Efficiently Reasoning about Programs

Neil Immerman

College of Computer and Information Sciences University of Massachusetts, Amherst Amherst, MA, USA

people.cs.umass.edu/~immerman

Thm. [Turing 1936] Halt undecidable.

► Halt is r.e. complete

Halt is r.e. complete

 $\blacktriangleright \exists w \in \Sigma^* (\alpha(w)) \quad \Leftrightarrow \quad M_{\alpha} \in \mathsf{Halt}$

- Halt is r.e. complete
- $\blacktriangleright \exists w \in \Sigma^* (\alpha(w)) \quad \Leftrightarrow \quad M_{\alpha} \in \mathsf{Halt}$
- Any arbitrary search problem can be translated to Halt.

- Halt is r.e. complete
- $\blacktriangleright \exists w \in \Sigma^* (\alpha(w)) \quad \Leftrightarrow \quad M_{\alpha} \in \mathsf{Halt}$
- Any arbitrary search problem can be translated to Halt.
- Cannot check correctness of arbitrary input program.

- Halt is r.e. complete
- $\blacktriangleright \exists w \in \Sigma^* (\alpha(w)) \quad \Leftrightarrow \quad M_{\alpha} \in \mathsf{Halt}$
- Any arbitrary search problem can be translated to Halt.
- Cannot check correctness of arbitrary input program.

Long-Term Societal Goal:

- Halt is r.e. complete
- $\blacktriangleright \exists w \in \Sigma^* (\alpha(w)) \quad \Leftrightarrow \quad M_{\alpha} \in \mathsf{Halt}$
- Any arbitrary search problem can be translated to Halt.
- Cannot check correctness of arbitrary input program.

- Long-Term Societal Goal:
- Automatic help to produce programs that are

- Halt is r.e. complete
- $\blacktriangleright \exists w \in \Sigma^* (\alpha(w)) \quad \Leftrightarrow \quad M_{\alpha} \in \mathsf{Halt}$
- Any arbitrary search problem can be translated to Halt.
- Cannot check correctness of arbitrary input program.

- Long-Term Societal Goal:
- Automatic help to produce programs that are
- certified to safely and faithfully

- Halt is r.e. complete
- $\blacktriangleright \exists w \in \Sigma^* (\alpha(w)) \quad \Leftrightarrow \quad M_{\alpha} \in \mathsf{Halt}$
- Any arbitrary search problem can be translated to Halt.
- Cannot check correctness of arbitrary input program.

- Long-Term Societal Goal:
- Automatic help to produce programs that are
- certified to safely and faithfully
- do what they should do

- Halt is r.e. complete
- $\blacktriangleright \exists w \in \Sigma^* (\alpha(w)) \quad \Leftrightarrow \quad M_{\alpha} \in \mathsf{Halt}$
- Any arbitrary search problem can be translated to Halt.
- Cannot check correctness of arbitrary input program.

- Long-Term Societal Goal:
- Automatic help to produce programs that are
- certified to safely and faithfully
- do what they should do
- and not do what they should not do.

Thm. [Turing 1936] Halt undecidable.

Thm. [Turing 1936] Halt undecidable.

Thm. [Cook 1971] SAT is NP complete.

SAT is NP complete.

SAT is NP complete.

►
$$\exists w \in \Sigma^{n^{O(1)}} (\alpha(w)) \quad \Leftrightarrow \quad \varphi_{\alpha} \in \mathsf{SAT}$$

- **SAT** is NP complete.
- ► $\exists w \in \Sigma^{n^{O(1)}}(\alpha(w)) \quad \Leftrightarrow \quad \varphi_{\alpha} \in \mathsf{SAT}$
- Arbitrary exponential search problem is translated to SAT.

- SAT is NP complete.
- ► $\exists w \in \Sigma^{n^{O(1)}} (\alpha(w)) \quad \Leftrightarrow \quad \varphi_{\alpha} \in \mathsf{SAT}$
- Arbitrary exponential search problem is translated to SAT.
- SAT is not feasible in the worst case.

- SAT is NP complete.
- ► $\exists w \in \Sigma^{n^{O(1)}} (\alpha(w)) \quad \Leftrightarrow \quad \varphi_{\alpha} \in \mathsf{SAT}$
- Arbitrary exponential search problem is translated to SAT.
- SAT is not feasible in the worst case.
- Every reasonable search problem can be encoded as an instance of SAT.

- SAT is NP complete.
- ► $\exists w \in \Sigma^{n^{O(1)}} (\alpha(w)) \quad \Leftrightarrow \quad \varphi_{\alpha} \in \mathsf{SAT}$
- Arbitrary exponential search problem is translated to SAT.
- SAT is not feasible in the worst case.
- Every reasonable search problem can be encoded as an instance of SAT.

Great progress in design of SAT Solvers.

- SAT is NP complete.
- ► $\exists w \in \Sigma^{n^{O(1)}} (\alpha(w)) \quad \Leftrightarrow \quad \varphi_{\alpha} \in \mathsf{SAT}$
- Arbitrary exponential search problem is translated to SAT.
- SAT is not feasible in the worst case.
- Every reasonable search problem can be encoded as an instance of SAT.

- Great progress in design of SAT Solvers.
- ► Fast, general-purpose problem solvers.

Verification by Reduction to SAT

Verification by Reduction to SAT

When and why does this work?

Verification by Reduction to SAT

- When and why does this work?
- How general and powerful can we make it?

- 1. Read entire input
- 2. Compute boolean query Q(input)
- 3. Classic Complexity Classes are static: FO, NC, P, NP, ...

- 1. Read entire input
- 2. Compute boolean query Q(input)
- 3. Classic Complexity Classes are static: FO, NC, P, NP, ...
- 4. What is the fastest way **upon reading the entire input**, to compute the query?

- 1. Read entire input
- 2. Compute boolean query Q(input)
- 3. Classic Complexity Classes are static: FO, NC, P, NP, ...
- 4. What is the fastest way **upon reading the entire input**, to compute the query?

Dynamic

- 1. Long series of Inserts, Deletes, Changes, and, Queries
- 2. On query, very quickly compute Q(current database)
- 3. Dynamic Complexity Classes: Dyn-FO, Dyn-NC

- 1. Read entire input
- 2. Compute boolean query Q(input)
- 3. Classic Complexity Classes are static: FO, NC, P, NP, ...
- 4. What is the fastest way **upon reading the entire input**, to compute the query?

Dynamic

- 1. Long series of Inserts, Deletes, Changes, and, Queries
- 2. On query, very quickly compute Q(current database)
- 3. Dynamic Complexity Classes: Dyn-FO, Dyn-NC
- What additional information should we maintain? auxiliary data structure

Dynamic (Incremental) Applications

- Databases
- LaTexing a file
- Performing a calculation
- Processing a visual scene
- Understanding a natural language
- Verifying a circuit
- Verifying and compiling a program

Dynamic (Incremental) Applications

- Databases
- LaTexing a file
- Performing a calculation
- Processing a visual scene
- Understanding a natural language
- Verifying a circuit
- Verifying and compiling a program
- Surviving in the wild

Current Database: S	Request	Auxiliary Data: b
0000000		0

Current Database: S	Request	Auxiliary Data: b
0000000		0
	ins(3,S)	

Current Database: S	Request	Auxiliary Data: b
0000000		0
0010000	ins(3,S)	1

Current Database: S	Request	Auxiliary Data: b
0000000		0
0010000	ins(3,S)	1
	ins(7,S)	

Current Database: S	Request	Auxiliary Data: b
0000000		0
0010000	ins(3,S)	1
0010001	ins (7,S)	0

Current Database: S	Request	Auxiliary Data: b
0000000		0
0010000	ins(3,S)	1
0010001	ins (7,S)	0
	del(3,S)	

Current Database: S	Request	Auxiliary Data: b	
0000000		0	
0010000	ins(3,S)	1	
0010001	ins(7,S)	0	
0000001	del (3,S)	1	

Current Database: S	Request	Auxiliary Data: b	
0000000		0	
0010000	ins(3,S)	1	
0010001	ins(7,S)	0	
000001	del (3,S)	1	

Parity

- Does binary string w have an odd number of 1's?
- Static: TIME[n], FO[Ω(log n/ log log n)]
- Dynamic: Dyn-TIME[1], Dyn-FO

Parity

- Does binary string w have an odd number of 1's?
- Static: TIME[n], FO[Ω(log n/ log log n)]
- Dynamic: Dyn-TIME[1], Dyn-FO

REACH_U

- ▶ Is *t* reachable from *s* in undirected graph *G*?
- Static: not in FO, requires FO[Ω(log n/log log n)]
- Dynamic: in Dyn-FO [Patnaik, I]

Parity

- Does binary string w have an odd number of 1's?
- Static: TIME[n], FO[Ω(log n/ log log n)]
- Dynamic: Dyn-TIME[1], Dyn-FO

REACH_U

- Is t reachable from s in undirected graph G?
- Static: not in FO, requires FO[Ω(log n/ log log n)]
- Dynamic: in Dyn-FO [Patnaik, I]

connectivity, minimum spanning trees, *k*-edge connectivity, ...

in Dyn-FO

Fact: [Dong & Su] REACH(acyclic) \in DynFO

Fact: [Dong & Su] REACH(acyclic) \in DynFO ins $(a, b, E) : P'(x, y) \equiv P(x, y) \lor (P(x, a) \land P(b, y))$

Fact: [Dong & Su] REACH(acyclic) \in DynFO ins $(a, b, E) : P'(x, y) \equiv P(x, y) \lor (P(x, a) \land P(b, y))$

del(*a*, *b*, *E*):

$$P'(x,y) \equiv P(x,y) \land \left[\neg (P(x,a) \land P(b,y)) \\ \lor (\exists uv) (P(x,u) \land E(u,v) \land P(v,y) \\ \land P(u,a) \land \neg P(v,a) \land (a \neq u \lor b \neq v)) \right]$$

Reachability Problems

$$\begin{array}{rcl} \mathsf{REACH} &=& \left\{ G \mid G \text{ directed}, s \xrightarrow{\star}_{G} t \right\} & \mathsf{NL} \\ \\ \mathsf{REACH}_{d} &=& \left\{ G \mid G \text{ directed}, \text{ outdegree} \leq 1 \ s \xrightarrow{\star}_{G} t \right\} & \mathsf{L} \\ \\ \\ \mathsf{REACH}_{u} &=& \left\{ G \mid G \text{ undirected}, s \xrightarrow{\star}_{G} t \right\} & \mathsf{L} \\ \\ \\ \mathsf{REACH}_{a} &=& \left\{ G \mid G \text{ alternating}, s \xrightarrow{\star}_{G} t \right\} & \mathsf{P} \end{array}$$

Facts about dynamic REACHABILITY Problems:

REACH(acyclic)	\in	Dyn-FO	[DS]
REACH _d	\in	Dyn-QF	[H]
REACH _u	\in	Dyn-FO	[PI]
REACH	\in	Dyn-FO(COUNT)	[H]
PAD(REACH _a)	\in	Dyn-FO	[PI]

Thm. REACH \in Dyn-FO

[Samir Datta, Raghav Kulkarni, Anish Mukherjee, Thomas Schwentick, Thomas Zeume]

http://arxiv.org/abs/1502.07467

$\mathsf{REACH} \ \le \ \mathsf{Matrix} \ \mathsf{Rank} \ \in \ \mathsf{Dyn}\text{-}\mathsf{FO}$

Thm. 1 [Hesse] REACH_d(acyclic) \in Dyn-FO

proof: Maintain E, E^* , D (outdegree = 1).

ins(a, b, E): (ignore if outdegree or acyclicity violated)

$$\begin{array}{rcl} E'(x,y) &\equiv & E(x,y) \lor (x=a \land y=b) \\ D'(x) &\equiv & D(x) \lor x=a \\ E^{*'}(x,y) &\equiv & E^{*}(x,y) \lor (E^{*}(x,a) \land E^{*}(b,y)) \end{array}$$

Thm. 1 [Hesse] REACH_d(acyclic) \in Dyn-FO

proof: Maintain E, E^*, D (outdegree = 1).

ins(a, b, E): (ignore if outdegree or acyclicity violated)

$$E'(x,y) \equiv E(x,y) \lor (x = a \land y = b)$$

$$D'(x) \equiv D(x) \lor x = a$$

$$E^{*'}(x,y) \equiv E^{*}(x,y) \lor (E^{*}(x,a) \land E^{*}(b,y))$$

del(*a*, *b*, *E*):

$$\begin{array}{rcl} E'(x,y) &\equiv & E(x,y) \land (x \neq a \lor y \neq b) \\ D'(x) &\equiv & D(x) \land x \neq a \\ E^{*'}(x,y) &\equiv & E^{*}(x,y) \land \neg (E^{*}(x,a) \land E(a,b) \land E^{*}(b,y)) \end{array}$$

Reasoning About reachability – can we get to y from x by following a sequence of pointers –

Reasoning About reachability – can we get to y from x by following a sequence of pointers – is **crucial** for **understanding** programs and **proving** that they meet their specifications.

In general, reasoning about reachability is **undecidable**.

Can express tilings and thus runs of Turing Machines.

In general, reasoning about reachability is **undecidable**.

- Can express tilings and thus runs of Turing Machines.
- Even worse, can express finite path and thus finite and thus standard natural numbers. Thus satisfiablity of FO(TC) is as hard as the Arithmetic Hierarchy [Avron].

► For now, restrict to acyclic fields.

- ► For now, restrict to acyclic fields.
- n(x, y) means that x points to y.

- ► For now, restrict to acyclic fields.
- n(x, y) means that x points to y.
- ► Use predicate symbol, *n*^{*}, **but not** *n*.

- For now, restrict to acyclic fields.
- n(x, y) means that x points to y.
- ► Use predicate symbol, *n*^{*}, **but not** *n*.
- ► The following axioms assure that *n*^{*} is the reflexive transitive closure of some acyclic, functional *n*.

- ► For now, restrict to acyclic fields.
- n(x, y) means that x points to y.
- ► Use predicate symbol, *n*^{*}, **but not** *n*.
- The following axioms assure that n* is the reflexive transitive closure of some acyclic, functional n.

acyclic $\equiv \forall xy (n^*(x, y) \land n^*(y, x) \leftrightarrow x = y)$

- ► For now, restrict to acyclic fields.
- n(x, y) means that x points to y.
- ► Use predicate symbol, *n*^{*}, **but not** *n*.
- The following axioms assure that n* is the reflexive transitive closure of some acyclic, functional n.

$$\begin{array}{rcl} \textbf{acyclic} & \equiv & \forall xy \, (n^*(x,y) \wedge n^*(y,x) \, \leftrightarrow \, x=y) \end{array}$$

transitive $\equiv \forall xyz (n^*(x,y) \land n^*(y,z) \rightarrow n^*(x,z))$

- ► For now, restrict to acyclic fields.
- n(x, y) means that x points to y.
- ► Use predicate symbol, *n*^{*}, **but not** *n*.
- ► The following axioms assure that *n*^{*} is the reflexive transitive closure of some acyclic, functional *n*.

acyclic
$$\equiv \forall xy (n^*(x, y) \land n^*(y, x) \leftrightarrow x = y)$$

transitive $\equiv \forall xyz (n^*(x,y) \land n^*(y,z) \rightarrow n^*(x,z))$

linear $\equiv \forall xyz (n^*(x,y) \land n^*(x,z) \rightarrow n^*(y,z) \lor n^*(z,y))$

 Assume acyclic, transitive and linear axioms, as integrity constraints.

- Assume acyclic, transitive and linear axioms, as integrity constraints.
- ► Automatically transform a program manipulating linked lists to an ∀∃ correctness condition.

- Assume acyclic, transitive and linear axioms, as integrity constraints.
- ► Automatically transform a program manipulating linked lists to an ∀∃ correctness condition.
- ► Using Hesse's dynQF algorithm for REACH_d, these ∀∃ formulas are closed under weakest precondition.

- Assume acyclic, transitive and linear axioms, as integrity constraints.
- ► Automatically transform a program manipulating linked lists to an ∀∃ correctness condition.
- ► Using Hesse's dynQF algorithm for REACH_d, these ∀∃ formulas are closed under weakest precondition.
- ► The negation of the correctness condition is ∃∀, thus equi-satisfiable with a propositional formula (EPR).

- Assume acyclic, transitive and linear axioms, as integrity constraints.
- ► Automatically transform a program manipulating linked lists to an ∀∃ correctness condition.
- ► Using Hesse's dynQF algorithm for REACH_d, these ∀∃ formulas are closed under weakest precondition.
- ► The negation of the correctness condition is ∃∀, thus equi-satisfiable with a propositional formula (EPR).
- Use a SAT solver to automatically prove correctness or find counter-example runs, typically in only a few seconds.

FO-SAT is **undecidable** (co-r.e. complete).

- **FO-SAT** is **undecidable** (co-r.e. complete).
- **EPR**: $\exists \forall$ formulas; no function symbols.

- **FO-SAT** is **undecidable** (co-r.e. complete).
- **EPR**: $\exists \forall$ formulas; no function symbols.
- constant symbols: c_1, \ldots, c_k

- ► FO-SAT is undecidable (co-r.e. complete).
- **EPR**: $\exists \forall$ formulas; no function symbols.
- constant symbols: c_1, \ldots, c_k

$$\blacktriangleright \varphi = \exists x_1 \dots x_s \forall y_1 \dots y_t (\alpha(\overline{x}, \overline{t}, \overline{c}))$$

- ► FO-SAT is undecidable (co-r.e. complete).
- **EPR**: $\exists \forall$ formulas; no function symbols.
- constant symbols: c_1, \ldots, c_k
- $\blacktriangleright \varphi = \exists x_1 \dots x_s \forall y_1 \dots y_t (\alpha(\overline{x}, \overline{t}, \overline{c}))$
- ▶ small model: $\varphi \in$ **FO-SAT** iff has model size $\leq k + s$.

- ► FO-SAT is undecidable (co-r.e. complete).
- **EPR**: $\exists \forall$ formulas; no function symbols.
- constant symbols: c_1, \ldots, c_k
- $\blacktriangleright \varphi = \exists x_1 \dots x_s \forall y_1 \dots y_t (\alpha(\overline{x}, \overline{t}, \overline{c}))$
- ▶ small model: $\varphi \in \text{FO-SAT}$ iff has model size $\leq k + s$.
- ► **EPR-SAT** $\in \Sigma_2^p$ (2nd level polynomial-time hierarchy)

- ► FO-SAT is undecidable (co-r.e. complete).
- **EPR**: $\exists \forall$ formulas; no function symbols.
- constant symbols: c_1, \ldots, c_k
- $\blacktriangleright \varphi = \exists x_1 \dots x_s \forall y_1 \dots y_t (\alpha(\overline{x}, \overline{t}, \overline{c}))$
- ▶ small model: $\varphi \in \text{FO-SAT}$ iff has model size $\leq k + s$.
- ► **EPR-SAT** $\in \Sigma_2^p$ (2nd level polynomial-time hierarchy)
- If t is fixed, then reducible to SAT.

- ► FO-SAT is undecidable (co-r.e. complete).
- **EPR**: $\exists \forall$ formulas; no function symbols.
- constant symbols: c_1, \ldots, c_k
- $\blacktriangleright \varphi = \exists x_1 \dots x_s \forall y_1 \dots y_t (\alpha(\overline{x}, \overline{t}, \overline{c}))$
- ▶ small model: $\varphi \in \text{FO-SAT}$ iff has model size $\leq k + s$.
- ► **EPR-SAT** $\in \Sigma_2^p$ (2nd level polynomial-time hierarchy)
- If t is fixed, then reducible to SAT.
- Z3 seems to do very well for us on EPR-SAT.

	Formula Size						Solving
Benchmark	P,Q		Inv		VÇ		time
	#	A	#	A	#	A	(Z3)
SLL: reverse	2	2	11	2	133	3	57ms
SLL: filter	5	1	14	1	280	4	39ms
SLL: create	1	0	1	0	36	3	13ms
SLL: delete	5	0	12	1	152	3	23ms
SLL: deleteAll	3	2	7	2	106	3	32ms
SLL: insert	8	1	6	1	178	3	17ms
SLL: find	7	1	7	1	64	3	15ms
SLL: last	3	0	5	0	74	3	15ms
SLL: merge	14	2	31	2	2255	3	226ms
SLL: rotate	6	1	-	-	73	3	22ms
SLL: swap	14	2	-	-	965	5	26ms
DLL: fix	5	2	11	2	121	3	32ms
DLL: splice	10	2	-	-	167	4	27ms

Thm. 2 [Hesse] Reachability of functional graphs is in DynQF.

proof idea: If adding an edge, *e*, would create a cycle, then we maintain relation p^* – the path relation without the edge completing the cycle – as well as E^* , *E* and *D*.

Surprisingly this can all be maintained via quantifier-free formulas, without remembering which edges we are leaving out in computing p^* .

Thm. 2 [Hesse] Reachability of functional graphs is in DynQF.

proof idea: If adding an edge, *e*, would create a cycle, then we maintain relation p^* – the path relation without the edge completing the cycle – as well as E^* , *E* and *D*.

Surprisingly this can all be maintained via quantifier-free formulas, without remembering which edges we are leaving out in computing p^* .

Using Thm. 2, the above methodology has been extended to cyclic deterministic graphs.

- Itzhaky, Banerjee, Immerman, Nanevski, Sagiv,
 "Effectively-Propositional Reasoning About Reachability in Linked Data Structures" CAV 2013.
- Itzhaky, Banerjee, Immerman, Lahav, Nanevski, Sagiv, "Modular Reasoning about Heap Paths via Effectively Propositional Formulas", POPL 2014

Extensions to EPR: we can have functions symbols, as long as we can guarantee the the closure of the function symbols on any finite set remains finite.

- Extensions to EPR: we can have functions symbols, as long as we can guarantee the the closure of the function symbols on any finite set remains finite.
- What data structures can we handle: lists, doubly linked lists, cyclic lists; binary trees, ...

- Extensions to EPR: we can have functions symbols, as long as we can guarantee the the closure of the function symbols on any finite set remains finite.
- What data structures can we handle: lists, doubly linked lists, cyclic lists; binary trees, ...
- The [CAV13] and [POPL14] papers assume that correct invariants are given for each loop. On-going work to automatically generate and prove loop invariants:

- Extensions to EPR: we can have functions symbols, as long as we can guarantee the the closure of the function symbols on any finite set remains finite.
- What data structures can we handle: lists, doubly linked lists, cyclic lists; binary trees, ...
- The [CAV13] and [POPL14] papers assume that correct invariants are given for each loop. On-going work to automatically generate and prove loop invariants:
- Feldman, Padon, I, Sagiv, Shoham, "Bounded Quantifier Instantiation for Checking Inductive Invariants" [TACAS17]

- Extensions to EPR: we can have functions symbols, as long as we can guarantee the the closure of the function symbols on any finite set remains finite.
- What data structures can we handle: lists, doubly linked lists, cyclic lists; binary trees, ...
- The [CAV13] and [POPL14] papers assume that correct invariants are given for each loop. On-going work to automatically generate and prove loop invariants:
- Feldman, Padon, I, Sagiv, Shoham, "Bounded Quantifier Instantiation for Checking Inductive Invariants" [TACAS17]
- Padon, I, Karbyshev, Sagiv, Shoham, "Decidability of Inferring Inductive Invariants" [POPL16].

- Extensions to EPR: we can have functions symbols, as long as we can guarantee the the closure of the function symbols on any finite set remains finite.
- What data structures can we handle: lists, doubly linked lists, cyclic lists; binary trees, ...
- The [CAV13] and [POPL14] papers assume that correct invariants are given for each loop. On-going work to automatically generate and prove loop invariants:
- Feldman, Padon, I, Sagiv, Shoham, "Bounded Quantifier Instantiation for Checking Inductive Invariants" [TACAS17]
- Padon, I, Karbyshev, Sagiv, Shoham, "Decidability of Inferring Inductive Invariants" [POPL16].
- Padon, McMillan, Panda, Sagiv, Shoham, "Ivy: Safety Verification by Interactive Generalization" [PLDI16].

- Extensions to EPR: we can have functions symbols, as long as we can guarantee the the closure of the function symbols on any finite set remains finite.
- What data structures can we handle: lists, doubly linked lists, cyclic lists; binary trees, ...
- The [CAV13] and [POPL14] papers assume that correct invariants are given for each loop. On-going work to automatically generate and prove loop invariants:
- Feldman, Padon, I, Sagiv, Shoham, "Bounded Quantifier Instantiation for Checking Inductive Invariants" [TACAS17]
- Padon, I, Karbyshev, Sagiv, Shoham, "Decidability of Inferring Inductive Invariants" [POPL16].
- Padon, McMillan, Panda, Sagiv, Shoham, "Ivy: Safety Verification by Interactive Generalization" [PLDI16].
- Karbyshev, Bjorner, Itzhaky, Rinetzky, Shoham, "Property-Directed Inference of Universal Invariants or Proving Their Absence" [CAV15].

Deductive verification by reductions to EPR

Deductive verification by reductions to EPR

When does this work?

Deductive verification by reductions to EPR

- When does this work?
- When doesn't this work?

▶ Init → Inv; Inv \land Tr → Inv'; Inv → Safe

▶ Herbrand Thm. φ universal \Rightarrow $\varphi \in \mathsf{FO}\mathsf{-}\mathsf{SAT} \quad \Leftrightarrow \quad \varphi$ has Herbrand model, $\mathcal{H} \models \varphi$

 $\varphi \in \mathsf{FO}\operatorname{-}\mathsf{SAT} \quad \Leftrightarrow \quad \varphi \text{ has Herbrand model, } \mathcal{H} \models \varphi$

Cor. Complete FO-UNSATmethodology:

 $\varphi \in \mathsf{FO}\operatorname{-}\mathsf{SAT} \quad \Leftrightarrow \quad \varphi \text{ has Herbrand model, } \mathcal{H} \models \varphi$

- Cor. Complete FO-UNSATmethodology:
- Skolemize φ : φ_S is universal: $\varphi_S = \forall \overline{x} (\alpha(\overline{x}));$

 $\varphi \in \text{FO-SAT} \Leftrightarrow \varphi$ has Herbrand model, $\mathcal{H} \models \varphi$ • Cor. Complete FO-UNSATmethodology:

Skolemize φ : φ_S is universal: $\varphi_S = \forall \overline{x} (\alpha(\overline{x}));$

 $\varphi \in \mathsf{FO}\mathsf{-}\mathsf{SAT} \quad \Leftrightarrow \quad \varphi_{\mathcal{S}} \in \mathsf{FO}\mathsf{-}\mathsf{SAT}$

• grnd(α) $\stackrel{\text{def}}{=} \{ \alpha(\overline{t}) \mid \overline{t} \in |\mathcal{H}| \}$

 $\varphi \in \text{FO-SAT} \Leftrightarrow \varphi$ has Herbrand model, $\mathcal{H} \models \varphi$ • Cor. Complete FO-UNSATmethodology:

Skolemize φ : φ_S is universal: $\varphi_S = \forall \overline{x} (\alpha(\overline{x}));$

- grnd(α) $\stackrel{\text{def}}{=} \left\{ \alpha(\overline{t}) \mid \overline{t} \in |\mathcal{H}| \right\}$
- ▶ $\varphi \in \mathsf{FO}$ -UNSAT \Leftrightarrow grnd(α) \in UNSAT

 $\varphi \in \text{FO-SAT} \Leftrightarrow \varphi$ has Herbrand model, $\mathcal{H} \models \varphi$ • Cor. Complete FO-UNSATmethodology:

Skolemize φ : φ_S is universal: $\varphi_S = \forall \overline{x} (\alpha(\overline{x}));$

- grnd(α) $\stackrel{\text{def}}{=} \left\{ \alpha(\overline{t}) \mid \overline{t} \in |\mathcal{H}| \right\}$
- ▶ $\varphi \in \mathsf{FO}\text{-}\mathsf{UNSAT} \quad \Leftrightarrow \quad \mathsf{grnd}(\alpha) \in \mathsf{UNSAT}$
- Feldman, Padon, I, Sagiv, Shoham, "Bounded Quantifier Instantiation for Checking Inductive Invariants" [TACAS17]

 $\varphi \in \text{FO-SAT} \Leftrightarrow \varphi$ has Herbrand model, $\mathcal{H} \models \varphi$ • Cor. Complete FO-UNSATmethodology:

Skolemize φ : φ_S is universal: $\varphi_S = \forall \overline{x} (\alpha(\overline{x}));$

- grnd(α) $\stackrel{\text{def}}{=} \{ \alpha(\overline{t}) \mid \overline{t} \in |\mathcal{H}| \}$
- ▶ $\varphi \in \mathsf{FO}\text{-}\mathsf{UNSAT} \quad \Leftrightarrow \quad \mathsf{grnd}(\alpha) \in \mathsf{UNSAT}$
- Feldman, Padon, I, Sagiv, Shoham, "Bounded Quantifier Instantiation for Checking Inductive Invariants" [TACAS17]
- Can Understand Decidability of Checking FO Inductive Invariants, via bounded depth of nesting of functions in *t* needed for unsatisfiability.

Anindya Banerjee, Bill Hesse, Yotam Feldman, Shachar Itzhaky, Aleksandr Karbyshev, Ori Lahav, Aleksandar Nanevski, Oded Padon, Sushant Patnaik, Mooly Sagiv, Sharon Shoham