Efficiently Reasoning about Programs

Neil Immerman

College of Computer and Information Sciences
University of Massachusetts, Amherst
Amherst, MA, USA
people.cs.umass.edu/~immerman

Thm. [Turing 1936] Halt undecidable.

- Halt is r.e. complete
- Halt is r.e. complete
- $\exists \boldsymbol{w} \in \Sigma^{*}(\alpha(w)) \quad \Leftrightarrow \quad M_{\alpha} \in$ Halt
- Halt is r.e. complete
- $\exists w \in \Sigma^{*}(\alpha(w)) \quad \Leftrightarrow \quad M_{\alpha} \in$ Halt
- Any arbitrary search problem can be translated to Halt.
- Halt is r.e. complete
- $\exists \boldsymbol{w} \in \Sigma^{*}(\alpha(w)) \quad \Leftrightarrow \quad M_{\alpha} \in$ Halt
- Any arbitrary search problem can be translated to Halt.
- Cannot check correctness of arbitrary input program.
- Halt is r.e. complete
- $\exists \boldsymbol{w} \in \Sigma^{*}(\alpha(w)) \quad \Leftrightarrow \quad M_{\alpha} \in$ Halt
- Any arbitrary search problem can be translated to Halt.
- Cannot check correctness of arbitrary input program.
- Long-Term Societal Goal:
- Halt is r.e. complete
- $\exists \boldsymbol{w} \in \Sigma^{*}(\alpha(w)) \quad \Leftrightarrow \quad M_{\alpha} \in$ Halt
- Any arbitrary search problem can be translated to Halt.
- Cannot check correctness of arbitrary input program.
- Long-Term Societal Goal:
- Automatic help to produce programs that are
- Halt is r.e. complete
- $\exists \boldsymbol{w} \in \Sigma^{*}(\alpha(w)) \quad \Leftrightarrow \quad M_{\alpha} \in$ Halt
- Any arbitrary search problem can be translated to Halt.
- Cannot check correctness of arbitrary input program.
- Long-Term Societal Goal:
- Automatic help to produce programs that are
- certified to safely and faithfully
- Halt is r.e. complete
- $\exists \boldsymbol{w} \in \Sigma^{*}(\alpha(w)) \quad \Leftrightarrow \quad M_{\alpha} \in$ Halt
- Any arbitrary search problem can be translated to Halt.
- Cannot check correctness of arbitrary input program.
- Long-Term Societal Goal:
- Automatic help to produce programs that are
- certified to safely and faithfully
- do what they should do
- Halt is r.e. complete
- $\exists \boldsymbol{w} \in \Sigma^{*}(\alpha(w)) \quad \Leftrightarrow \quad M_{\alpha} \in$ Halt
- Any arbitrary search problem can be translated to Halt.
- Cannot check correctness of arbitrary input program.
- Long-Term Societal Goal:
- Automatic help to produce programs that are
- certified to safely and faithfully
- do what they should do
- and not do what they should not do.

Thm. [Turing 1936] Halt undecidable.

Thm. [Turing 1936] Halt undecidable.

Thm. [Cook 1971] SAT is NP complete.

- SAT is NP complete.
- SAT is NP complete.
- $\exists w \in \Sigma^{n^{O(1)}}(\alpha(w)) \quad \Leftrightarrow \quad \varphi_{\alpha} \in$ SAT
- SAT is NP complete.
- $\exists w \in \Sigma^{n^{O(1)}}(\alpha(w)) \quad \Leftrightarrow \quad \varphi_{\alpha} \in$ SAT
- Arbitrary exponential search problem is translated to SAT.
- SAT is NP complete.
- $\exists w \in \Sigma^{n^{O(1)}}(\alpha(w)) \quad \Leftrightarrow \quad \varphi_{\alpha} \in$ SAT
- Arbitrary exponential search problem is translated to SAT.
- SAT is not feasible in the worst case.
- SAT is NP complete.
- $\exists w \in \Sigma^{n^{O(1)}}(\alpha(w)) \quad \Leftrightarrow \quad \varphi_{\alpha} \in$ SAT
- Arbitrary exponential search problem is translated to SAT.
- SAT is not feasible in the worst case.
- Every reasonable search problem can be encoded as an instance of SAT.
- SAT is NP complete.
- $\exists w \in \Sigma^{n^{O(1)}}(\alpha(w)) \quad \Leftrightarrow \quad \varphi_{\alpha} \in$ SAT
- Arbitrary exponential search problem is translated to SAT.
- SAT is not feasible in the worst case.
- Every reasonable search problem can be encoded as an instance of SAT.
- Great progress in design of SAT Solvers.
- SAT is NP complete.
- $\exists \boldsymbol{w} \in \Sigma^{n^{O(1)}}(\alpha(w)) \quad \Leftrightarrow \quad \varphi_{\alpha} \in$ SAT
- Arbitrary exponential search problem is translated to SAT.
- SAT is not feasible in the worst case.
- Every reasonable search problem can be encoded as an instance of SAT.
- Great progress in design of SAT Solvers.
- Fast, general-purpose problem solvers.

Verification by Reduction to SAT

Verification by Reduction to SAT

- When and why does this work?

Verification by Reduction to SAT

- When and why does this work?
- How general and powerful can we make it?

Background: Dynamic Complexity

Static

1. Read entire input
2. Compute boolean query \mathbf{Q} (input)
3. Classic Complexity Classes are static: FO, NC, P, NP, ...

Background: Dynamic Complexity

Static

1. Read entire input
2. Compute boolean query \mathbf{Q} (input)
3. Classic Complexity Classes are static: FO, NC, P, NP, ...
4. What is the fastest way upon reading the entire input, to compute the query?

Background: Dynamic Complexity

Static

1. Read entire input
2. Compute boolean query \mathbf{Q} (input)
3. Classic Complexity Classes are static: FO, NC, P, NP, ...
4. What is the fastest way upon reading the entire input, to compute the query?

Dynamic

1. Long series of Inserts, Deletes, Changes, and, Queries
2. On query, very quickly compute \mathbf{Q} (current database)
3. Dynamic Complexity Classes: Dyn-FO, Dyn-NC

Background: Dynamic Complexity

Static

1. Read entire input
2. Compute boolean query \mathbf{Q} (input)
3. Classic Complexity Classes are static: FO, NC, P, NP, ...
4. What is the fastest way upon reading the entire input, to compute the query?

Dynamic

1. Long series of Inserts, Deletes, Changes, and, Queries
2. On query, very quickly compute \mathbf{Q} (current database)
3. Dynamic Complexity Classes: Dyn-FO, Dyn-NC
4. What additional information should we maintain? auxiliary data structure

Dynamic (Incremental) Applications

- Databases
- LaTexing a file
- Performing a calculation
- Processing a visual scene
- Understanding a natural language
- Verifying a circuit
- Verifying and compiling a program

Dynamic (Incremental) Applications

- Databases
- LaTexing a file
- Performing a calculation
- Processing a visual scene
- Understanding a natural language
- Verifying a circuit
- Verifying and compiling a program

- Surviving in the wild

Parity

Current Database: S	Request	Auxiliary Data: b
0000000		0

Parity

Current Database: S	Request	Auxiliary Data: b
0000000		0
	ins $(3, S)$	

Parity

Current Database: S	Request	Auxiliary Data: b
0000000		0
0010000	ins(3,S)	1

Parity

Current Database: S	Request	Auxiliary Data: b
0000000		0
0010000	$\operatorname{ins}(3, S)$	1
	$\operatorname{ins}(7, S)$	

Parity

Current Database: S	Request	Auxiliary Data: b
0000000		0
0010000	$\operatorname{ins}(3, S)$	1
0010001	$\operatorname{ins}(7, S)$	0

Parity

Current Database: S	Request	Auxiliary Data: b
0000000		0
0010000	$\operatorname{ins}(3, S)$	1
0010001	$\operatorname{ins}(7, S)$	0
	$\operatorname{del}(3, S)$	

Parity

Current Database: S	Request	Auxiliary Data: b
0000000		0
0010000	$\operatorname{ins}(3, S)$	1
0010001	$\operatorname{ins}(7, S)$	0
0000001	$\operatorname{del}(3, S)$	1

Parity \in Dyn-FO

Current Database: S	Request	Auxiliary Data: b
0000000		0
0010000	$\operatorname{ins}(3, S)$	1
0010001	$\operatorname{ins}(7, S)$	0
0000001	$\operatorname{del}(3, S)$	1

ins(a,S)

$$
\begin{aligned}
S^{\prime}(x) \equiv & S(x) \vee x=a \\
b^{\prime} \equiv & (b \wedge S(a)) \vee \\
& (\neg b \wedge \neg S(a))
\end{aligned}
$$

$\operatorname{del}(a, S)$

$$
\begin{aligned}
S^{\prime}(x) \equiv & S(x) \wedge x \neq a \\
b^{\prime} \equiv & (b \wedge \neg S(a)) \vee \\
& (\neg b \wedge S(a))
\end{aligned}
$$

Dynamic Examples

Parity

- Does binary string w have an odd number of 1's?
- Static: TIME[n], FO[$\Omega(\log n / \log \log n)]$
- Dynamic: Dyn-TIME[1], Dyn-FO

Dynamic Examples

Parity

- Does binary string w have an odd number of 1 's?
- Static: TIME[n], FO[$\Omega(\log n / \log \log n)]$
- Dynamic: Dyn-TIME[1], Dyn-FO

REACH $_{u}$

- Is t reachable from s in undirected graph G ?
- Static: not in FO, requires FO[$\Omega(\log n / \log \log n)]$
- Dynamic: in Dyn-FO [Patnaik, I]

Dynamic Examples

Parity

- Does binary string w have an odd number of 1's?
- Static: TIME[n], FO[$\Omega(\log n / \log \log n)]$
- Dynamic: Dyn-TIME[1], Dyn-FO

REACH $_{u}$

- Is t reachable from s in undirected graph G ?
- Static: not in FO, requires FO[$\Omega(\log n / \log \log n)]$
- Dynamic: in Dyn-FO [Patnaik, I]
connectivity, minimum spanning trees,
in Dyn-FO k-edge connectivity,...

Fact: [Dong \& Su] REACH(acyclic) \in DynFO

Fact: [Dong \& Su] REACH(acyclic) \in DynFO
$\operatorname{ins}(a, b, E): P^{\prime}(x, y) \equiv P(x, y) \vee(P(x, a) \wedge P(b, y))$

Fact: [Dong \& Su] REACH(acyclic) \in DynFO
$\operatorname{ins}(a, b, E): P^{\prime}(x, y) \equiv P(x, y) \vee(P(x, a) \wedge P(b, y))$

$\operatorname{del}(a, b, E):$

$$
\begin{aligned}
P^{\prime}(x, y) \equiv & P(x, y) \wedge[\neg(P(x, a) \wedge P(b, y)) \\
& \vee(\exists u v)(P(x, u) \wedge E(u, v) \wedge P(v, y) \\
& \wedge P(u, a) \wedge \neg P(v, a) \wedge(a \neq u \vee b \neq v))]
\end{aligned}
$$

Reachability Problems

REACH $=\{G \mid G$ directed, $s \underset{G}{\stackrel{\star}{G}} t\}$
$\operatorname{REACH}_{d}=\{G \mid G$ directed, outdegree $\leq 1 s \underset{G}{\stackrel{\star}{G}} t\} \quad \mathrm{L}$
$\operatorname{REACH}_{u}=\{G \mid G$ undirected, $s \underset{G}{\stackrel{\star}{G}} t\} \quad \mathrm{L}$
$\operatorname{REACH}_{a}=\{G \mid G$ alternating, $s \underset{G}{\star} t\} \quad \mathrm{P}$

Facts about dynamic REACHABILITY Problems:

REACH(acyclic) \in Dyn-FO
[DS]
REACH $_{d} \in$ Dyn-QF
$\mathrm{REACH}_{u} \in$ Dyn-FO
REACH \in Dyn-FO(COUNT)
[H]
[PI]
[H]
$\operatorname{PAD}\left(\mathrm{REACH}_{a}\right) \in$ Dyn-FO
[PI]

Exciting New Result

Thm. REACH \in Dyn-FO
[Samir Datta, Raghav Kulkarni, Anish Mukherjee, Thomas Schwentick, Thomas Zeume]
http://arxiv.org/abs/1502.07467

REACH \leq Matrix Rank \in Dyn-FO

Thm. 1 [Hesse] REACH ${ }_{d}$ (acyclic) \in Dyn-FO

proof: Maintain E, E^{*}, D (outdegree $=1$).
ins (a, b, E) : (ignore if outdegree or acyclicity violated)

$$
\begin{aligned}
E^{\prime}(x, y) & \equiv E(x, y) \vee(x=a \wedge y=b) \\
D^{\prime}(x) & \equiv D(x) \vee x=a \\
E^{* \prime}(x, y) & \equiv E^{*}(x, y) \vee\left(E^{*}(x, a) \wedge E^{*}(b, y)\right)
\end{aligned}
$$

Thm. 1 [Hesse] REACH $_{d}($ acyclic $) \in$ Dyn-FO
proof: Maintain E, E^{*}, D (outdegree $=1$).
ins (a, b, E) : (ignore if outdegree or acyclicity violated)

$$
\begin{aligned}
E^{\prime}(x, y) & \equiv E(x, y) \vee(x=a \wedge y=b) \\
D^{\prime}(x) & \equiv D(x) \vee x=a \\
E^{* \prime}(x, y) & \equiv E^{*}(x, y) \vee\left(E^{*}(x, a) \wedge E^{*}(b, y)\right)
\end{aligned}
$$

$\operatorname{del}(a, b, E)$:

$$
\begin{aligned}
E^{\prime}(x, y) & \equiv E(x, y) \wedge(x \neq a \vee y \neq b) \\
D^{\prime}(x) & \equiv D(x) \wedge x \neq a \\
E^{* \prime}(x, y) & \equiv E^{*}(x, y) \wedge \neg\left(E^{*}(x, a) \wedge E(a, b) \wedge E^{*}(b, y)\right)
\end{aligned}
$$

Dynamic Reasoning

Reasoning About reachability - can we get to y from x by following a sequence of pointers -

Dynamic Reasoning

Reasoning About reachability - can we get to y from x by following a sequence of pointers - is crucial for understanding programs and proving that they meet their specifications.

In general, reasoning about reachability is undecidable.

- Can express tilings and thus runs of Turing Machines.

In general, reasoning about reachability is undecidable.

- Can express tilings and thus runs of Turing Machines.
- Even worse, can express finite path and thus finite and thus standard natural numbers. Thus satisfiablity of $\mathrm{FO}(\mathrm{TC})$ is as hard as the Arithmetic Hierarchy [Avron].

Itzhaky, Banerjee, Immerman, Aleks Nanevski, Sagiv, "Effectively-Propositional Reasoning About Reachability in Linked Data Structures" CAV 2013.

- For now, restrict to acyclic fields.

Itzhaky, Banerjee, Immerman, Aleks Nanevski, Sagiv, "Effectively-Propositional Reasoning About Reachability in Linked Data Structures" CAV 2013.

- For now, restrict to acyclic fields.
- $n(x, y)$ means that x points to y.

Itzhaky, Banerjee, Immerman, Aleks Nanevski, Sagiv, "Effectively-Propositional Reasoning About Reachability in Linked Data Structures" CAV 2013.

- For now, restrict to acyclic fields.
- $n(x, y)$ means that x points to y.
- Use predicate symbol, n^{*}, but not n.

Itzhaky, Banerjee, Immerman, Aleks Nanevski, Sagiv, "Effectively-Propositional Reasoning About Reachability in Linked Data Structures" CAV 2013.

- For now, restrict to acyclic fields.
- $n(x, y)$ means that x points to y.
- Use predicate symbol, n^{*}, but not n.
- The following axioms assure that n^{*} is the reflexive transitive closure of some acyclic, functional n.

Itzhaky, Banerjee, Immerman, Aleks Nanevski, Sagiv, "Effectively-Propositional Reasoning About Reachability in Linked Data Structures" CAV 2013.

- For now, restrict to acyclic fields.
- $n(x, y)$ means that x points to y.
- Use predicate symbol, n^{*}, but not n.
- The following axioms assure that n^{*} is the reflexive transitive closure of some acyclic, functional n.
acyclic $\equiv \forall x y\left(n^{*}(x, y) \wedge n^{*}(y, x) \leftrightarrow x=y\right)$

Itzhaky, Banerjee, Immerman, Aleks Nanevski, Sagiv, "Effectively-Propositional Reasoning About Reachability in Linked Data Structures" CAV 2013.

- For now, restrict to acyclic fields.
- $n(x, y)$ means that x points to y.
- Use predicate symbol, n^{*}, but not n.
- The following axioms assure that n^{*} is the reflexive transitive closure of some acyclic, functional n.
acyclic $\equiv \forall x y\left(n^{*}(x, y) \wedge n^{*}(y, x) \leftrightarrow x=y\right)$
transitive $\equiv \forall x y z\left(n^{*}(x, y) \wedge n^{*}(y, z) \rightarrow n^{*}(x, z)\right)$

Itzhaky, Banerjee, Immerman, Aleks Nanevski, Sagiv, "Effectively-Propositional Reasoning About Reachability in Linked Data Structures" CAV 2013.

- For now, restrict to acyclic fields.
- $n(x, y)$ means that x points to y.
- Use predicate symbol, n^{*}, but not n.
- The following axioms assure that n^{*} is the reflexive transitive closure of some acyclic, functional n.
acyclic $\equiv \forall x y\left(n^{*}(x, y) \wedge n^{*}(y, x) \leftrightarrow x=y\right)$
transitive $\equiv \forall x y z\left(n^{*}(x, y) \wedge n^{*}(y, z) \rightarrow n^{*}(x, z)\right)$
linear $\equiv \forall x y z\left(n^{*}(x, y) \wedge n^{*}(x, z) \rightarrow n^{*}(y, z) \vee n^{*}(z, y)\right)$

Effectively-Propositional Reasoning about Reachability in Linked Data Structures

- Assume acyclic, transitive and linear axioms, as integrity constraints.

Effectively-Propositional Reasoning about Reachability in Linked Data Structures

- Assume acyclic, transitive and linear axioms, as integrity constraints.
- Automatically transform a program manipulating linked lists to an $\forall \exists$ correctness condition.

Effectively-Propositional Reasoning about Reachability in Linked Data Structures

- Assume acyclic, transitive and linear axioms, as integrity constraints.
- Automatically transform a program manipulating linked lists to an $\forall \exists$ correctness condition.
- Using Hesse's dynQF algorithm for REACH ${ }_{d}$, these $\forall \exists$ formulas are closed under weakest precondition.

Effectively-Propositional Reasoning about Reachability in Linked Data Structures

- Assume acyclic, transitive and linear axioms, as integrity constraints.
- Automatically transform a program manipulating linked lists to an $\forall \exists$ correctness condition.
- Using Hesse's dynQF algorithm for REACH ${ }_{d}$, these $\forall \exists$ formulas are closed under weakest precondition.
- The negation of the correctness condition is $\exists \forall$, thus equi-satisfiable with a propositional formula (EPR).

Effectively-Propositional Reasoning about Reachability in Linked Data Structures

- Assume acyclic, transitive and linear axioms, as integrity constraints.
- Automatically transform a program manipulating linked lists to an $\forall \exists$ correctness condition.
- Using Hesse's dynQF algorithm for REACH ${ }_{d}$, these $\forall \exists$ formulas are closed under weakest precondition.
- The negation of the correctness condition is $\exists \forall$, thus equi-satisfiable with a propositional formula (EPR).
- Use a SAT solver to automatically prove correctness or find counter-example runs, typically in only a few seconds.

Effectively-Propositional Reasoning (EPR)

- FO-SAT is undecidable (co-r.e. complete).

Effectively-Propositional Reasoning (EPR)

- FO-SAT is undecidable (co-r.e. complete).
- EPR: $\exists \forall$ formulas; no function symbols.

Effectively-Propositional Reasoning (EPR)

- FO-SAT is undecidable (co-r.e. complete).
- EPR: $\exists \forall$ formulas; no function symbols.
- constant symbols: c_{1}, \ldots, c_{k}

Effectively-Propositional Reasoning (EPR)

- FO-SAT is undecidable (co-r.e. complete).
- EPR: $\exists \forall$ formulas; no function symbols.
- constant symbols: c_{1}, \ldots, c_{k}
- $\varphi=\exists x_{1} \ldots x_{s} \forall y_{1} \ldots y_{t}(\alpha(\bar{x}, \bar{t}, \bar{c}))$

Effectively-Propositional Reasoning (EPR)

- FO-SAT is undecidable (co-r.e. complete).
- EPR: $\exists \forall$ formulas; no function symbols.
- constant symbols: c_{1}, \ldots, c_{k}
- $\varphi=\exists x_{1} \ldots x_{s} \forall y_{1} \ldots y_{t}(\alpha(\bar{x}, \bar{t}, \bar{c}))$
- small model: $\varphi \in$ FO-SAT iff has model size $\leq k+s$.

Effectively-Propositional Reasoning (EPR)

- FO-SAT is undecidable (co-r.e. complete).
- EPR: $\exists \forall$ formulas; no function symbols.
- constant symbols: c_{1}, \ldots, c_{k}
- $\varphi=\exists x_{1} \ldots x_{s} \forall y_{1} \ldots y_{t}(\alpha(\bar{x}, \bar{t}, \bar{c}))$
- small model: $\varphi \in$ FO-SAT iff has model size $\leq k+s$.
- EPR-SAT $\in \Sigma_{2}^{p} \quad$ (2nd level polynomial-time hierarchy)

Effectively-Propositional Reasoning (EPR)

- FO-SAT is undecidable (co-r.e. complete).
- EPR: $\exists \forall$ formulas; no function symbols.
- constant symbols: c_{1}, \ldots, c_{k}
- $\varphi=\exists x_{1} \ldots x_{s} \forall y_{1} \ldots y_{t}(\alpha(\bar{x}, \bar{t}, \bar{c}))$
- small model: $\varphi \in$ FO-SAT iff has model size $\leq k+s$.
- EPR-SAT $\in \Sigma_{2}^{p} \quad$ (2nd level polynomial-time hierarchy)
- If t is fixed, then reducible to SAT.

Effectively-Propositional Reasoning (EPR)

- FO-SAT is undecidable (co-r.e. complete).
- EPR: $\exists \forall$ formulas; no function symbols.
- constant symbols: c_{1}, \ldots, c_{k}
- $\varphi=\exists x_{1} \ldots x_{s} \forall y_{1} \ldots y_{t}(\alpha(\bar{x}, \bar{t}, \bar{c}))$
- small model: $\varphi \in$ FO-SAT iff has model size $\leq k+s$.
- EPR-SAT $\in \Sigma_{2}^{p} \quad$ (2nd level polynomial-time hierarchy)
- If t is fixed, then reducible to SAT.
- Z3 seems to do very well for us on EPR-SAT.

Benchmark	Formula Size						Solving time (Z3)
	P, Q		lnv		VC		
	\#	\forall	\#	\forall	\#	\forall	
SLL: reverse	2	2	11	2	133	3	57 ms
SLL: filter	5	1	14	1	280	4	39ms
SLL: create	1	0	1	0	36	3	13 ms
SLL: delete	5	0	12	1	152	3	23 ms
SLL: deleteAll	3	2	7	2	106	3	32 ms
SLL: insert	8	1	6	1	178	3	17 ms
SLL: find	7	1	7	1	64	3	15 ms
SLL: last	3	0	5	0	74	3	15 ms
SLL: merge	14	2	31	2	2255	3	226 ms
SLL: rotate	6	1	-	-	73	3	22 ms
SLL: swap	14	2	-	-	965	5	26 ms
DLL: fix	5	2	11	2	121	3	32 ms
DLL: splice	10	2	-	-	167	4	27 ms

Thm. 2 [Hesse] Reachability of functional graphs is in DynQF.
proof idea: If adding an edge, e, would create a cycle, then we maintain relation p^{*} - the path relation without the edge completing the cycle - as well as E^{*}, E and D.

Surprisingly this can all be maintained via quantifier-free formulas, without remembering which edges we are leaving out in computing p^{*}.

Thm. 2 [Hesse] Reachability of functional graphs is in DynQF.
proof idea: If adding an edge, e, would create a cycle, then we maintain relation p^{*} - the path relation without the edge completing the cycle - as well as E^{*}, E and D.

Surprisingly this can all be maintained via quantifier-free formulas, without remembering which edges we are leaving out in computing p^{*}.

Using Thm. 2, the above methodology has been extended to cyclic deterministic graphs.

- Itzhaky, Banerjee, Immerman, Nanevski, Sagiv, "Effectively-Propositional Reasoning About Reachability in Linked Data Structures" CAV 2013.
- Itzhaky, Banerjee, Immerman, Lahav, Nanevski, Sagiv, "Modular Reasoning about Heap Paths via Effectively Propositional Formulas", POPL 2014

Extensions

- Extensions to EPR: we can have functions symbols, as long as we can guarantee the the closure of the function symbols on any finite set remains finite.

Extensions

- Extensions to EPR: we can have functions symbols, as long as we can guarantee the the closure of the function symbols on any finite set remains finite.
- What data structures can we handle: lists, doubly linked lists, cyclic lists; binary trees, ...

Extensions

- Extensions to EPR: we can have functions symbols, as long as we can guarantee the the closure of the function symbols on any finite set remains finite.
- What data structures can we handle: lists, doubly linked lists, cyclic lists; binary trees, ...
- The [CAV13] and [POPL14] papers assume that correct invariants are given for each loop. On-going work to automatically generate and prove loop invariants:

Extensions

- Extensions to EPR: we can have functions symbols, as long as we can guarantee the the closure of the function symbols on any finite set remains finite.
- What data structures can we handle: lists, doubly linked lists, cyclic lists; binary trees, ...
- The [CAV13] and [POPL14] papers assume that correct invariants are given for each loop. On-going work to automatically generate and prove loop invariants:
- Feldman, Padon, I, Sagiv, Shoham, "Bounded Quantifier Instantiation for Checking Inductive Invariants" [TACAS17]

Extensions

- Extensions to EPR: we can have functions symbols, as long as we can guarantee the the closure of the function symbols on any finite set remains finite.
- What data structures can we handle: lists, doubly linked lists, cyclic lists; binary trees, ...
- The [CAV13] and [POPL14] papers assume that correct invariants are given for each loop. On-going work to automatically generate and prove loop invariants:
- Feldman, Padon, I, Sagiv, Shoham, "Bounded Quantifier Instantiation for Checking Inductive Invariants" [TACAS17]
- Padon, I, Karbyshev, Sagiv, Shoham, "Decidability of Inferring Inductive Invariants" [POPL16].

Extensions

- Extensions to EPR: we can have functions symbols, as long as we can guarantee the the closure of the function symbols on any finite set remains finite.
- What data structures can we handle: lists, doubly linked lists, cyclic lists; binary trees, ...
- The [CAV13] and [POPL14] papers assume that correct invariants are given for each loop. On-going work to automatically generate and prove loop invariants:
- Feldman, Padon, I, Sagiv, Shoham, "Bounded Quantifier Instantiation for Checking Inductive Invariants" [TACAS17]
- Padon, I, Karbyshev, Sagiv, Shoham, "Decidability of Inferring Inductive Invariants" [POPL16].
- Padon, McMillan, Panda, Sagiv, Shoham, "Ivy: Safety Verification by Interactive Generalization" [PLDI16].

Extensions

- Extensions to EPR: we can have functions symbols, as long as we can guarantee the the closure of the function symbols on any finite set remains finite.
- What data structures can we handle: lists, doubly linked lists, cyclic lists; binary trees, ...
- The [CAV13] and [POPL14] papers assume that correct invariants are given for each loop. On-going work to automatically generate and prove loop invariants:
- Feldman, Padon, I, Sagiv, Shoham, "Bounded Quantifier Instantiation for Checking Inductive Invariants" [TACAS17]
- Padon, I, Karbyshev, Sagiv, Shoham, "Decidability of Inferring Inductive Invariants" [POPL16].
- Padon, McMillan, Panda, Sagiv, Shoham, "Ivy: Safety Verification by Interactive Generalization" [PLDI16].
- Karbyshev, Bjorner, Itzhaky, Rinetzky, Shoham, "Property-Directed Inference of Universal Invariants or Proving Their Absence" [CAV15].

Deductive verification by reductions to EPR

Deductive verification by reductions to EPR

- When does this work?

Deductive verification by reductions to EPR

- When does this work?
- When doesn't this work?
- Init \rightarrow Inv; $\quad \operatorname{Inv} \wedge$ Tr $\rightarrow \operatorname{Inv}^{\prime} ; \quad \operatorname{Inv} \rightarrow$ Safe

Simple Example: loop Invariants

Simple Example: loop Invariants

$1: \mathrm{x}:=1 ;$
$2: \mathrm{y}:=2 ;$
while $*$ do $\{$
3: assert odd $[\mathrm{x}] ;$
4: $\mathrm{x}:=\mathrm{x}+\mathrm{y} ;$
5: y:=y+2
$\}$
$6:$

- Herbrand Thm. φ universal \Rightarrow

$$
\varphi \in \text { FO-SAT } \quad \Leftrightarrow \quad \varphi \text { has Herbrand model, } \mathcal{H} \models \varphi
$$

- Herbrand Thm. φ universal \Rightarrow

$$
\varphi \in \text { FO-SAT } \quad \Leftrightarrow \quad \varphi \text { has Herbrand model, } \mathcal{H} \models \varphi
$$

- Cor. Complete FO-UNSATmethodology:
- Herbrand Thm. φ universal \Rightarrow

$$
\varphi \in \text { FO-SAT } \quad \Leftrightarrow \quad \varphi \text { has Herbrand model, } \mathcal{H} \models \varphi
$$

- Cor. Complete FO-UNSATmethodology:
- Skolemize $\varphi: \varphi_{S}$ is universal: $\varphi_{S}=\forall \bar{x}(\alpha(\bar{x}))$;

$$
\varphi \in \mathrm{FO}-\mathrm{SAT} \quad \Leftrightarrow \quad \varphi_{S} \in \mathrm{FO}-\mathrm{SAT}
$$

- Herbrand Thm. φ universal \Rightarrow

$$
\varphi \in \text { FO-SAT } \quad \Leftrightarrow \quad \varphi \text { has Herbrand model, } \mathcal{H} \models \varphi
$$

- Cor. Complete FO-UNSATmethodology:
- Skolemize $\varphi: \varphi_{S}$ is universal: $\varphi_{S}=\forall \bar{x}(\alpha(\bar{x}))$;

$$
\varphi \in \mathrm{FO}-\mathrm{SAT} \quad \Leftrightarrow \quad \varphi_{S} \in \mathrm{FO}-\mathrm{SAT}
$$

- $\operatorname{grnd}(\alpha) \stackrel{\text { def }}{=}\{\alpha(\bar{t})|\bar{t} \in| \mathcal{H} \mid\}$
- Herbrand Thm. φ universal \Rightarrow

$$
\varphi \in \text { FO-SAT } \quad \Leftrightarrow \quad \varphi \text { has Herbrand model, } \mathcal{H} \models \varphi
$$

- Cor. Complete FO-UNSATmethodology:
- Skolemize $\varphi: \varphi_{S}$ is universal: $\varphi_{S}=\forall \bar{x}(\alpha(\bar{x}))$;

$$
\varphi \in \mathrm{FO}-\mathrm{SAT} \quad \Leftrightarrow \quad \varphi_{S} \in \mathrm{FO}-\mathrm{SAT}
$$

- $\operatorname{grnd}(\alpha) \stackrel{\text { def }}{=}\{\alpha(\bar{t})|\bar{t} \in| \mathcal{H} \mid\}$
- $\varphi \in$ FO-UNSAT $\Leftrightarrow \operatorname{grnd}(\alpha) \in$ UNSAT
- Herbrand Thm. φ universal \Rightarrow

$$
\varphi \in \text { FO-SAT } \quad \Leftrightarrow \quad \varphi \text { has Herbrand model, } \mathcal{H} \models \varphi
$$

- Cor. Complete FO-UNSATmethodology:
- Skolemize $\varphi: \varphi_{S}$ is universal: $\varphi_{S}=\forall \bar{x}(\alpha(\bar{x}))$;

$$
\varphi \in \mathrm{FO}-\mathrm{SAT} \quad \Leftrightarrow \quad \varphi_{S} \in \mathrm{FO}-\mathrm{SAT}
$$

- $\operatorname{grnd}(\alpha) \stackrel{\text { def }}{=}\{\alpha(\bar{t})|\bar{t} \in| \mathcal{H} \mid\}$
- $\varphi \in$ FO-UNSAT $\Leftrightarrow \operatorname{grnd}(\alpha) \in$ UNSAT
- Feldman, Padon, I, Sagiv, Shoham, "Bounded Quantifier Instantiation for Checking Inductive Invariants" [TACAS17]
- Herbrand Thm. φ universal \Rightarrow

$$
\varphi \in \text { FO-SAT } \quad \Leftrightarrow \quad \varphi \text { has Herbrand model, } \mathcal{H} \models \varphi
$$

- Cor. Complete FO-UNSATmethodology:
- Skolemize $\varphi: \varphi_{S}$ is universal: $\varphi_{S}=\forall \bar{x}(\alpha(\bar{x}))$;

$$
\varphi \in \mathrm{FO}-\mathrm{SAT} \quad \Leftrightarrow \quad \varphi_{S} \in \mathrm{FO}-\mathrm{SAT}
$$

- $\operatorname{grnd}(\alpha) \stackrel{\text { def }}{=}\{\alpha(\bar{t})|\bar{t} \in| \mathcal{H} \mid\}$
- $\varphi \in$ FO-UNSAT $\Leftrightarrow \operatorname{grnd}(\alpha) \in$ UNSAT
- Feldman, Padon, I, Sagiv, Shoham, "Bounded Quantifier Instantiation for Checking Inductive Invariants" [TACAS17]
- Can Understand Decidability of Checking FO Inductive Invariants, via bounded depth of nesting of functions in \bar{t} needed for unsatisfiability.

Thank You!

Anindya Banerjee, Bill Hesse,
Yotam Feldman, Shachar Itzhaky,
Aleksandr Karbyshev, Ori Lahav,
Aleksandar Nanevski, Oded Padon,
Sushant Patnaik, Mooly Sagiv,
Sharon Shoham

