Descriptive Complexity

Neil Immerman

College of Computer and Information Sciences
University of Massachusetts, Amherst
Amherst, MA, USA
people.cs.umass.edu/~immerman
"truly feasible" is the informal set of problems we can solve exactly on all reasonably sized instances.

$$
\begin{gathered}
P= \\
\bigcup_{k=1}^{\infty} \operatorname{DTIME}\left[n^{k}\right]
\end{gathered}
$$

"truly feasible" is the informal set of problems we can solve exactly on all reasonably sized instances.

$P=$

$k=1$
P is a good mathematical wrapper for "truly feasible".
"truly feasible" is the informal set of problems we can solve exactly on all reasonably sized instances.

NTIME[t(n)]:

if at least one of the $2^{t(n)}$ paths accepts.

NP =

Many optimization problems we want to solve are NP complete.

SAT, TSP, 3-COLOR, CLIQUE, ...

$\mathrm{NP}=$
$\bigcup_{k=1}^{\infty} \operatorname{NTIME}\left[n^{k}\right]$

Many optimization problems we want to solve are NP complete.

SAT, TSP, 3-COLOR, CLIQUE, ...

As descison problems, all NP complete problems are isomorphic.

NP =
$\bigcup_{k=1}^{\infty} \operatorname{NTIME}\left[n^{k}\right]$

Many optimization problems we want to solve are NP complete.

SAT, TSP, 3-COLOR, CLIQUE, ...

As descison

problems, all NP complete problems are isomorphic.

$\mathrm{NP}=$

Many optimization problems we want to solve are NP complete.

SAT, TSP, 3-COLOR, CLIQUE, ...

As descison

problems, all NP complete problems are isomorphic.

Descriptive Complexity

$$
\begin{gathered}
\text { Query } \\
q_{1} q_{2} \cdots q_{n}
\end{gathered} \mapsto \text { Computation } \mapsto
$$

$$
\begin{gathered}
\text { Answer } \\
a_{1} a_{2} \cdots a_{i} \cdots a_{m}
\end{gathered}
$$

Descriptive Complexity

$$
\begin{array}{cc}
\text { Query } \\
q_{1} q_{2} \cdots q_{n}
\end{array} \mapsto \text { Computation } \mapsto \quad a_{1} a_{2} \cdots a_{i} \cdots a_{m}
$$

Restrict attention to the complexity of computing individual bits of the output, i.e., decision problems.

Descriptive Complexity

Restrict attention to the complexity of computing individual bits of the output, i.e., decision problems.

How hard is it to check if input has property S ?

Descriptive Complexity

Restrict attention to the complexity of computing individual bits of the output, i.e., decision problems.

How hard is it to check if input has property S ?

How rich a language do we need to express property S ?

Descriptive Complexity

Restrict attention to the complexity of computing individual bits of the output, i.e., decision problems.

How hard is it to check if input has property S ?

How rich a language do we need to express property S ?

There is a constructive isomorphism between these two approaches.

Think of the Input as a Finite Logical Structure

Graph
$$
\Sigma_{g}=\left(E^{2}, s, t\right)
$$

$$
G=\left(\left\{v_{1}, \ldots, v_{n}\right\}, \leq, E, s, t\right)
$$

Binary String

$$
\begin{gathered}
\mathcal{A}_{w}=\left(\left\{p_{1}, \ldots, p_{8}\right\}, \leq, S\right) \\
S=\left\{p_{2}, p_{5}, p_{7}, p_{8}\right\} \\
w=01001011
\end{gathered}
$$

First-Order Logic

input symbols: from Σ
variables: $\quad x, y, z, \ldots$
boolean connectives: \wedge, \vee, \neg
quantifiers: \forall, \exists
numeric symbols: $=, \leq,+, \times, \min , \max$

$$
\begin{aligned}
\alpha & \equiv \forall x \exists y(E(x, y)) & \in \mathcal{L}\left(\Sigma_{g}\right) \\
\beta & \equiv \exists x \forall y(x \leq y \wedge S(x)) & \in \mathcal{L}\left(\Sigma_{s}\right) \\
\beta & \equiv S(\min) & \in \mathcal{L}\left(\Sigma_{s}\right)
\end{aligned}
$$

First-Order Logic

input symbols: from Σ
variables: $\quad x, y, z, \ldots$
boolean connectives: \wedge, \vee, \neg
quantifiers: \forall, \exists
numeric symbols: $=, \leq,+, \times, \min , \max$

$$
\begin{aligned}
\alpha & \equiv \forall x \exists y(E(x, y)) & \in \mathcal{L}\left(\Sigma_{g}\right) \\
\beta & \equiv \exists x \forall y(x \leq y \wedge S(x)) & \in \mathcal{L}\left(\Sigma_{s}\right) \\
\beta & \equiv S(\min) & \in \mathcal{L}\left(\Sigma_{s}\right)
\end{aligned}
$$

In this setting, with the structure of interest being the finite input, FO is a weak, low-level complexity class.

Second-Order Logic: FO plus Relation Variables

$$
\begin{aligned}
\Phi_{\text {scolor }} \equiv & \exists R^{1} G^{1} B^{1} \forall x y((R(x) \vee G(x) \vee B(x)) \wedge(E(x, y) \rightarrow \\
& (\neg(R(x) \wedge R(y)) \wedge \neg(G(x) \wedge G(y)) \wedge \neg(B(x) \wedge B(y)))))
\end{aligned}
$$

Second-Order Logic: FO plus Relation Variables

Fagin's Theorem: $\quad \mathrm{NP}=\mathrm{SO} \exists$

$$
\begin{aligned}
\Phi_{\text {color }} \equiv & \exists R^{1} G^{1} B^{1} \forall x y((R(x) \vee G(x) \vee B(x)) \wedge(E(x, y) \rightarrow \\
& (\neg(R(x) \wedge R(y)) \wedge \neg(G(x) \wedge G(y)) \wedge \neg(B(x) \wedge B(y)))))
\end{aligned}
$$

Addition is First-Order

$Q_{+}: \operatorname{STRUC}\left[\Sigma_{A B}\right] \rightarrow \operatorname{STRUC}\left[\Sigma_{s}\right]$

Addition is First-Order

$Q_{+}: \operatorname{STRUC}\left[\Sigma_{A B}\right] \rightarrow \operatorname{STRUC}\left[\Sigma_{s}\right]$

$$
\left.\begin{array}{r}
A \\
B \\
S
\end{array}+\begin{array}{lllll}
a_{1} & a_{2} & \ldots & a_{n-1} & a_{n} \\
b_{1} & b_{2} & \ldots & b_{n-1} & b_{n} \\
\hline s_{1} & s_{2} & \cdots & s_{n-1} & s_{n}
\end{array}\right] \begin{array}{r}
C(i) \equiv(\exists j>i)(A(j) \wedge B(j) \wedge \\
\\
(\forall k . j>k>i)(A(k) \vee B(k)))
\end{array}
$$

Addition is First-Order

$Q_{+}: \operatorname{STRUC}\left[\Sigma_{A B}\right] \rightarrow \operatorname{STRUC}\left[\Sigma_{s}\right]$

$$
\left.\begin{array}{rl}
A \\
B \\
S
\end{array}+\begin{array}{lllll}
a_{1} & a_{2} & \ldots & a_{n-1} & a_{n} \\
b_{1} & b_{2} & \ldots & b_{n-1} & b_{n} \\
\hline s_{1} & s_{2} & \ldots & s_{n-1} & s_{n}
\end{array}\right] \begin{gathered}
C(i) \equiv \\
\\
(\exists j>i)(A(j) \wedge B(j) \wedge \\
Q_{+}(i) \equiv A(i) \oplus B(i) \oplus C(i)
\end{gathered}
$$

Parallel Machines:

$\operatorname{CRAM}[t(n)]=\operatorname{CRCW}-\operatorname{PRAM}-\operatorname{TIME}[t(n)]-\operatorname{HARD}\left[\mathrm{O}^{(1)}\right]$

Parallel Machines:

$\operatorname{CRAM}[t(n)]=\mathrm{CRCW}-\operatorname{PRAM}-\operatorname{TIME}[t(n)]-\operatorname{HARD}\left[n^{O(1)}\right]$
Assume array $A[x]: x=1, \ldots, r$ in memory.

Parallel Machines:

$\operatorname{CRAM}[t(n)]=$ CRCW-PRAM-TIME $[t(n)]-\operatorname{HARD}\left[n^{O(1)}\right]$
Assume array $A[x]: x=1, \ldots, r$ in memory.
$\forall x(A(x)) \equiv$ write(1);

Parallel Machines:

Quantifiers are Parallel

$\operatorname{CRAM}[t(n)]=\mathrm{CRCW}-\operatorname{PRAM}-\operatorname{TIME}[t(n)]-\operatorname{HARD}\left[n^{O(1)}\right]$
Assume array $A[x]: x=1, \ldots, r$ in memory.
$\forall x(A(x)) \equiv$ write $(1) ;$ proc $p_{i}:$ if $(A[i]=0)$ then write (0)

Inductive Definitions and Least Fixed Point

$$
\mathrm{REACH}=\{G, s, t \mid s \xrightarrow{\star} t\}
$$

Inductive Definitions and Least Fixed Point

REACH $=\{G, s, t \mid s \xrightarrow{\star} t\}$
REACH \notin FO

Inductive Definitions and Least Fixed Point

$$
E^{\star}(x, y) \stackrel{\text { def }}{=} x=y \vee E(x, y) \vee \exists z\left(E^{\star}(x, z) \wedge E^{\star}(z, y)\right)
$$

$\mathrm{REACH}=\{G, s, t \mid s \xrightarrow{\star} t\}$
REACH \notin FO

Inductive Definitions and Least Fixed Point

$$
\begin{aligned}
E^{\star}(x, y) & \stackrel{\text { def }}{=} x=y \vee E(x, y) \vee \exists z\left(E^{\star}(x, z) \wedge E^{\star}(z, y)\right) \\
\varphi_{t c}(R, x, y) & \equiv x=y \vee E(x, y) \vee \exists z(R(x, z) \wedge R(z, y))
\end{aligned}
$$

$\mathrm{REACH}=\{G, s, t \mid s \xrightarrow{\star} t\}$
REACH \notin FO

Inductive Definitions and Least Fixed Point

$$
\begin{aligned}
E^{\star}(x, y) & \stackrel{\text { def }}{=} x=y \vee E(x, y) \vee \exists z\left(E^{\star}(x, z) \wedge E^{\star}(z, y)\right) \\
\varphi_{t c}(R, x, y) & \equiv x=y \vee E(x, y) \vee \exists z(R(x, z) \wedge R(z, y))
\end{aligned}
$$

$\varphi_{\text {tc }}^{G}: \operatorname{binRel}(G) \rightarrow \operatorname{binRel}(G) \quad$ is a monotone operator

$$
\mathrm{REACH}=\{G, s, t \mid s \xrightarrow{\star} t\} \quad \text { REACH } \notin \mathrm{FO}
$$

Inductive Definitions and Least Fixed Point

$$
\begin{aligned}
E^{\star}(x, y) & \stackrel{\text { def }}{=} x=y \vee E(x, y) \vee \exists z\left(E^{\star}(x, z) \wedge E^{\star}(z, y)\right) \\
\varphi_{t c}(R, x, y) & \equiv x=y \vee E(x, y) \vee \exists z(R(x, z) \wedge R(z, y))
\end{aligned}
$$

$\varphi_{\text {tc }}^{G}: \operatorname{binRel}(G) \rightarrow \operatorname{binRel}(G) \quad$ is a monotone operator

$$
E^{\star}=\left(\mathrm{LFP} \varphi_{t c}\right)
$$

$$
\mathrm{REACH}=\{G, s, t \mid s \xrightarrow{\star} t\} \quad \text { REACH } \notin \mathrm{FO}
$$

Inductive Definitions and Least Fixed Point

$$
\begin{aligned}
E^{\star}(x, y) & \stackrel{\text { def }}{=} x=y \vee E(x, y) \vee \exists z\left(E^{\star}(x, z) \wedge E^{\star}(z, y)\right) \\
\varphi_{t c}(R, x, y) & \equiv x=y \vee E(x, y) \vee \exists z(R(x, z) \wedge R(z, y))
\end{aligned}
$$

$\varphi_{\text {tc }}^{G}: \operatorname{binRel}(G) \rightarrow \operatorname{binRel}(G) \quad$ is a monotone operator

$$
\begin{aligned}
G \in \operatorname{REACH} \Leftrightarrow G \models\left(\operatorname{LFP} \varphi_{t c}\right)(s, t) & E^{\star}=\left(\operatorname{LFP} \varphi_{t c}\right) \\
\mathrm{REACH}=\{G, s, t \mid s \xrightarrow{\star} t\} & \mathrm{REACH} \notin \mathrm{FO}
\end{aligned}
$$

Tarski-Knaster Theorem

Thm. If $\varphi: \operatorname{Rel}^{k}(G) \rightarrow \operatorname{Rel}^{k}(G)$ is monotone, then $\operatorname{LFP}(\varphi)$ exists and can be computed in P.

Tarski-Knaster Theorem

Thm. If $\varphi: \operatorname{Rel}^{k}(G) \rightarrow \operatorname{Rel}^{k}(G)$ is monotone, then $\operatorname{LFP}(\varphi)$ exists and can be computed in P. proof: Monotone means, for all $R \subseteq S, \quad \varphi(R) \subseteq \varphi(S)$.

Tarski-Knaster Theorem

Thm. If $\varphi: \operatorname{Rel}^{k}(G) \rightarrow \operatorname{Rel}^{k}(G)$ is monotone, then $\operatorname{LFP}(\varphi)$ exists and can be computed in P. proof: Monotone means, for all $R \subseteq S, \quad \varphi(R) \subseteq \varphi(S)$. Let $I^{0} \stackrel{\text { def }}{=} \emptyset ; \quad I^{r+1} \stackrel{\text { def }}{=} \varphi\left(I^{r}\right)$

Tarski-Knaster Theorem

Thm. If $\varphi: \operatorname{Rel}^{k}(G) \rightarrow \operatorname{Rel}^{k}(G)$ is monotone, then $\operatorname{LFP}(\varphi)$ exists and can be computed in P.
proof: Monotone means, for all $R \subseteq S, \quad \varphi(R) \subseteq \varphi(S)$.
Let $I^{0} \stackrel{\text { def }}{=} \emptyset ; \quad I^{r+1} \stackrel{\text { def }}{=} \varphi\left(I^{r}\right) \quad$ Thus, $\emptyset=I^{0} \subseteq I^{1} \subseteq \cdots \subseteq I^{t}$.

Tarski-Knaster Theorem

Thm. If $\varphi: \operatorname{Rel}^{k}(G) \rightarrow \operatorname{Rel}^{k}(G)$ is monotone, then $\operatorname{LFP}(\varphi)$ exists and can be computed in P. proof: Monotone means, for all $R \subseteq S, \quad \varphi(R) \subseteq \varphi(S)$. Let $I^{0} \stackrel{\text { def }}{=} \emptyset ; \quad I^{r+1} \stackrel{\text { def }}{=} \varphi\left(I^{r}\right) \quad$ Thus, $\emptyset=I^{0} \subseteq I^{1} \subseteq \cdots \subseteq I^{t}$.

Let t be min such that $I^{t}=I^{t+1}$. Note that $t \leq n^{k}$ where $n=\left|V^{G}\right|$.

Tarski-Knaster Theorem

Thm. If $\varphi: \operatorname{Rel}^{k}(G) \rightarrow \operatorname{Rel}^{k}(G)$ is monotone, then $\operatorname{LFP}(\varphi)$ exists and can be computed in P. proof: Monotone means, for all $R \subseteq S, \quad \varphi(R) \subseteq \varphi(S)$. Let $I^{0} \stackrel{\text { def }}{=} \emptyset ; \quad I^{r+1} \stackrel{\text { def }}{=} \varphi\left(I^{r}\right) \quad$ Thus, $\emptyset=I^{0} \subseteq I^{1} \subseteq \cdots \subseteq I^{t}$.
Let t be min such that $I^{t}=I^{t+1}$. Note that $t \leq n^{k}$ where $n=\left|V^{G}\right| . \quad \varphi\left(I^{t}\right)=I^{t}, \quad$ so I^{t} is a fixed point of φ.

Tarski-Knaster Theorem

Thm. If $\varphi: \operatorname{Rel}^{k}(G) \rightarrow \operatorname{Rel}^{k}(G)$ is monotone, then $\operatorname{LFP}(\varphi)$ exists and can be computed in P. proof: Monotone means, for all $R \subseteq S, \quad \varphi(R) \subseteq \varphi(S)$. Let $I^{0} \stackrel{\text { def }}{=} \emptyset ; \quad I^{r+1} \stackrel{\text { def }}{=} \varphi\left(I^{r}\right) \quad$ Thus, $\emptyset=I^{0} \subseteq I^{1} \subseteq \cdots \subseteq I^{t}$. Let t be min such that $I^{t}=I^{t+1}$. Note that $t \leq n^{k}$ where $n=\left|V^{G}\right| . \quad \varphi\left(I^{t}\right)=I^{t}, \quad$ so I^{t} is a fixed point of φ.

Suppose $\varphi(F)=F$.

Tarski-Knaster Theorem

Thm. If $\varphi: \operatorname{Rel}^{k}(G) \rightarrow \operatorname{Rel}^{k}(G)$ is monotone, then $\operatorname{LFP}(\varphi)$ exists and can be computed in P. proof: Monotone means, for all $R \subseteq S, \quad \varphi(R) \subseteq \varphi(S)$. Let $I^{0} \stackrel{\text { def }}{=} \emptyset ; \quad I^{r+1} \stackrel{\text { def }}{=} \varphi\left(I^{r}\right) \quad$ Thus, $\emptyset=I^{0} \subseteq I^{1} \subseteq \cdots \subseteq I^{t}$. Let t be min such that $I^{t}=I^{t+1}$. Note that $t \leq n^{k}$ where $n=\left|V^{G}\right| . \quad \varphi\left(I^{t}\right)=I^{t}, \quad$ so I^{t} is a fixed point of φ.

Suppose $\varphi(F)=F . \quad$ By induction on r, for all $r, I^{r} \subseteq F$.

Tarski-Knaster Theorem

Thm. If $\varphi: \operatorname{Rel}^{k}(G) \rightarrow \operatorname{Rel}^{k}(G)$ is monotone, then $\operatorname{LFP}(\varphi)$ exists and can be computed in P. proof: Monotone means, for all $R \subseteq S, \quad \varphi(R) \subseteq \varphi(S)$. Let $I^{0} \stackrel{\text { def }}{=} \emptyset ; \quad I^{r+1} \stackrel{\text { def }}{=} \varphi\left(I^{r}\right) \quad$ Thus, $\emptyset=I^{0} \subseteq I^{1} \subseteq \cdots \subseteq I^{t}$. Let t be min such that $I^{t}=I^{t+1}$. Note that $t \leq n^{k}$ where $n=\left|V^{G}\right| . \quad \varphi\left(I^{t}\right)=I^{t}, \quad$ so I^{t} is a fixed point of φ.

Suppose $\varphi(F)=F . \quad$ By induction on r, for all $r, I^{r} \subseteq F$. base case: $\quad \rho^{0}=\emptyset \subseteq F$.

Tarski-Knaster Theorem

Thm. If $\varphi: \operatorname{Rel}^{k}(G) \rightarrow \operatorname{Rel}^{k}(G)$ is monotone, then $\operatorname{LFP}(\varphi)$ exists and can be computed in P. proof: Monotone means, for all $R \subseteq S, \quad \varphi(R) \subseteq \varphi(S)$. Let $I^{0} \stackrel{\text { def }}{=} \emptyset ; \quad I^{r+1} \stackrel{\text { def }}{=} \varphi\left(I^{r}\right) \quad$ Thus, $\emptyset=I^{0} \subseteq I^{1} \subseteq \cdots \subseteq I^{t}$. Let t be min such that $I^{t}=I^{t+1}$. Note that $t \leq n^{k}$ where $n=\left|V^{G}\right| . \quad \varphi\left(I^{t}\right)=I^{t}, \quad$ so I^{t} is a fixed point of φ.

Suppose $\varphi(F)=F . \quad$ By induction on r, for all $r, I^{r} \subseteq F$.
base case: $\quad \rho^{0}=\emptyset \subseteq F$.
inductive case: Assume $\mu^{j} \subseteq F$

Tarski-Knaster Theorem

Thm. If $\varphi: \operatorname{Rel}^{k}(G) \rightarrow \operatorname{Rel}^{k}(G)$ is monotone, then $\operatorname{LFP}(\varphi)$ exists and can be computed in P. proof: Monotone means, for all $R \subseteq S, \quad \varphi(R) \subseteq \varphi(S)$. Let $I^{0} \stackrel{\text { def }}{=} \emptyset ; \quad I^{r+1} \stackrel{\text { def }}{=} \varphi\left(I^{r}\right) \quad$ Thus, $\emptyset=I^{0} \subseteq I^{1} \subseteq \cdots \subseteq I^{t}$. Let t be min such that $I^{t}=I^{t+1}$. Note that $t \leq n^{k}$ where $n=\left|V^{G}\right| . \quad \varphi\left(I^{t}\right)=I^{t}, \quad$ so I^{t} is a fixed point of φ.

Suppose $\varphi(F)=F . \quad$ By induction on r, for all $r, I^{r} \subseteq F$. base case: $\quad \rho^{0}=\emptyset \subseteq F$. inductive case: Assume $\mu^{j} \subseteq F$

By monotonicity, $\quad \varphi\left(\mu^{j}\right) \subseteq \varphi(F)$, i.e., $\quad j^{j+1} \subseteq F$.

Tarski-Knaster Theorem

Thm. If $\varphi: \operatorname{Rel}^{k}(G) \rightarrow \operatorname{Rel}^{k}(G)$ is monotone, then $\operatorname{LFP}(\varphi)$ exists and can be computed in P. proof: Monotone means, for all $R \subseteq S, \quad \varphi(R) \subseteq \varphi(S)$. Let $I^{0} \stackrel{\text { def }}{=} \emptyset ; \quad I^{r+1} \stackrel{\text { def }}{=} \varphi\left(I^{r}\right) \quad$ Thus, $\emptyset=I^{0} \subseteq I^{1} \subseteq \cdots \subseteq I^{t}$. Let t be min such that $I^{t}=I^{t+1}$. Note that $t \leq n^{k}$ where $n=\left|V^{G}\right| . \quad \varphi\left(I^{t}\right)=I^{t}, \quad$ so I^{t} is a fixed point of φ.

Suppose $\varphi(F)=F . \quad$ By induction on r, for all $r, I^{r} \subseteq F$. base case: $\quad \rho^{0}=\emptyset \subseteq F$. inductive case: Assume $\mu^{j} \subseteq F$
By monotonicity, $\quad \varphi\left(\mu^{j}\right) \subseteq \varphi(F)$, i.e., $\quad j^{j+1} \subseteq F$.
Thus $I^{t} \subseteq F \quad$ and $\quad I^{t}=\operatorname{LFP}(\varphi)$.

Inductive Definition of Transitive Closure

$$
\varphi_{t c}(R, x, y) \equiv x=y \vee E(x, y) \vee \exists z(R(x, z) \wedge R(z, y))
$$

Inductive Definition of Transitive Closure

$$
\begin{aligned}
\varphi_{t c}(R, x, y) & \equiv x=y \vee E(x, y) \vee \exists z(R(x, z) \wedge R(z, y)) \\
I^{1}=\varphi_{t c}^{G}(\emptyset) & =\left\{(a, b) \in V^{G} \times V^{G} \mid \operatorname{dist}(a, b) \leq 1\right\}
\end{aligned}
$$

Inductive Definition of Transitive Closure

$$
\begin{aligned}
\varphi_{t c}(R, x, y) & \equiv x=y \vee E(x, y) \vee \exists z(R(x, z) \wedge R(z, y)) \\
f^{1}=\varphi_{c}^{G}(()) & =\left\{(a, b) \in V^{G} \times V^{G} \mid \operatorname{dist}(a, b) \leq 1\right\} \\
R^{2}=\left(\varphi_{t c}^{G}\right)^{2}(()) & =\left\{(a, b) \in V^{G} \times V^{G} \mid \operatorname{dist}(a, b) \leq 2\right\}
\end{aligned}
$$

Inductive Definition of Transitive Closure

$$
\begin{aligned}
\varphi_{t c}^{c}(R, x, y) & \equiv x=y \vee E(x, y) \vee \exists z(R(x, z) \wedge R(z, y)) \\
I^{1}=\varphi_{c}^{G}(()) & =\left\{(a, b) \in V^{G} \times V^{G} \mid \text { dist }(a, b) \leq 1\right\} \\
R^{2}=\left(\varphi_{c t}^{G}\right)^{2}(b) & =\left\{(a, b) \in V^{G} \times V^{G} \mid \text { dist }(a, b) \leq 2\right\} \\
\beta=\left(\varphi_{t c}^{G}\right)^{3}(\emptyset) & =\left\{(a, b) \in V^{G} \times V^{G} \mid \text { dist }(a, b) \leq 4\right\}
\end{aligned}
$$

Inductive Definition of Transitive Closure

$$
\begin{array}{ccc}
\varphi_{t c}(R, x, y) & \equiv & x=y \vee E(x, y) \vee \exists z(R(x, z) \wedge R(z, y)) \\
I^{1}=\varphi_{t c}^{G}(\emptyset) & = & \left\{(a, b) \in V^{G} \times V^{G} \mid \operatorname{dist}(a, b) \leq 1\right\} \\
I^{2}=\left(\varphi_{t c}^{G}\right)^{2}(\emptyset) & = & \left\{(a, b) \in V^{G} \times V^{G} \mid \operatorname{dist}(a, b) \leq 2\right\} \\
I^{3}=\left(\varphi_{t c}^{G}\right)^{3}(\emptyset) & = & \left\{(a, b) \in V^{G} \times V^{G} \mid \operatorname{dist}(a, b) \leq 4\right\} \\
\vdots & = & \vdots \\
I^{r}=\left(\varphi_{t c}^{G}\right)^{r}(\emptyset) & = & \left\{(a, b) \in V^{G} \times V^{G} \mid \operatorname{dist}(a, b) \leq 2^{r-1}\right\}
\end{array}
$$

Inductive Definition of Transitive Closure

$$
\begin{array}{ccc}
\varphi_{t c}(R, x, y) & \equiv & x=y \vee E(x, y) \vee \exists z(R(x, z) \wedge R(z, y)) \\
I^{1}=\varphi_{t c}^{G}(\emptyset) & = & \left\{(a, b) \in V^{G} \times V^{G} \mid \operatorname{dist}(a, b) \leq 1\right\} \\
I^{2}=\left(\varphi_{t c}^{G}\right)^{2}(\emptyset) & = & \left\{(a, b) \in V^{G} \times V^{G} \mid \operatorname{dist}(a, b) \leq 2\right\} \\
I^{3}=\left(\varphi_{t c}^{G}\right)^{3}(\emptyset) & = & \left\{(a, b) \in V^{G} \times V^{G} \mid \operatorname{dist}(a, b) \leq 4\right\} \\
\vdots & = & \vdots \\
I^{r}=\left(\varphi_{t c}^{G}\right)^{r}(\emptyset) & = & \left\{(a, b) \in V^{G} \times V^{G} \mid \operatorname{dist}(a, b) \leq 2^{r-1}\right\} \\
\vdots & = & \vdots \\
\left(\varphi_{t c}^{G}\right)^{[1+\log n\rceil}(\emptyset) & = & \left\{(a, b) \in V^{G} \times V^{G} \mid \operatorname{dist}(a, b) \leq n\right\}
\end{array}
$$

Inductive Definition of Transitive Closure

$$
\begin{array}{ccc}
\varphi_{t c}(R, x, y) & \equiv & x=y \vee E(x, y) \vee \exists z(R(x, z) \wedge R(z, y)) \\
I^{1}=\varphi_{t c}^{G}(\emptyset) & = & \left\{(a, b) \in V^{G} \times V^{G} \mid \operatorname{dist}(a, b) \leq 1\right\} \\
I^{2}=\left(\varphi_{t c}^{G}\right)^{2}(\emptyset) & = & \left\{(a, b) \in V^{G} \times V^{G} \mid \operatorname{dist}(a, b) \leq 2\right\} \\
I^{3}=\left(\varphi_{t c}^{G}\right)^{3}(\emptyset) & = & \left\{(a, b) \in V^{G} \times V^{G} \mid \operatorname{dist}(a, b) \leq 4\right\} \\
\vdots & = & \vdots \\
I^{r}=\left(\varphi_{t c}^{G}\right)^{r}(\emptyset) & = & \left\{(a, b) \in V^{G} \times V^{G} \mid \operatorname{dist}(a, b) \leq 2^{r-1}\right\} \\
\vdots & = & \vdots \\
\left(\varphi_{t c}^{G}\right)^{[1+\log n\rceil}(\emptyset) & = & \left\{(a, b) \in V^{G} \times V^{G} \mid \operatorname{dist}(a, b) \leq n\right\} \\
\operatorname{LFP}\left(\varphi_{t c}\right) & = & \varphi_{t c}^{[1+\log n]}(\emptyset) ; \quad \operatorname{REACH} \in \operatorname{IND}[\log n]
\end{array}
$$

Inductive Definition of Transitive Closure

$$
\begin{array}{ccc}
\varphi_{t c}(R, x, y) & \equiv & x=y \vee E(x, y) \vee \exists z(R(x, z) \wedge R(z, y)) \\
I^{1}=\varphi_{t c}^{G}(\emptyset) & = & \left\{(a, b) \in V^{G} \times V^{G} \mid \operatorname{dist}(a, b) \leq 1\right\} \\
I^{2}=\left(\varphi_{t c}^{G}\right)^{2}(\emptyset) & = & \left\{(a, b) \in V^{G} \times V^{G} \mid \operatorname{dist}(a, b) \leq 2\right\} \\
I^{3}=\left(\varphi_{t c}^{G}\right)^{3}(\emptyset) & = & \left\{(a, b) \in V^{G} \times V^{G} \mid \operatorname{dist}(a, b) \leq 4\right\} \\
\vdots & = & \vdots \\
I^{r}=\left(\varphi_{t c}^{G}\right)^{r}(\emptyset) & = & \left\{(a, b) \in V^{G} \times V^{G} \mid \operatorname{dist}(a, b) \leq 2^{r-1}\right\} \\
\vdots & = & \vdots \\
\left(\varphi_{t c}^{G}\right)^{[1+\log n]}(\emptyset) & = & \left\{(a, b) \in V^{G} \times V^{G} \mid \operatorname{dist}(a, b) \leq n\right\} \\
\operatorname{LFP}\left(\varphi_{t c}\right) & = & \varphi_{t c}^{[1+\log n]}(\emptyset) ; \quad \operatorname{REACH} \in \operatorname{IND}[\log n]
\end{array}
$$

Next we will show that $\operatorname{IND}[t(n)]=\mathrm{FO}[t(n)]$.

$$
\varphi_{t c}(R, x, y) \equiv x=y \vee E(x, y) \vee \exists z(R(x, z) \wedge R(z, y))
$$

1. Dummy universal quantification for base case:

$$
\begin{aligned}
\varphi_{t c}(R, x, y) & \equiv\left(\forall z \cdot M_{1}\right)(\exists z)(R(x, z) \wedge R(z, y)) \\
M_{1} & \equiv \neg(x=y \vee E(x, y))
\end{aligned}
$$

$\varphi_{\text {tc }}(R, x, y) \equiv x=y \vee E(x, y) \vee \exists z(R(x, z) \wedge R(z, y))$

1. Dummy universal quantification for base case:

$$
\begin{aligned}
\varphi_{t c}(R, x, y) & \equiv\left(\forall z \cdot M_{1}\right)(\exists z)(R(x, z) \wedge R(z, y)) \\
M_{1} & \equiv \neg(x=y \vee E(x, y))
\end{aligned}
$$

2. Using \forall, replace two occurrences of R with one:

$$
\begin{aligned}
\varphi_{t c}(R, x, y) & \equiv\left(\forall z \cdot M_{1}\right)(\exists z)\left(\forall u v \cdot M_{2}\right) R(u, v) \\
M_{2} & \equiv(u=x \wedge v=z) \vee(u=z \wedge v=y)
\end{aligned}
$$

$\varphi_{t c}(R, x, y) \equiv x=y \vee E(x, y) \vee \exists z(R(x, z) \wedge R(z, y))$

1. Dummy universal quantification for base case:

$$
\begin{aligned}
\varphi_{t c}(R, x, y) & \equiv\left(\forall z \cdot M_{1}\right)(\exists z)(R(x, z) \wedge R(z, y)) \\
M_{1} & \equiv \neg(x=y \vee E(x, y))
\end{aligned}
$$

2. Using \forall, replace two occurrences of R with one:

$$
\begin{aligned}
\varphi_{t c}(R, x, y) & \equiv\left(\forall z \cdot M_{1}\right)(\exists z)\left(\forall u v \cdot M_{2}\right) R(u, v) \\
M_{2} & \equiv(u=x \wedge v=z) \vee(u=z \wedge v=y)
\end{aligned}
$$

3. Requantify x and y.

$$
\begin{gathered}
M_{3} \equiv(x=u \wedge y=v) \\
\varphi_{t c}(R, x, y) \equiv\left[\left(\forall z \cdot M_{1}\right)(\exists z)\left(\forall u v \cdot M_{2}\right)\left(\exists x y \cdot M_{3}\right)\right] R(x, y)
\end{gathered}
$$

Every FO inductive definition is equivalent to a quantifier block.

$\mathrm{QB}_{\text {tc }} \equiv\left[\left(\forall z \cdot M_{1}\right)(\exists z)\left(\forall u v \cdot M_{2}\right)\left(\forall x y \cdot M_{3}\right)\right]$

$$
\varphi_{t c}(R, x, y) \equiv\left[\left(\forall z \cdot M_{1}\right)(\exists z)\left(\forall u v \cdot M_{2}\right)\left(\exists x y \cdot M_{3}\right)\right] R(x, y)
$$

$\mathrm{QB}_{t c} \equiv\left[\left(\forall z \cdot M_{1}\right)(\exists z)\left(\forall u v \cdot M_{2}\right)\left(\forall x y \cdot M_{3}\right)\right]$

$$
\begin{aligned}
& \varphi_{t c}(R, x, y) \equiv\left[\left(\forall z \cdot M_{1}\right)(\exists z)\left(\forall u v \cdot M_{2}\right)\left(\exists x y \cdot M_{3}\right)\right] R(x, y) \\
& \varphi_{t c}(R, x, y) \equiv\left[\mathrm{QB}_{t c}\right] R(x, y)
\end{aligned}
$$

$\mathrm{QB}_{t c} \equiv\left[\left(\forall z \cdot M_{1}\right)(\exists z)\left(\forall u v \cdot M_{2}\right)\left(\forall x y \cdot M_{3}\right)\right]$

$$
\begin{aligned}
\varphi_{t c}(R, x, y) & \equiv\left[\left(\forall z \cdot M_{1}\right)(\exists z)\left(\forall u v \cdot M_{2}\right)\left(\exists x y \cdot M_{3}\right)\right] R(x, y) \\
\varphi_{t c}(R, x, y) & \equiv\left[\mathrm{QB}_{t c}\right] R(x, y) \\
\varphi_{t c}^{r}(\emptyset) & \equiv\left[\mathrm{QB}_{t c}\right]^{r}(\text { false })
\end{aligned}
$$

$\mathrm{QB}_{t c} \equiv\left[\left(\forall z \cdot M_{1}\right)(\exists z)\left(\forall u v \cdot M_{2}\right)\left(\forall x y \cdot M_{3}\right)\right]$

$$
\begin{aligned}
\varphi_{t c}(R, x, y) & \equiv\left[\left(\forall z \cdot M_{1}\right)(\exists z)\left(\forall u v \cdot M_{2}\right)\left(\exists x y \cdot M_{3}\right)\right] R(x, y) \\
\varphi_{t c}(R, x, y) & \equiv\left[\mathrm{QB}_{t c}\right] R(x, y) \\
\varphi_{t c}^{r}(\emptyset) & \equiv\left[\mathrm{QB}_{t c}\right]^{r}(\mathbf{f a l s e})
\end{aligned}
$$

Thus, for any structure $\mathcal{A} \in \operatorname{STRUC}\left[\Sigma_{g}\right]$,

$$
\begin{aligned}
\mathcal{A} \in \operatorname{REACH} & \Leftrightarrow \mathcal{A} \models\left(\operatorname{LFP}_{t c}\right)(s, t) \\
& \Leftrightarrow \mathcal{A} \models\left(\left[\mathrm{QB}_{t c}\right]^{\lceil 1+\log \|\mathcal{A}\|\rceil} \text { false }\right)(s, t)
\end{aligned}
$$

$\operatorname{CRAM}[t(n)]=$ concurrent parallel random access machine; polynomial hardware, parallel time $O(t(n))$
$\operatorname{IND}[t(n)]=$ first-order, depth $t(n)$ inductive definitions
$\mathrm{FO}[t(n)]=t(n)$ repetitions of a block of restricted quantifiers:

$$
\begin{aligned}
\mathrm{QB} & =\left[\left(Q_{1} x_{1} \cdot M_{1}\right) \cdots\left(Q_{k} x_{k} \cdot M_{k}\right)\right] ; \quad M_{i} \text { quantifier-free } \\
\varphi_{n} & =\underbrace{[\mathrm{QB}][\mathrm{QB}] \cdots[\mathrm{QB}]}_{t(n)} M_{0}
\end{aligned}
$$

parallel time $=$ inductive depth $=$ QB iteration

Thm. For all constructible, polynomially bounded $t(n)$,

$$
\operatorname{CRAM}[t(n)]=\operatorname{IND}[t(n)]=\mathrm{FO}[t(n)]
$$

parallel time $=$ inductive depth $=$ QB iteration

Thm. For all constructible, polynomially bounded $t(n)$,

$$
\operatorname{CRAM}[t(n)]=\operatorname{IND}[t(n)]=\mathrm{FO}[t(n)]
$$

proof idea: $\operatorname{CRAM}[t(n)] \supseteq \mathrm{FO}[t(n)]: \quad$ For QB with k variables, keep in memory current value of formula on all possible assignments, using n^{k} bits of global memory.

parallel time $=$ inductive depth $=$ QB iteration

Thm. For all constructible, polynomially bounded $t(n)$,

$$
\operatorname{CRAM}[t(n)]=\operatorname{IND}[t(n)]=\mathrm{FO}[t(n)]
$$

proof idea: $\operatorname{CRAM}[t(n)] \supseteq \mathrm{FO}[t(n)]$: For QB with k variables, keep in memory current value of formula on all possible assignments, using n^{k} bits of global memory.
Simulate each next quantifier in constant parallel time.

parallel time $=$ inductive depth $=$ QB iteration

Thm. For all constructible, polynomially bounded $t(n)$,

$$
\operatorname{CRAM}[t(n)]=\operatorname{IND}[t(n)]=\mathrm{FO}[t(n)]
$$

proof idea: $\operatorname{CRAM}[t(n)] \supseteq \mathrm{FO}[t(n)]$: For QB with k variables, keep in memory current value of formula on all possible assignments, using n^{k} bits of global memory. Simulate each next quantifier in constant parallel time.
$\operatorname{CRAM}[t(n)] \subseteq \mathrm{FO}[t(n)]: \quad$ Inductively define new state of every bit of every register of every processor in terms of this global state at the previous time step.

parallel time $=$ inductive depth $=$ QB iteration

Thm. For all constructible, polynomially bounded $t(n)$,

$$
\operatorname{CRAM}[t(n)]=\operatorname{IND}[t(n)]=\mathrm{FO}[t(n)]
$$

proof idea: $\operatorname{CRAM}[t(n)] \supseteq \operatorname{FO}[t(n)]$: For QB with k variables, keep in memory current value of formula on all possible assignments, using n^{k} bits of global memory. Simulate each next quantifier in constant parallel time.
$\operatorname{CRAM}[t(n)] \subseteq \mathrm{FO}[t(n)]: \quad$ Inductively define new state of every bit of every register of every processor in terms of this global state at the previous time step.

Thm. For all $t(n)$, even beyond polynomial,

$$
\operatorname{CRAM}[t(n)]=\operatorname{FO}[t(n)]
$$

For $t(n)$ poly bdd,

Remember that
for all $t(n)$,
$\operatorname{CRAM}[t(n)]$
$\mathrm{FO}[t(n)]$

Number of Variables Determines Amount of Hardware

Thm. For $k=1,2, \ldots, \quad \operatorname{DSPACE}\left[n^{k}\right]=\operatorname{VAR}[k+1]$

Number of Variables Determines Amount of Hardware

Thm. For $k=1,2, \ldots, \quad \operatorname{DSPACE}\left[n^{k}\right]=\operatorname{VAR}[k+1]$
Since variables range over a universe of size n, a constant number of variables can specify a polynomial number of gates.

Number of Variables Determines Amount of Hardware

Thm. For $k=1,2, \ldots, \quad \operatorname{DSPACE}\left[n^{k}\right]=\operatorname{VAR}[k+1]$
Since variables range over a universe of size n, a constant number of variables can specify a polynomial number of gates.

The proof is just a more detailed look at $\operatorname{CRAM}[t(n)]=\mathrm{FO}[t(n)]$.

Number of Variables Determines Amount of Hardware

Thm. For $k=1,2, \ldots, \quad \operatorname{DSPACE}\left[n^{k}\right]=\operatorname{VAR}[k+1]$
Since variables range over a universe of size n, a constant number of variables can specify a polynomial number of gates.

The proof is just a more detailed look at $\operatorname{CRAM}[t(n)]=\mathrm{FO}[t(n)]$.
A bounded number, k, of variables, is $k \log n$ bits and corresponds to n^{k} gates, i.e., polynomially much hardware.

Number of Variables Determines Amount of Hardware

Thm. For $k=1,2, \ldots, \quad \operatorname{DSPACE}\left[n^{k}\right]=\operatorname{VAR}[k+1]$
Since variables range over a universe of size n, a constant number of variables can specify a polynomial number of gates.

The proof is just a more detailed look at $\operatorname{CRAM}[t(n)]=\mathrm{FO}[t(n)]$.
A bounded number, k, of variables, is $k \log n$ bits and corresponds to n^{k} gates, i.e., polynomially much hardware.

A second-order variable of arity r is n^{r} bits, corresponding to $2^{n^{r}}$ gates.

SO: Parallel Machines with Exponential Hardware

Given φ with n variables and m clauses, is $\varphi \in 3$-SAT?

SO: Parallel Machines with Exponential Hardware

Given φ with n variables and m clauses, is $\varphi \in 3$-SAT?
With $r=m 2^{n}$ processors, recognize 3-SAT in constant time!

SO: Parallel Machines with Exponential Hardware

Given φ with n variables and m clauses, is $\varphi \in 3$-SAT?
With $r=m 2^{n}$ processors, recognize 3-SAT in constant time!
Let S be the first n bits of our processor number.

SO: Parallel Machines with Exponential Hardware

Given φ with n variables and m clauses, is $\varphi \in 3$-SAT?
With $r=m 2^{n}$ processors, recognize 3-SAT in constant time!
Let S be the first n bits of our processor number.
If processors $S 1, \ldots S m$ notice that truth assignment S makes all m clauses of φ true, then $\varphi \in 3$-SAT,

SO: Parallel Machines with Exponential Hardware

Given φ with n variables and m clauses, is $\varphi \in 3$-SAT?
With $r=m 2^{n}$ processors, recognize 3-SAT in constant time!
Let S be the first n bits of our processor number.
If processors $S 1, \ldots S m$ notice that truth assignment S makes all m clauses of φ true, then $\varphi \in 3$-SAT, so S1 writes a 1 .

SO: Parallel Machines with Exponential Hardware

Thm. $\quad \mathrm{SO}[t(n)]=\operatorname{CRAM}[t(n)]-\operatorname{HARD}\left[2^{\mathrm{n}^{\mathrm{O}(1)}}\right]$.

SO: Parallel Machines with Exponential Hardware

Thm. $\quad \operatorname{SO}[t(n)]=\operatorname{CRAM}[t(n)]-\operatorname{HARD}\left[2^{\mathrm{n}^{\mathrm{O}(1)}}\right]$.
proof: $\mathrm{SO}[t(n)]$ is like $\mathrm{FO}[t(n)]$ but using a quantifier block containing both first-order and second-order quantifiers.
The proof is similar to $\mathrm{FO}[t(n)]=\operatorname{CRAM}[t(n)]$.

SO: Parallel Machines with Exponential Hardware

Thm. $\quad \operatorname{SO}[t(n)]=\operatorname{CRAM}[t(n)]-\operatorname{HARD}\left[2^{\mathrm{n}^{0(1)}}\right]$.
proof: $\operatorname{SO}[t(n)]$ is like $\mathrm{FO}[t(n)]$ but using a quantifier block containing both first-order and second-order quantifiers.
The proof is similar to $\operatorname{FO}[t(n)]=\operatorname{CRAM}[t(n)]$.
Cor.

$$
\text { SO }=\text { PTIME Hierarchy }=\operatorname{CRAM}[1]-\operatorname{HARD}\left[2^{\mathrm{n}^{0(1)}}\right]
$$

SO: Parallel Machines with Exponential Hardware

Thm. $\quad \operatorname{SO}[t(n)]=\operatorname{CRAM}[t(n)]-\operatorname{HARD}\left[2^{\mathrm{n}^{\mathrm{O}(1)}}\right]$.
proof: $\operatorname{SO}[t(n)]$ is like $\mathrm{FO}[t(n)]$ but using a quantifier block containing both first-order and second-order quantifiers.
The proof is similar to $\operatorname{FO}[t(n)]=\operatorname{CRAM}[t(n)]$.
Cor.

$$
\begin{array}{cccc}
\text { SO } & =\text { PTIME Hierarchy } & =\operatorname{CRAM}[1]-\operatorname{HARD}\left[2^{2^{\mathrm{O}(1)}}\right] \\
\mathrm{SO}\left[n^{O(1)}\right] & =\quad \text { PSPACE } & =\operatorname{CRAM}\left[n^{O(1)}\right]-\operatorname{HARD}\left[2^{\mathrm{n}^{(1)}}\right]
\end{array}
$$

SO: Parallel Machines with Exponential Hardware

Thm. $\quad \operatorname{SO}[t(n)]=\operatorname{CRAM}[t(n)]-\operatorname{HARD}\left[2^{\mathrm{n}^{\mathrm{O}(1)}}\right]$.
proof: $\mathrm{SO}[t(n)]$ is like $\mathrm{FO}[t(n)]$ but using a quantifier block containing both first-order and second-order quantifiers.
The proof is similar to $\mathrm{FO}[t(n)]=\operatorname{CRAM}[t(n)]$.

Cor.

$$
\begin{array}{cc}
\mathrm{SO} & =\text { PTIME Hierarchy }
\end{array}=\operatorname{CRAM}[1]-\operatorname{HARD}\left[2^{\mathrm{n}^{O(1)}}\right]
$$

Parallel Time versus Amount of Hardware

$$
\begin{aligned}
\operatorname{PSPACE} & =\operatorname{FO}\left[2^{n(1)}\right]=\operatorname{CRAM}\left[2^{n^{0(1)}}\right]-\operatorname{HARD}\left[\mathrm{n}^{0(1)}\right] \\
& =\operatorname{SO}\left[n^{O(1)}\right]=\operatorname{CRAM}\left[n^{0(1)}\right]-\operatorname{HARD}\left[2^{2(1)}\right]
\end{aligned}
$$

Parallel Time versus Amount of Hardware

$$
\begin{aligned}
\operatorname{PSPACE} & =\mathrm{FO}\left[2^{n^{O(1)}}\right]=\operatorname{CRAM}\left[2^{n^{O(1)}}\right]-\operatorname{HARD}\left[\mathrm{n}^{\mathrm{O}(1)}\right] \\
& =\mathrm{SO}\left[n^{O(1)}\right]=\operatorname{CRAM}\left[n^{O(1)}\right]-\operatorname{HARD}\left[2^{2^{\mathrm{O}(1)}}\right]
\end{aligned}
$$

- We would love to understand this tradeoff.

Parallel Time versus Amount of Hardware

$$
\begin{aligned}
\operatorname{PSPACE} & =\mathrm{FO}\left[2^{n^{O(1)}}\right]=\operatorname{CRAM}\left[2^{n^{O(1)}}\right]-\operatorname{HARD}\left[\mathrm{n}^{\mathrm{O}(1)}\right] \\
& =\mathrm{SO}\left[n^{O(1)}\right]=\operatorname{CRAM}\left[n^{O(1)}\right]-\operatorname{HARD}\left[2^{\mathrm{n}^{\mathrm{O}(1)}}\right]
\end{aligned}
$$

- We would love to understand this tradeoff.
- Is there such a thing as an inherently sequential problem?, i.e., is $\mathrm{NC} \neq \mathrm{P}$?

Parallel Time versus Amount of Hardware

$$
\begin{aligned}
\operatorname{PSPACE} & =\mathrm{FO}\left[2^{n^{O(1)}}\right]=\operatorname{CRAM}\left[2^{n^{O(1)}}\right]-\operatorname{HARD}\left[\mathrm{n}^{\mathrm{O}(1)}\right] \\
& =\mathrm{SO}\left[n^{O(1)}\right]=\operatorname{CRAM}\left[n^{O(1)}\right]-\operatorname{HARD}\left[2^{2^{\mathrm{O}(1)}}\right]
\end{aligned}
$$

- We would love to understand this tradeoff.
- Is there such a thing as an inherently sequential problem?, i.e., is $\mathrm{NC} \neq \mathrm{P}$?
- Same tradeoff as number of variables vs. number of iterations of a quantifier block.

$\mathrm{SO}[t(n)]$
 $=$

$\operatorname{CRAM}[t(n)]-$ HARD- $\left[2^{n^{0(1)}}\right]$

Recent Breakthroughs in Descriptive Complexity

Theorem [Ben Rossman] Any first-order formula with any numeric relations $(\leq,+, \times, \ldots)$ that means "I have a clique of size k " must have at least $k / 4$ variables.

Creative new proof idea using Håstad's Switching Lemma gives the essentially optimal bound.

This lower bound is for a fixed formula, if it were for a sequence of polynomially-sized formulas, i.e., a fixed-point formula, it would follow that CLIQUE $\notin \mathrm{P}$ and thus $\mathrm{P} \neq \mathrm{NP}$.

Best previous bounds:

- k variables necessary and sufficient without ordering or other numeric relations [l 1980].
- Nothing was known with ordering except for the trivial fact that 2 variables are not enough.

Recent Breakthroughs in Descriptive Complexity

> Theorem [Martin Grohe] Fixed-Point Logic with Counting captures Polynomial Time on all classes of graphs with excluded minors.

Grohe proves that for every class of graphs with excluded minors, there is a constant k such that two graphs of the class are isomorphic iff they agree on all k-variable formulas in fixed-point logic with counting.

Using Ehrenfeucht-Fraïssé games, this can be checked in polynomial time, $\left(O\left(n^{k}(\log n)\right)\right)$. In the same time we can give a canonical description of the isomorphism type of any graph in the class. Thus every class of graphs with excluded minors admits the same general polynomial time canonization algorithm: we're isomorphic iff we agree on all formulas in C_{k} and in particular, you are isomorphic to me iff your C_{k} canonical description is equal to mine.

What We Know

- Diagonalization: more of the same resource gives us more:

DTIME $[n] \varsubsetneqq$ DTIME $\left[n^{2}\right]$,
same for DSPACE, NTIME, NSPACE, ...

What We Know

- Diagonalization: more of the same resource gives us more:

DTIME $[n] \varsubsetneqq$ DTIME $\left[n^{2}\right]$,
same for DSPACE, NTIME, NSPACE, ...

- Natural Complexity Classes have Natural Complete Problems

SAT: NP; HORN-SAT: P; QSAT: PSPACE; ...

What We Know

- Diagonalization: more of the same resource gives us more:

DTIME $[n] \varsubsetneqq$ DTIME $\left[n^{2}\right]$,
same for DSPACE, NTIME, NSPACE, ...

- Natural Complexity Classes have Natural Complete Problems

SAT: NP; HORN-SAT: P; QSAT: PSPACE; ...

- Only One Complete Problem per Complexity Class If A and B are complete for \mathcal{C} via $\leq_{\text {fo }}$ then $A \cong_{\text {fo }} B$.

Major Missing Idea

- We have no concept of work or conservation of energy in computation;

Major Missing Idea

- We have no concept of work or conservation of energy in computation;
- i.e, in order to solve SAT or other hard problem we must do a certain amount of computational work.

Strong Lower Bounds on FO[t $(n)]$ for small $t(n)$

- [Sipser]: strict first-order alternation hierarchy: FO.

Strong Lower Bounds on FO[t(n)] for small $t(n)$

- [Sipser]: strict first-order alternation hierarchy: FO.
- [Beame-Håstad]: hierarchy remains strict up to FO[$\log n / \log \log n]$.

Strong Lower Bounds on FO[t(n)] for small $t(n)$

- [Sipser]: strict first-order alternation hierarchy: FO.
- [Beame-Håstad]: hierarchy remains strict up to FO[$\log n / \log \log n]$.
- $\mathrm{NC}^{1} \subseteq \mathrm{FO}[\log n / \log \log n]$ and this is tight.

Strong Lower Bounds on FO[t(n)] for small $t(n)$

- [Sipser]: strict first-order alternation hierarchy: FO.
- [Beame-Håstad]: hierarchy remains strict up to FO[$\log n / \log \log n]$.
- $\mathrm{NC}^{1} \subseteq \mathrm{FO}[\log n / \log \log n]$ and this is tight.
- Does REACH require FO[log $n]$? This would imply $\mathrm{NC}^{1} \neq \mathrm{NL}$.

Does It Matter? How important is $\mathrm{P} \neq \mathrm{NP}$?

- Much is known about approximation, e.g., some NP complete problems, e.g., Knapsack, Euclidean TSP, can be approximated as closely as we want, others, e.g., Clique, can't be.

Does It Matter? How important is $\mathrm{P} \neq \mathrm{NP}$?

- Much is known about approximation, e.g., some NP complete problems, e.g., Knapsack, Euclidean TSP, can be approximated as closely as we want, others, e.g., Clique, can't be.
- We conjecture that SAT requires DTIME[$\left.\Omega\left(2^{\epsilon n}\right)\right]$ for some $\epsilon>0$, but no one has yet proved that it requires more than DTIME[n].

Does It Matter? How important is $\mathrm{P} \neq \mathrm{NP}$?

- Much is known about approximation, e.g., some NP complete problems, e.g., Knapsack, Euclidean TSP, can be approximated as closely as we want, others, e.g., Clique, can't be.
- We conjecture that SAT requires DTIME[$\left.\Omega\left(2^{\epsilon n}\right)\right]$ for some $\epsilon>0$, but no one has yet proved that it requires more than DTIME[n].
- Basic trade-offs are not understood, e.g., trade-off between time and number of processors. Are any problems inherently sequential? How can we best use mulitcores?

Does It Matter? How important is $\mathrm{P} \neq \mathrm{NP}$?

- Much is known about approximation, e.g., some NP complete problems, e.g., Knapsack, Euclidean TSP, can be approximated as closely as we want, others, e.g., Clique, can't be.
- We conjecture that SAT requires DTIME[$\left.\Omega\left(2^{\epsilon n}\right)\right]$ for some $\epsilon>0$, but no one has yet proved that it requires more than DTIME[n].
- Basic trade-offs are not understood, e.g., trade-off between time and number of processors. Are any problems inherently sequential? How can we best use mulitcores?
- SAT solvers are impressive new general purpose problem solvers, e.g., used in model checking, Al planning, code synthesis. How good are current SAT solvers? How much can they be improved?

Descriptive Complexity

Fact: For constructible $t(n), \operatorname{FO}[t(n)]=\operatorname{CRAM}[t(n)]$

Fact: For $k=1,2, \ldots, \operatorname{VAR}[k+1]=\operatorname{DSPACE}\left[n^{k}\right]$

The complexity of computing a query is closely tied to the complexity of describing the query.

$$
\begin{array}{ccc}
(\mathrm{P}=\mathrm{NP}) & \Leftrightarrow & (\mathrm{FO}(\mathrm{LFP})=\mathrm{SO}) \\
\left(\mathrm{ThC}^{0}=\mathrm{NP}\right) & \Leftrightarrow & (\mathrm{FO}(\mathrm{COUNT})=\mathrm{SO}) \\
(\mathrm{P}=\mathrm{PSPACE}) & \Leftrightarrow & \left(\mathrm{FO}\left[n^{O(1)}\right]=\mathrm{FO}\left[2^{n^{O(1)}}\right]\right)
\end{array}
$$

