM[t(n)] = CRCW-PRAM-TIME[t(n)]-HARD[n^{O(1)}]$

Assume array A[x]: x = 1, ..., r in memory.

 $\forall x(A(x)) \equiv \text{write}(1); \text{ proc } p_i : \text{if } (A[i] = 0) \text{ then } \text{write}(0)$

Logarithmic-Time Hierarchy

FO

CRAM[1]

 AC^0

$$\operatorname{CRAM}[t(n)] = \operatorname{concurrent}$$
 parallel random access machine; polynomial hardware, parallel time $O(t(n))$

$$IND[t(n)] = first-order, depth t(n) inductive definitions$$

$$FO[t(n)] = t(n)$$
 repetitions of a block of restricted quantifiers:

$$QB = [(Q_1x_1.M_1)\cdots(Q_kx_k.M_k)]; M_i$$
 quantifier-free

$$\varphi_n = \underbrace{[QB][QB] \cdots [QB]}_{t(n)} M_0$$

parallel time = inductive depth = QB iteration

Thm: For all constructible, polynomially bounded t(n),

$$\mathrm{CRAM}[t(n)] \ = \ \mathrm{IND}[t(n)] \ = \ \mathrm{FO}[t(n)]$$

Thm: For all t(n), even beyond polynomial,

$$CRAM[t(n)] = FO[t(n)]$$

For t(n) poly bdd,

CRAM[t(n)]

=

 $\mathrm{IND}[t(n)]$

=

FO[t(n)]

Recent Breakthroughs in Descriptive Complexity

Theorem [Ben Rossman] Any first-order formula with any numeric relations $(\leq, +, \times, ...)$ that means "I have a clique of size k" must have at least k/4 variables.

- Creative new proof idea using Håstad's Switching Lemma gives the essentially optimal bound.
- First lower bound of its kind for number of variables with ordering.
- ▶ This lower bound is for a fixed formula, if it were for a sequence of polynomially-sized formulas, it would show that $CLIQUE \not\in P$ and thus $P \neq NP$.

Recent Breakthroughs in Descriptive Complexity

Theorem [Martin Grohe] Fixed-Point Logic with Counting captures Polynomial Time on all classes of graphs with excluded minors.

Grohe proves that for every class of graphs with excluded minors, there is a constant k such that two graphs of the class are isomorphic iff they agree on all k-variable formulas in fixed-point logic with counting.

Thus every class of graphs with excluded minors admits the same general polynomial time canonization algorithm: we're isomorphic iff we agree on all formulas in C_k and in particular, you are isomorphic to me iff your C_k canonical description is equal to mine.

See: "The Nature and Power of Fixed-Point Logic with Counting" by Anuj Dawar in SigLog Newsletter.

 "Natural" Computational Problems Tend to be Complete for Important Complexity Classes

- "Natural" Computational Problems Tend to be Complete for Important Complexity Classes
- Isomorphism Theorem: only one such problem in each class: small handful of naturally occuring decision problems!

- "Natural" Computational Problems Tend to be Complete for Important Complexity Classes
- Isomorphism Theorem: only one such problem in each class: small handful of naturally occuring decision problems!
- Not true for "unnatural problems": Ladner's Delayed Diagonalization

- "Natural" Computational Problems Tend to be Complete for Important Complexity Classes
- Isomorphism Theorem: only one such problem in each class: small handful of naturally occuring decision problems!
- Not true for "unnatural problems": Ladner's Delayed Diagonalization
- Schaefer; Feder-Vardi: CSP Dichotomy Conjecture

Dichotomy

- "Natural" Computational Problems Tend to be Complete for Important Complexity Classes
- Isomorphism Theorem: only one such problem in each class: small handful of naturally occuring decision problems!
- Not true for "unnatural problems": Ladner's Delayed Diagonalization
- Schaefer; Feder-Vardi: CSP Dichotomy Conjecture
- Tremendous progress using Universal Algebra. (Solved for domains of size 2 and 3, and for undirected graphs.) See: "Constraint Satisfaction Problem and Universal Algebra" by Libor Barto in SigLog Newsletter.

Static

- 1. Read entire input
- 2. Compute boolean query **Q**(input)
- 3. Classic Complexity Classes are static: FO, NC, P, NP, ...

Static

- 1. Read entire input
- 2. Compute boolean query **Q**(input)
- 3. Classic Complexity Classes are static: FO, NC, P, NP, ...
- 4. What is the fastest way **upon reading the entire input**, to compute the query?

Static

- 1. Read entire input
- 2. Compute boolean query **Q**(input)
- 3. Classic Complexity Classes are static: FO, NC, P, NP, ...
- 4. What is the fastest way **upon reading the entire input**, to compute the query?

Dynamic

- 1. Long series of Inserts, Deletes, Changes, and, Queries
- 2. On query, very quickly compute \mathbf{Q} (current database)
- 3. Dynamic Complexity Classes: Dyn-FO, Dyn-NC

Static

- 1. Read entire input
- 2. Compute boolean query **Q**(input)
- 3. Classic Complexity Classes are static: FO, NC, P, NP, ...
- 4. What is the fastest way **upon reading the entire input**, to compute the query?

Dynamic

- 1. Long series of Inserts, Deletes, Changes, and, Queries
- 2. On query, very quickly compute \mathbf{Q} (current database)
- 3. Dynamic Complexity Classes: Dyn-FO, Dyn-NC
- 4. What additional information should we maintain? auxiliary data structure

Dynamic (Incremental) Applications

- Databases
- ► LaTexing a file
- Performing a calculation
- Processing a visual scene
- Understanding a natural language
- Verifying a circuit
- Verifying and compiling a program
- Surviving in the wild

Current Database: S	Request	Auxiliary Data: b
0000000		0

Current Database: S	Request Auxiliary Data	
0000000	0	
	ins(3,S)	

Current Database: S	Request	Auxiliary Data: b
0000000		0
0010000	ins (3,S)	1

Current Database: S	Request	Auxiliary Data: b
0000000		0
0010000	ins(3,S)	1
	ins (7,S)	

Current Database: S	Request	Auxiliary Data: b
0000000		0
0010000	ins (3,S)	1
0010001	ins (7,S)	0

Current Database: S	Request	Auxiliary Data: b
0000000		0
0010000	ins (3,S)	1
0010001	ins (7,S)	0
	del (3,S)	

Current Database: S	Request	Auxiliary Data: b
0000000		0
0010000	ins(3,S)	1
0010001	ins(7,S)	0
0000001	del (3,S)	1

Current Database: S	Request	Auxiliary Data: b
0000000		0
0010000	ins(3,S)	1
0010001	ins(7,S)	0
0000001	del (3,S)	1

Parity

Does binary string w have an odd number of 1's?

▶ Static: TIME[n], FO[$\Omega(\log n / \log \log n)$]

Dynamic: Dyn-TIME[1], Dyn-FO

Parity

- Does binary string w have an odd number of 1's?
- ▶ Static: TIME[n], FO[$\Omega(\log n / \log \log n)$]
- ▶ **Dynamic:** Dyn-TIME[1], Dyn-FO

REACH_u

- ▶ Is t reachable from s in undirected graph G?
- ▶ **Static:** not in FO, requires FO[$\Omega(\log n / \log \log n)$]
- Dynamic: in Dyn-FO [Patnaik, I]

Parity

- Does binary string w have an odd number of 1's?
- ▶ Static: TIME[n], FO[$\Omega(\log n / \log \log n)$]
- ▶ **Dynamic:** Dyn-TIME[1], Dyn-FO

REACH_u

- ▶ Is t reachable from s in undirected graph G?
- ▶ **Static:** not in FO, requires FO[$\Omega(\log n / \log \log n)$]
- Dynamic: in Dyn-FO [Patnaik, I]

Parity

- Does binary string w have an odd number of 1's?
- ▶ Static: TIME[n], FO[$\Omega(\log n / \log \log n)$]
- Dynamic: Dyn-TIME[1], Dyn-FO

REACH,,

- ▶ Is t reachable from s in undirected graph G?
- ▶ **Static:** not in FO, requires FO[$\Omega(\log n / \log \log n)$]
- Dynamic: in Dyn-FO [Patnaik, I]

Minimum Spanning Trees, k-edge connectivity, ...

Fact: [Dong & Su] REACH(acyclic) \in DynFO ins(a, b, E) : $P'(x, y) \equiv P(x, y) \lor (P(x, a) \land P(b, y))$ del(a, b, E):

$$P'(x,y) \equiv P(x,y) \wedge \left[\neg (P(x,a) \wedge P(b,y)) \right.$$
$$\vee (\exists uv) (P(x,u) \wedge E(u,v) \wedge P(v,y) \right.$$
$$\wedge P(u,a) \wedge \neg P(v,a) \wedge (a \neq u \vee b \neq v)) \right]$$

REACHABILITY Problems

REACH =
$$\{G \mid G \text{ directed, } s \xrightarrow{\star} t\}$$
 NL
REACH_d = $\{G \mid G \text{ directed, outdegree} \leq 1 s \xrightarrow{\star} t\}$ L
REACH_u = $\{G \mid G \text{ undirected, } s \xrightarrow{\star} t\}$ L
REACH_a = $\{G \mid G \text{ alternating, } s \xrightarrow{\star} t\}$ P

Facts about dynamic REACHABILITY Problems:

Dyn-REACH(acyclic)	\in	Dyn-FO	[DS]
$\operatorname{Dyn-REACH}_d$	\in	Dyn-QF	[H]
$\operatorname{Dyn-REACH}_u$	\in	Dyn-FO	[PI]
Dyn-REACH	\in	Dyn-FO(COUNT)	[H]
$\text{Dyn-PAD}(\text{REACH}_a)$	\in	Dyn-FO	[PI]

Exciting New Result

Reachability is in DynFO

by Samir Datta, Raghav Kulkarni, Anish Mukherjee, Thomas Schwentick and Thomas Zeume

http://arxiv.org/abs/1502.07467

They show that Matrix Rank is in DynFO and REACH reduces to Matrix Rank.

Thm. 1 [Hesse] Reachability of functional DAG is in DynQF.

proof: Maintain E, E^* , D (outdegree = 1).

Insert E(i,j): (ignore if adding edge violates outdegree or acyclicity)

$$E'(x,y) \equiv E(x,y) \lor (x = i \land y = j)$$

$$D'(x) \equiv D(x) \lor x = i$$

$$E^{*'}(x,y) \equiv E^{*}(x,y) \lor (E^{*}(x,i) \land E^{*}(j,y))$$

Thm. 1 [Hesse] Reachability of functional DAG is in DynQF.

proof: Maintain E, E^* , D (outdegree = 1).

Insert E(i,j): (ignore if adding edge violates outdegree or acyclicity)

$$E'(x,y) \equiv E(x,y) \lor (x = i \land y = j)$$

$$D'(x) \equiv D(x) \lor x = i$$

$$E^{*'}(x,y) \equiv E^{*}(x,y) \lor (E^{*}(x,i) \land E^{*}(j,y))$$

Delete E(i,j):

$$E'(x,y) \equiv E(x,y) \wedge (x \neq i \vee y \neq j)$$

$$D'(x) \equiv D(x) \wedge (x \neq i \vee \neg E(i,j))$$

$$E^{*'}(x,y) \equiv E^{*}(x,y) \wedge \neg (E^{*}(x,i) \wedge E(i,j) \wedge E^{*}(j,y))$$

Dynamic Reasoning

Reasoning About reachability – can we get to *b* from *a* by following a sequence of pointers – is **crucial for proving that programs meet their specifications**.

Dynamic Reasoning

Reasoning About reachability – can we get to *b* from *a* by following a sequence of pointers – is **crucial for proving that programs meet their specifications**.

However reasoning about reachability in general is **undecidable**.

Ideas:

- Can express tilings and thus runs of Turing Machines.
- ► Even worse, can express **finite path** and thus **finite** and thus **standard natural numbers**. Thus FO(TC) is as hard as the Arithmetic Hierarchy [Avron].

For the time being, let's restrict ourselves to acyclic fields which thus also generate a linear ordering of all points reachable from a given point.

acyclic
$$\equiv \forall xy (n^*(x,y) \land n^*(y,x) \rightarrow x = y)$$

transitive $\equiv \forall xyz (n^*(x,y) \land n^*(y,z) \rightarrow n^*(x,z)))$
linear $\equiv \forall xyz (n^*(x,y) \land n^*(x,z) \rightarrow n^*(y,z) \lor n^*(z,y))$

Effectively-Propositional Reasoning about Reachability in Linked Data Structures

- ► Automatically transform a program manipulating linked lists to an ∀∃ correctness condition.
- ▶ Using Hesse's dynQF algorithm for $REACH_d$, is that these $\forall \exists$ formulas are closed under weakest precondition.
- Using acyclic, transitive and linear axioms, the negation of the correctness condition is equi-satisfiable with a propositional formula.
- use a SAT solver to automatically prove correctness or find counter-example runs, typically in under 3 seconds per program.

Thm. 2 [Hesse] Reachability of functional graphs is in DynQF.

proof idea: If adding an edge, e, would create a cycle, then we maintain relation P – the path relation without the edge completing the cycle – as well as E^* , E and D.

Surprisingly this can all be maintained via quantifier-free formulas, without remembering which edges we are leaving out in computing P.

Thm. 2 [Hesse] Reachability of functional graphs is in DynQF.

proof idea: If adding an edge, e, would create a cycle, then we maintain relation P – the path relation without the edge completing the cycle – as well as E^* , E and D.

Surprisingly this can all be maintained via quantifier-free formulas, without remembering which edges we are leaving out in computing P.

Using Thm. 2, the above methodology has been extended to cyclic deterministic graphs.

- ▶ Itzhaky, Banerjee, Immerman, Aleks Nanevski, Sagiv, "Effectively-Propositional Reasoning About Reachability in Linked Data Structures" CAV 2013.
- ▶ Itzhaky, Banerjee, Immerman, Lahav, Nanevski, Sagiv, "Modular Reasoning about Heap Paths via Effectively Propositional Formulas", POPL 2014

► SAT was the first NP Complete problem, thus hard.

- ► SAT was the first NP Complete problem, thus **hard**.
- ► Through amazing increases of computer speed and memory, plus terrific engineering and algorithmic ideas – clause learning, and good heuristics, SAT solvers are typically incredibly fast – seconds on formulas with a million variables.

- ► SAT was the first NP Complete problem, thus hard.
- ► Through amazing increases of computer speed and memory, plus terrific engineering and algorithmic ideas – clause learning, and good heuristics, SAT solvers are typically incredibly fast – seconds on formulas with a million variables.
- They provably aren't good on all instances, but they do extremely well in practice.

- ► SAT was the first NP Complete problem, thus hard.
- ► Through amazing increases of computer speed and memory, plus terrific engineering and algorithmic ideas – clause learning, and good heuristics, SAT solvers are typically incredibly fast – seconds on formulas with a million variables.
- ► They provably aren't good on all instances, but they do extremely well in practice.
- ▶ Thus we have a general purpose problem solver.

- ► SAT was the first NP Complete problem, thus hard.
- ► Through amazing increases of computer speed and memory, plus terrific engineering and algorithmic ideas – clause learning, and good heuristics, SAT solvers are typically incredibly fast – seconds on formulas with a million variables.
- They provably aren't good on all instances, but they do extremely well in practice.
- ▶ Thus we have a general purpose problem solver.
- Very useful for checking the correctness of programs, automatically finding counter-example runs, and for synthesizing good code from specifications.

► Software is everywhere, controlling more and more of our lives.

- ► Software is everywhere, controlling more and more of our lives.
- ► Software is buggy, insecure, brittle, hard to change.

- ► Software is everywhere, controlling more and more of our lives.
- Software is buggy, insecure, brittle, hard to change.
- Logic and its application to automatic model checking and synthesis are – in my opinion – our best hope.

- ► Software is everywhere, controlling more and more of our lives.
- Software is buggy, insecure, brittle, hard to change.
- Logic and its application to automatic model checking and synthesis are – in my opinion – our best hope.
- ► Thank you!

