Dynamic Reasoning

Neil Immerman
College of Information and Computer Sciences
UMass Amherst
people.cs.umass.edu/~immerman/

Logic in Computer Science

- Descriptive Complexity

Logic in Computer Science

- Descriptive Complexity
- Dichotomy

Logic in Computer Science

- Descriptive Complexity
- Dichotomy
- Dynamic Complexity

Logic in Computer Science

- Descriptive Complexity
- Dichotomy
- Dynamic Complexity
- SAT Solvers

Logic in Computer Science

- Descriptive Complexity
- Dichotomy
- Dynamic Complexity
- SAT Solvers
- Computer Software: Crisis and Opportunity

Logic in Computer Science

- Descriptive Complexity
- Dichotomy
- Dynamic Complexity
- SAT Solvers
- Computer Software: Crisis and Opportunity

Personal perspective

Dynamic Reasoning

NTIME $[t(n)]$:

input w

$$
|w|=n
$$

Dynamic Reasoning

Descriptive Complexity

Query $q_{1} q_{2} \cdots q_{n}$$\mapsto$ Computation \mapsto

Answer

$a_{1} a_{2} \cdots a_{i} \cdots a_{m}$

Descriptive Complexity

$$
\begin{array}{cc}
\begin{array}{c}
\text { Query } \\
q_{1} q_{2} \cdots q_{n}
\end{array} & \mapsto
\end{array} \quad \text { Computation } \quad \mapsto \quad \text { Answer }
$$

Restrict attention to the complexity of computing individual bits of the output, i.e., decision problems.

Descriptive Complexity

$$
\begin{array}{cc}
\begin{array}{c}
\text { Query } \\
q_{1}
\end{array} q_{2} \cdots q_{n}
\end{array} \mapsto \text { Computation } \mapsto \quad \begin{array}{ccc}
\text { Answer } \\
a_{1} & a_{2} & \cdots
\end{array} a_{i} \cdots l a a_{m}
$$

Restrict attention to the complexity of computing individual bits of the output, i.e., decision problems.

How hard is it to check if input has property S ?

Descriptive Complexity

$$
\begin{array}{cccc}
\text { Query } \\
q_{1} q_{2} \cdots q_{n}
\end{array} \mapsto \begin{array}{ll}
\text { Computation } & \mapsto
\end{array} \begin{array}{cc}
\text { Answer } \\
a_{1} & a_{2}
\end{array} \cdots a_{i} \cdots a_{m}
$$

Restrict attention to the complexity of computing individual bits of the output, i.e., decision problems.

How hard is it to check if input has property S ?

How rich a language do we need to express property S ?

Descriptive Complexity

\[

\]

Restrict attention to the complexity of computing individual bits of the output, i.e., decision problems.

How hard is it to check if input has property S ?

How rich a language do we need to express property S ?

There is a constructive isomorphism between these two approaches.

Interpret Input as Finite Logical Structure

Graph

$$
G=\left(\left\{v_{1}, \ldots, v_{n}\right\}, E, s, t\right)
$$

Binary
String

$$
\begin{aligned}
\mathcal{A}_{w} & =\left(\left\{p_{1}, \ldots, p_{8}\right\}, S\right) \\
S & =\left\{p_{2}, p_{5}, p_{7}, p_{8}\right\} \\
w & =01001011
\end{aligned}
$$

Vocabularies: $\tau_{g}=\left(E^{2}, s, t\right), \quad \tau_{s}=\left(S^{1}\right)$

First-Order Logic

input symbols: from τ
variables: x, y, z, \ldots
boolean connectives: \wedge, \vee, \neg
quantifiers: \forall, \exists
numeric symbols: $=, \leq,+, \times, \min , \max$

$$
\begin{aligned}
\alpha & \equiv \forall x \exists y(E(x, y)) & \in \mathcal{L}\left(\tau_{g}\right) \\
\beta & \equiv \exists x \forall y(x \leq y \wedge S(x)) & \in \mathcal{L}\left(\tau_{s}\right) \\
\beta & \equiv S(\min) & \in \mathcal{L}\left(\tau_{s}\right)
\end{aligned}
$$

Second-Order Logic

$$
\begin{gathered}
\Phi_{3-\text { color }} \equiv \exists R^{1} G^{1} B^{1} \forall x y((R(x) \vee G(x) \vee B(x)) \wedge \\
(E(x, y) \rightarrow(\neg(R(x) \wedge R(y)) \wedge \neg(G(x) \wedge G(y)) \\
\wedge \neg(B(x) \wedge B(y)))))
\end{gathered}
$$

Second-Order Logic

Fagin's Theorem: $\quad \mathrm{NP}=\mathrm{SO} \exists$

$$
\begin{gathered}
\Phi_{3-\text { color }} \equiv \exists R^{1} G^{1} B^{1} \forall x y((R(x) \vee G(x) \vee B(x)) \wedge \\
(E(x, y) \rightarrow(\neg(R(x) \wedge R(y)) \wedge \neg(G(x) \wedge G(y)) \\
\wedge \quad \neg(B(x) \wedge B(y)))))
\end{gathered}
$$

Addition is First-Order

$Q_{+}: \operatorname{STRUC}\left[\tau_{A B}\right] \rightarrow \operatorname{STRUC}\left[\tau_{s}\right]$

A
B

$S$$\quad$| a_{1} | a_{2} | \ldots | a_{n-1} | a_{n} |
| ---: | :--- | :--- | :--- | :--- |
| b_{1} | b_{2} | \ldots | b_{n-1} | b_{n} |
| s_{1} | s_{2} | \ldots | s_{n-1} | s_{n} |

Addition is First-Order

$Q_{+}: \operatorname{STRUC}\left[\tau_{A B}\right] \rightarrow \operatorname{STRUC}\left[\tau_{s}\right]$

$$
\begin{aligned}
& A \quad a_{1} \quad a_{2} \quad \ldots \quad a_{n-1} \quad a_{n} \\
& B+b_{1} \quad b_{2} \ldots b_{n-1} \quad b_{n} \\
& \begin{array}{llllll}
S & s_{1} & s_{2} & \ldots & s_{n-1} & s_{n}
\end{array} \\
& C(i) \equiv(\exists j>i)(A(j) \wedge B(j) \wedge \\
& (\forall k . j>k>i)(A(k) \vee B(k)))
\end{aligned}
$$

Addition is First-Order

$Q_{+}: \operatorname{STRUC}\left[\tau_{A B}\right] \rightarrow \operatorname{STRUC}\left[\tau_{s}\right]$

\(\begin{aligned} \& A

\& B

\& S\end{aligned} \quad+\)| a_{1} | a_{2} | \ldots | a_{n-1} | a_{n} |
| :--- | :--- | :--- | :--- | :--- |
| b_{1} | b_{2} | \ldots | b_{n-1} | b_{n} |
| s_{1} | s_{2} | \ldots | s_{n-1} | s_{n} |

$C(i) \equiv(\exists j>i)(A(j) \wedge B(j) \wedge$

$$
(\forall k . j>k>i)(A(k) \vee B(k)))
$$

$Q_{+}(i) \equiv A(i) \oplus B(i) \oplus C(i)$

Parallel Machines:

$\operatorname{CRAM}[t(n)]=\operatorname{CRCW}-P R A M-T I M E[t(n)]-\operatorname{HARD}\left[n^{O(1)}\right]$

Parallel Machines:

Quantifiers are Parallel

$\operatorname{CRAM}[t(n)]=$ CRCW-PRAM-TIME $[t(n)]-\operatorname{HARD}\left[n^{O(1)}\right]$
Assume array $A[x]: x=1, \ldots, r$ in memory.

Parallel Machines:

Quantifiers are Parallel

$\operatorname{CRAM}[t(n)]=$ CRCW-PRAM-TIME $[t(n)]-\operatorname{HARD}\left[n^{O(1)}\right]$

Assume array $A[x]: x=1, \ldots, r$ in memory.

$$
\forall x(A(x)) \equiv \text { write }(1) ; \text { proc } p_{i}: \text { if }(A[i]=0) \text { then write }(0)
$$

Dynamic Reasoning
$\operatorname{CRAM}[t(n)]=$ concurrent parallel random access machine; polynomial hardware, parallel time $O(t(n))$
$\operatorname{IND}[t(n)]=$ first-order, depth $t(n)$ inductive definitions
$\mathrm{FO}[t(n)]=t(n)$ repetitions of a block of restricted quantifiers:

$$
\begin{aligned}
\mathrm{QB} & =\left[\left(Q_{1} x_{1} \cdot M_{1}\right) \cdots\left(Q_{k} x_{k} \cdot M_{k}\right)\right] ; \quad M_{i} \text { quantifier-free } \\
\varphi_{n} & =\underbrace{[\mathrm{QB}][\mathrm{QB}] \cdots[\mathrm{QB}]}_{t(n)} M_{0}
\end{aligned}
$$

parallel time $=$ inductive depth $=$ QB iteration

Thm: For all constructible, polynomially bounded $t(n)$,

$$
\operatorname{CRAM}[t(n)]=\operatorname{IND}[t(n)]=\mathrm{FO}[t(n)]
$$

Thm: For all $t(n)$, even beyond polynomial,

$$
\operatorname{CRAM}[t(n)]=\operatorname{FO}[t(n)]
$$

$\operatorname{CRAM}[t(n)]$
$=$
$\operatorname{IND}[t(n)]$
$=$
$\mathrm{FO}[t(n)]$

Dynamic Reasoning
ASL 2015 North American meeting, Urbana-Champaign

Recent Breakthroughs in Descriptive Complexity

Theorem [Ben Rossman] Any first-order formula with any numeric relations ($\leq,+, \times, \ldots$) that means "I have a clique of size k " must have at least $k / 4$ variables.

- Creative new proof idea using Håstad's Switching Lemma gives the essentially optimal bound.
- First lower bound of its kind for number of variables with ordering.
- This lower bound is for a fixed formula, if it were for a sequence of polynomially-sized formulas, it would show that CLIQUE $\notin \mathrm{P}$ and thus $\mathrm{P} \neq \mathrm{NP}$.

Recent Breakthroughs in Descriptive Complexity

Theorem [Martin Grohe] Fixed-Point Logic with Counting captures Polynomial Time on all classes of graphs with excluded minors.

Grohe proves that for every class of graphs with excluded minors, there is a constant k such that two graphs of the class are isomorphic iff they agree on all k-variable formulas in fixed-point logic with counting.

Thus every class of graphs with excluded minors admits the same general polynomial time canonization algorithm: we're isomorphic iff we agree on all formulas in C_{k} and in particular, you are isomorphic to me iff your C_{k} canonical description is equal to mine.

See: "The Nature and Power of Fixed-Point Logic with Counting" by Anuj Dawar in SigLog Newsletter.

Dynamic Reasoning

Dichotomy

- "Natural" Computational Problems Tend to be Complete for Important Complexity Classes

Dichotomy

- "Natural" Computational Problems Tend to be Complete for Important Complexity Classes
- Isomorphism Theorem: only one such problem in each class: small handful of naturally occuring decision problems!

Dichotomy

- "Natural" Computational Problems Tend to be Complete for Important Complexity Classes
- Isomorphism Theorem: only one such problem in each class: small handful of naturally occuring decision problems!
- Not true for "unnatural problems": Ladner's Delayed Diagonalization

Dichotomy

- "Natural" Computational Problems Tend to be Complete for Important Complexity Classes
- Isomorphism Theorem: only one such problem in each class: small handful of naturally occuring decision problems!
- Not true for "unnatural problems": Ladner's Delayed Diagonalization
- Schaefer; Feder-Vardi: CSP Dichotomy Conjecture

Dichotomy

- "Natural" Computational Problems Tend to be Complete for Important Complexity Classes
- Isomorphism Theorem: only one such problem in each class: small handful of naturally occuring decision problems!
- Not true for "unnatural problems": Ladner's Delayed Diagonalization
- Schaefer; Feder-Vardi: CSP Dichotomy Conjecture
- Tremendous progress using Universal Algebra. (Solved for domains of size 2 and 3, and for undirected graphs.) See: "Constraint Satisfaction Problem and Universal Algebra" by Libor Barto in SigLog Newsletter.

Dynamic Complexity

Static

1. Read entire input
2. Compute boolean query \mathbf{Q} (input)
3. Classic Complexity Classes are static: FO, NC, P, NP, ...

Dynamic Complexity

Static

1. Read entire input
2. Compute boolean query \mathbf{Q} (input)
3. Classic Complexity Classes are static: FO, NC, P, NP, ...
4. What is the fastest way upon reading the entire input, to compute the query?

Dynamic Complexity

Static

1. Read entire input
2. Compute boolean query \mathbf{Q} (input)
3. Classic Complexity Classes are static: FO, NC, P, NP, ...
4. What is the fastest way upon reading the entire input, to compute the query?

Dynamic

1. Long series of Inserts, Deletes, Changes, and, Queries
2. On query, very quickly compute \mathbf{Q} (current database)
3. Dynamic Complexity Classes: Dyn-FO, Dyn-NC

Dynamic Complexity

Static

1. Read entire input
2. Compute boolean query \mathbf{Q} (input)
3. Classic Complexity Classes are static: FO, NC, P, NP, ...
4. What is the fastest way upon reading the entire input, to compute the query?

Dynamic

1. Long series of Inserts, Deletes, Changes, and, Queries
2. On query, very quickly compute \mathbf{Q} (current database)
3. Dynamic Complexity Classes: Dyn-FO, Dyn-NC
4. What additional information should we maintain? auxiliary data structure

Dynamic (Incremental) Applications

- Databases
- LaTexing a file
- Performing a calculation
- Processing a visual scene
- Understanding a natural language
- Verifying a circuit
- Verifying and compiling a program
- Surviving in the wild

Parity

Current Database: S	Request	Auxiliary Data: b
0000000		0

Parity

Current Database: S	Request	Auxiliary Data: b
0000000		0
	$\operatorname{ins}(3, S)$	

Parity

Current Database: S	Request	Auxiliary Data: b
0000000		0
0010000	$\operatorname{ins}(3, S)$	1

Parity

Current Database: S	Request	Auxiliary Data: b
0000000		0
0010000	$\operatorname{ins}(3, S)$	1
	$\operatorname{ins}(7, S)$	

Parity

Current Database: S	Request	Auxiliary Data: b
0000000		0
0010000	$\operatorname{ins}(3, S)$	1
0010001	$\operatorname{ins}(7, S)$	0

Parity

Current Database: S	Request	Auxiliary Data: b
0000000		0
0010000	$\operatorname{ins}(3, S)$	1
0010001	$\operatorname{ins}(7, S)$	0
	$\operatorname{del}(3, S)$	

Parity

Current Database: S	Request	Auxiliary Data: b
0000000		0
0010000	$\operatorname{ins}(3, S)$	1
0010001	$\operatorname{ins}(7, S)$	0
0000001	$\operatorname{del}(3, S)$	1

Parity

Current Database: S	Request	Auxiliary Data: b
0000000		0
0010000	$\operatorname{ins}(3, S)$	1
0010001	$\operatorname{ins}(7, S)$	0
0000001	$\operatorname{del}(3, S)$	1

$$
\begin{aligned}
& \operatorname{ins}(a, S) \\
& \begin{aligned}
S^{\prime}(x) \equiv & S(x) \vee x=a \\
b^{\prime} \equiv & (b \wedge S(a)) \vee \\
& (\neg b \wedge \neg S(a))
\end{aligned}
\end{aligned}
$$

$\operatorname{del}(\mathrm{a}, \mathrm{S})$
$S^{\prime}(x) \equiv S(x) \wedge x \neq a$
$b^{\prime} \equiv(b \wedge \neg S(a)) \vee$
$(\neg b \wedge S(a))$

Dynamic Examples

Parity

- Does binary string w have an odd number of 1's?
- Static: TIME[n], FO[$\Omega(\log n / \log \log n)]$
- Dynamic: Dyn-TIME[1], Dyn-FO

Dynamic Examples

Parity

- Does binary string w have an odd number of 1's?
- Static: TIME[n], FO[$\Omega(\log n / \log \log n)]$
- Dynamic: Dyn-TIME[1], Dyn-FO

REACH $_{u}$

- Is t reachable from s in undirected graph G ?
- Static: not in FO, requires FO[$\Omega(\log n / \log \log n)]$
- Dynamic: in Dyn-FO [Patnaik, I]

Dynamic Examples

Parity

- Does binary string w have an odd number of 1's?
- Static: TIME[n], FO[$\Omega(\log n / \log \log n)]$
- Dynamic: Dyn-TIME[1], Dyn-FO

REACH $_{u}$

- Is t reachable from s in undirected graph G ?
- Static: not in FO, requires FO[$\Omega(\log n / \log \log n)]$
- Dynamic: in Dyn-FO [Patnaik, I]

Dynamic Examples

Parity

- Does binary string w have an odd number of 1's?
- Static: TIME[n], FO[$\Omega(\log n / \log \log n)]$
- Dynamic: Dyn-TIME[1], Dyn-FO

REACH $_{u}$

- Is t reachable from s in undirected graph G ?
- Static: not in FO, requires FO[$\Omega(\log n / \log \log n)]$
- Dynamic: in Dyn-FO [Patnaik, I]

Minimum Spanning Trees, k-edge connectivity, ...

Fact: [Dong \& Su] REACH(acyclic) \in DynFO ins $(a, b, E): P^{\prime}(x, y) \equiv P(x, y) \vee(P(x, a) \wedge P(b, y))$ $\operatorname{del}(a, b, E)$:

$$
\begin{aligned}
P^{\prime}(x, y) \equiv & P(x, y) \wedge[\neg(P(x, a) \wedge P(b, y)) \\
& \vee(\exists u v)(P(x, u) \wedge E(u, v) \wedge P(v, y) \\
& \wedge P(u, a) \wedge \neg P(v, a) \wedge(a \neq u \vee b \neq v))]
\end{aligned}
$$

REACHABILITY Problems

$$
\begin{array}{rlrl}
\text { REACH } & =\{G \mid G \text { directed, } s \underset{G}{*} t\} & \text { NL } \\
\text { REACH }_{d} & =\{G \mid G \text { directed, outdegree } \leq 1 s \underset{G}{\star} t\} & & \mathrm{L} \\
\mathrm{REACH}_{u} & =\{G \mid G \text { undirected, } s \underset{G}{\star} t\} & \mathrm{L} \\
\mathrm{REACH}_{a} & =\{G \mid G \text { alternating, } s \underset{G}{\star} t\} & \mathrm{P}
\end{array}
$$

Facts about dynamic REACHABILITY Problems:

$$
\begin{aligned}
& \text { Dyn-REACH }(\text { acyclic }) \in \text { Dyn-FO } \\
& \text { Dyn-REACH }_{d} \in \text { Dyn-QF } \\
& \text { Dyn-REACH }_{u} \in \text { Dyn-FO } \\
& \text { Dyn-REACH } \in \text { Dyn-FO(COUNT) } \\
&{\text { Dyn-PAD }\left(\text { REACH }_{a}\right)} \in \text { Dyn-FO }^{2}
\end{aligned}
$$

Exciting New Result

Reachability is in DynFO

by Samir Datta, Raghav Kulkarni, Anish Mukherjee, Thomas Schwentick and Thomas Zeume
http://arxiv.org/abs/1502.07467

They show that Matrix Rank is in DynFO and REACH reduces to Matrix Rank.

Thm. 1 [Hesse] Reachability of functional DAG is in DynQF.
proof: Maintain E, E^{*}, D (outdegree $=1$).
Insert $E(i, j)$: (ignore if adding edge violates outdegree or acyclicity)

$$
\begin{aligned}
E^{\prime}(x, y) & \equiv E(x, y) \vee(x=i \wedge y=j) \\
D^{\prime}(x) & \equiv D(x) \vee x=i \\
E^{* \prime}(x, y) & \equiv E^{*}(x, y) \vee\left(E^{*}(x, i) \wedge E^{*}(j, y)\right)
\end{aligned}
$$

Thm. 1 [Hesse] Reachability of functional DAG is in DynQF.
proof: Maintain E, E^{*}, D (outdegree $=1$).
Insert $E(i, j)$: (ignore if adding edge violates outdegree or acyclicity)

$$
\begin{aligned}
E^{\prime}(x, y) & \equiv E(x, y) \vee(x=i \wedge y=j) \\
D^{\prime}(x) & \equiv D(x) \vee x=i \\
E^{* \prime}(x, y) & \equiv E^{*}(x, y) \vee\left(E^{*}(x, i) \wedge E^{*}(j, y)\right)
\end{aligned}
$$

Delete $E(i, j)$:

$$
\begin{aligned}
E^{\prime}(x, y) & \equiv E(x, y) \wedge(x \neq i \vee y \neq j) \\
D^{\prime}(x) & \equiv D(x) \wedge(x \neq i \vee \neg E(i, j)) \\
E^{* \prime}(x, y) & \equiv E^{*}(x, y) \wedge \neg\left(E^{*}(x, i) \wedge E(i, j) \wedge E^{*}(j, y)\right)
\end{aligned}
$$

Dynamic Reasoning

Reasoning About reachability - can we get to b from a by following a sequence of pointers - is crucial for proving that programs meet their specifications.

Dynamic Reasoning

Reasoning About reachability - can we get to b from a by following a sequence of pointers - is crucial for proving that programs meet their specifications.

However reasoning about reachability in general is undecidable.

Ideas:

- Can express tilings and thus runs of Turing Machines.
- Even worse, can express finite path and thus finite and thus standard natural numbers. Thus $\mathrm{FO}(\mathrm{TC})$ is as hard as the Arithmetic Hierarchy [Avron].

For the time being, let's restrict ourselves to acyclic fields which thus also generate a linear ordering of all points reachable from a given point.

$$
\begin{aligned}
\text { acyclic } & \equiv \forall x y\left(n^{*}(x, y) \wedge n^{*}(y, x) \rightarrow x=y\right) \\
\text { transitive } & \left.\equiv \forall x y z\left(n^{*}(x, y) \wedge n^{*}(y, z) \rightarrow n^{*}(x, z)\right)\right) \\
\text { linear } & \equiv \forall x y z\left(n^{*}(x, y) \wedge n^{*}(x, z) \rightarrow n^{*}(y, z) \vee n^{*}(z, y)\right)
\end{aligned}
$$

Effectively-Propositional Reasoning about Reachability in Linked Data Structures

- Automatically transform a program manipulating linked lists to an $\forall \exists$ correctness condition.
- Using Hesse's dynQF algorithm for REACH_{d}, is that these $\forall \exists$ formulas are closed under weakest precondition.
- Using acyclic, transitive and linear axioms, the negation of the correctness condition is equi-satisfiable with a propositional formula.
- use a SAT solver to automatically prove correctness or find counter-example runs, typically in under 3 seconds per program.

Thm. 2 [Hesse] Reachability of functional graphs is in DynQF.
proof idea: If adding an edge, e, would create a cycle, then we maintain relation P - the path relation without the edge completing the cycle - as well as E^{*}, E and D.

Surprisingly this can all be maintained via quantifier-free formulas, without remembering which edges we are leaving out in computing P.

Thm. 2 [Hesse] Reachability of functional graphs is in DynQF.
proof idea: If adding an edge, e, would create a cycle, then we maintain relation P - the path relation without the edge completing the cycle - as well as E^{*}, E and D.

Surprisingly this can all be maintained via quantifier-free formulas, without remembering which edges we are leaving out in computing P.

Using Thm. 2, the above methodology has been extended to cyclic deterministic graphs.

- Itzhaky, Banerjee, Immerman, Aleks Nanevski, Sagiv, "Effectively-Propositional Reasoning About Reachability in Linked Data Structures" CAV 2013.
- Itzhaky, Banerjee, Immerman, Lahav, Nanevski, Sagiv, "Modular Reasoning about Heap Paths via Effectively Propositional Formulas", POPL 2014

SAT Solvers

- SAT was the first NP Complete problem, thus hard.

SAT Solvers

- SAT was the first NP Complete problem, thus hard.
- Through amazing increases of computer speed and memory, plus terrific engineering and algorithmic ideas - clause learning, and good heuristics, SAT solvers are typically incredibly fast - seconds on formulas with a million variables.

SAT Solvers

- SAT was the first NP Complete problem, thus hard.
- Through amazing increases of computer speed and memory, plus terrific engineering and algorithmic ideas - clause learning, and good heuristics, SAT solvers are typically incredibly fast - seconds on formulas with a million variables.
- They provably aren't good on all instances, but they do extremely well in practice.

SAT Solvers

- SAT was the first NP Complete problem, thus hard.
- Through amazing increases of computer speed and memory, plus terrific engineering and algorithmic ideas - clause learning, and good heuristics, SAT solvers are typically incredibly fast - seconds on formulas with a million variables.
- They provably aren't good on all instances, but they do extremely well in practice.
- Thus we have a general purpose problem solver.

SAT Solvers

- SAT was the first NP Complete problem, thus hard.
- Through amazing increases of computer speed and memory, plus terrific engineering and algorithmic ideas - clause learning, and good heuristics, SAT solvers are typically incredibly fast - seconds on formulas with a million variables.
- They provably aren't good on all instances, but they do extremely well in practice.
- Thus we have a general purpose problem solver.
- Very useful for checking the correctness of programs, automatically finding counter-example runs, and for synthesizing good code from specifications.

Software Crisis

- Software is everywhere, controlling more and more of our lives.

Software Crisis

- Software is everywhere, controlling more and more of our lives.
- Software is buggy, insecure, brittle, hard to change.

Software Crisis

- Software is everywhere, controlling more and more of our lives.
- Software is buggy, insecure, brittle, hard to change.
- Logic and its application to automatic model checking and synthesis are - in my opinion - our best hope.

Software Crisis

- Software is everywhere, controlling more and more of our lives.
- Software is buggy, insecure, brittle, hard to change.
- Logic and its application to automatic model checking and synthesis are - in my opinion - our best hope.
- Thank you!

Dynamic Reasoning

