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P =

∞⋃
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NTIME[t(n)]: a mathematical fiction
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|w | = n

2s

0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0

1

t(n)

t(n)

b1 b2 b3 · · · bt(n)−1

Descriptive Complexity MSR Redmond, 8/26/15



NP =

∞⋃
k=1

NTIME[nk ]
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optimization
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Descriptive Complexity

Query
q1 q2 · · · qn 7→ Computation 7→ Answer

a1 a2 · · · ai · · · am

· · · Si · · ·

Restrict attention to the complexity of computing individual bits of
the output, i.e., decision problems.

How hard is it to check if input has property S ?

How rich a language do we need to express property S?

There is a constructive isomorphism between these two approaches.
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Interpret Input as Finite Logical Structure

Graph G = ({v1, . . . , vn},E , s, t)
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Binary Aw = ({p1, . . . , p8},SAw = {p2, p5, p7, p8})
String w = 01001011

Relational Database D = (U,RD
1 , . . . ,R

D
k )

Vocabularies: τg = (E 2, s, t), τs = (S1), τd = (Ra1
1 , . . .R

ak
k )
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First-Order Logic

input symbols: from τ
variables: x , y , z , . . .

boolean connectives: ∧,∨,¬
quantifiers: ∀,∃

numeric symbols: =,≤,+,×,min,max

α ≡ ∀x∃y(E (x , y)) ∈ L(τg )

β ≡ ∃x∀y(x ≤ y ∧ S(x)) ∈ L(τs)

β ≡ S(min) ∈ L(τs)
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Second-Order Logic

Fagin’s Theorem: NP = SO∃

Φ3−color ≡ ∃R1 G 1 B1 ∀ x y ((R(x) ∨ G (x) ∨ B(x)) ∧

(E (x , y)→ (¬(R(x) ∧ R(y)) ∧ ¬(G (x) ∧ G (y))

∧ ¬(B(x) ∧ B(y)))))
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g
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d t
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Addition is First-Order

Q+ : STRUC[τAB ]→ STRUC[τs ]

A a1 a2 . . . an−1 an
B + b1 b2 . . . bn−1 bn

S s1 s2 . . . sn−1 sn

C (i) ≡ (∃j > i)
(
A(j) ∧ B(j) ∧

(∀k .j > k > i)(A(k) ∨ B(k))
)

Q+(i) ≡ A(i) ⊕ B(i) ⊕ C (i)
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Parallel Machines:

Quantifiers are Parallel

CRAM[t(n)] = CRCW-PRAM-TIME[t(n)]-HARD[nO(1)]

Assume array A[x ] : x = 1, . . . , r in memory.

∀x(A(x)) ≡ write(1); proc pi : if (A[i ] = 0) then write(0)

PP

PP

PP

PP

PP PP

Memory

Global

r

2

3

1

4

5
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FO

=

CRAM[1]

=

AC0

=

Logarithmic-
Time

Hierarchy

Arithmetic Hierarchy FO(N) r.e. complete
Halt

co-r.e. complete
Halt

r.e. FO∃(N)co-r.e. FO∀(N)
Recursive

Primitive Recursive

NP complete
SAT

co-NP complete
SAT

NP SO∃co-NP SO∀
NP ∩ co-NP

P complete
Horn-
SAT P

“truly

feasible”

FO(CFL)

FO(REGULAR)

AC0FO LOGTIME Hierarchy
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CRAM[t(n)] = concurrent parallel random access machine;

polynomial hardware, parallel time O(t(n))

IND[t(n)] = first-order, depth t(n) inductive definitions

FO[t(n)] = t(n) repetitions of a block of restricted quantifiers:

QB = [(Q1x1.M1) · · · (Qkxk .Mk)]; Mi quantifier-free

ϕn = [QB][QB] · · · [QB]︸ ︷︷ ︸
t(n)

M0
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parallel time = inductive depth = QB iteration

Thm: For all constructible, polynomially bounded t(n),

CRAM[t(n)] = IND[t(n)] = FO[t(n)]

Thm: For all t(n), even beyond polynomial,

CRAM[t(n)] = FO[t(n)]
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For t(n) poly
bdd,

CRAM[t(n)]

=

IND[t(n)]

=

FO[t(n)]

Arithmetic Hierarchy FO(N) r.e. complete
Halt

co-r.e. complete
Halt

r.e. FO∃(N)co-r.e. FO∀(N)
Recursive

Primitive Recursive

QSAT PSPACE complete

FO[2n
O(1)

] SO(TC) SO[nO(1)]
PSPACE

PTIME Hierarchy SO NP complete
SAT

co-NP complete
SAT

NP SO∃co-NP SO∀
NP ∩ co-NP

P complete
Horn-
SAT P

FO[nO(1)]

FO(LFP) SO(Horn)

FO[(log n)O(1)] NC“truly

feasible”FO[log n] AC1

sAC1FO(CFL)

NL2SAT NL comp.FO(TC) SO(Krom)

2COLOR L comp. LFO(DTC)

NC1FO(REGULAR)

ThC0FO(COUNT)

AC0FO LOGTIME Hierarchy
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Recent Breakthroughs in Descriptive Complexity

Theorem [Ben Rossman] Any first-order formula with any numeric
relations (≤,+,×, . . .) that means “I have a clique of size k” must
have at least k/4 variables.

I Creative new proof idea using Håstad’s Switching Lemma
gives the essentially optimal bound.

I First lower bound of its kind for number of variables with
ordering.

I This lower bound is for a fixed formula, if it were for a
sequence of polynomially-sized formulas, it would show that
CLIQUE 6∈ P and thus P 6= NP.
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Recent Breakthroughs in Descriptive Complexity

Theorem [Martin Grohe] Fixed-Point Logic with Counting captures
Polynomial Time on all classes of graphs with excluded minors.

Grohe proves that for every class of graphs with excluded minors,
there is a constant k such that two graphs of the class are
isomorphic iff they agree on all k-variable formulas in fixed-point
logic with counting.

Thus every class of graphs with excluded minors admits the same
general polynomial time canonization algorithm: we’re isomorphic
iff we agree on all formulas in Ck and in particular, you are
isomorphic to me iff your Ck canonical description is equal to mine.

See: “The Nature and Power of Fixed-Point Logic with
Counting” by Anuj Dawar in SigLog Newsletter.
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Dichotomy

I “Natural” Computational Problems Tend to be Complete for
Important Complexity Classes

I Isomorphism Theorem: only one such problem in each class:
small handful of naturally occuring decision problems!

I Not true for “unnatural problems”: Ladner’s Delayed
Diagonalization

I Schaefer; Feder-Vardi: CSP Dichotomy Conjecture

I Tremendous progress using Universal Algebra. (Solved for
domains of size 2 and 3, and for undirected graphs.)
See: “Constraint Satisfaction Problem and Universal
Algebra” by Libor Barto in SigLog Newsletter.
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Dynamic Complexity

Static

1. Read entire input

2. Compute boolean query Q(input)

3. Classic Complexity Classes are static: FO, NC, P, NP, . . .

4. What is the fastest way upon reading the entire input, to
compute the query?

Dynamic

1. Long series of Inserts, Deletes, Changes, and, Queries

2. On query, very quickly compute Q(current database)

3. Dynamic Complexity Classes: Dyn-FO, Dyn-NC

4. What additional information should we maintain? —
auxiliary data structure
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Dynamic (Incremental) Applications

I Databases

I LaTexing a file

I Performing a calculation

I Processing a visual scene

I Understanding a natural language

I Verifying a circuit

I Verifying and compiling a program

I Surviving in the wild
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Parity

Current Database: S Request Auxiliary Data: b

0000000 0

0010000 ins(3,S) 1

0010001 ins(7,S) 0

0000001 del(3,S) 1

ins(a,S) del(a,S)

S ′(x) ≡ S(x) ∨ x = a S ′(x) ≡ S(x) ∧ x 6= a

b′ ≡ (b ∧ S(a)) ∨ b′ ≡ (b ∧ ¬S(a)) ∨
(¬b ∧ ¬S(a)) (¬b ∧ S(a))
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Dynamic Examples

Parity

I Does binary string w have an odd number of 1’s?

I Static: TIME[n], FO[Ω(log n/ log log n)]

I Dynamic: Dyn-TIME[1], Dyn-FO

REACHu

I Is t reachable from s in undirected graph G?

I Static: not in FO, requires FO[Ω(log n/ log log n)]

I Dynamic: in Dyn-FO [Patnaik, I]

Minimum Spanning Trees, k-edge connectivity, . . .
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Fact: [Dong & Su] REACH(acyclic) ∈ DynFO

ins(a, b,E ) : P ′(x , y) ≡ P(x , y) ∨ (P(x , a) ∧ P(b, y))

del(a, b,E ):

a

x y

v

b

u

P ′(x , y) ≡ P(x , y) ∧
[
¬(P(x , a) ∧ P(b, y))

∨ (∃uv)
(
P(x , u) ∧ E (u, v) ∧ P(v , y)

∧ P(u, a) ∧ ¬P(v , a) ∧ (a 6= u ∨ b 6= v)
)]

Descriptive Complexity MSR Redmond, 8/26/15



REACHABILITY Problems

REACH =
{
G
∣∣ G directed, s

?→
G

t
}

NL

REACHd =
{
G
∣∣ G directed, outdegree ≤ 1 s

?→
G

t
}

L

REACHu =
{
G
∣∣ G undirected, s

?→
G

t
}

L

REACHa =
{
G
∣∣ G alternating, s

?→
G

t
}

P

s t
b
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Facts about dynamic REACHABILITY Problems:

Dyn-REACH(acyclic) ∈ Dyn-FO [DS]

Dyn-REACHd ∈ Dyn-QF [H]

Dyn-REACHu ∈ Dyn-FO [PI]

Dyn-REACH ∈ Dyn-FO(COUNT) [H]

Dyn-PAD(REACHa) ∈ Dyn-FO [PI]
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Exciting New Result

Reachability is in DynFO

by Samir Datta, Raghav Kulkarni, Anish Mukherjee, Thomas
Schwentick and Thomas Zeume

http://arxiv.org/abs/1502.07467

They show that Matrix Rank is in DynFO and REACH
reduces to Matrix Rank.
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Thm. 1 [Hesse] Reachability of functional DAG is in DynQF.

proof: Maintain E , E ∗, D (outdegree = 1).

Insert E (i , j): (ignore if adding edge violates outdegree or
acyclicity)

E ′(x , y) ≡ E (x , y) ∨ (x = i ∧ y = j)

D ′(x) ≡ D(x) ∨ x = i

E ∗′(x , y) ≡ E ∗(x , y) ∨ (E ∗(x , i) ∧ E ∗(j , y))

Delete E (i , j):

E ′(x , y) ≡ E (x , y) ∧ (x 6= i ∨ y 6= j)

D ′(x) ≡ D(x) ∧ (x 6= i ∨ ¬E (i , j))

E ∗′(x , y) ≡ E ∗(x , y) ∧ ¬(E ∗(x , i) ∧ E (i , j) ∧ E ∗(j , y))

�
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Dynamic Reasoning

Reasoning About reachability – can we get to b from a by
following a sequence of pointers – is crucial for proving that
programs meet their specifications.

y1

a y2

y3

b

x1

x0

x2

x4

x3

n

n n

n

n

n n

n∗
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However reasoning about reachability in general is undecidable.

Ideas:

I Can express tilings and thus runs of Turing Machines.

I Even worse, can express finite path and thus finite and thus
standard natural numbers. Thus FO(TC) is as hard as the
Arithmetic Hierarchy [Avron].

Descriptive Complexity MSR Redmond, 8/26/15



For the time being, let’s restrict ourselves to acyclic fields which
thus also generate a linear ordering of all points reachable from a
given point.

acyclic ≡ ∀xy (n∗(x , y) ∧ n∗(y , x) → x = y)

transitive ≡ ∀xyz (n∗(x , y) ∧ n∗(y , z) → n∗(x , z)))

linear ≡ ∀xyz (n∗(x , y) ∧ n∗(x , z) → n∗(y , z) ∨ n∗(z , y))
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Effectively-Propositional Reasoning about Reachability in
Linked Data Structures

I Automatically transform a program manipulating linked lists
to an ∀∃ correctness condition.

I Using Hesse’s dynQF algorithm for REACHd , is that these
∀∃ formulas are closed under weakest precondition.

I Using acyclic, transitive and linear axioms, the negation of the
correctness condition is equi-satisfiable with a propositional
formula.

I use a SAT solver to automatically prove correctness or find
counter-example runs, typically in under 3 seconds per
program.
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Thm. 2 [Hesse] Reachability of functional graphs is in DynQF.

proof idea: If adding an edge, e, would create a cycle, then we
maintain relation P – the path relation without the edge
completing the cycle – as well as E ∗, E and D.

Surprisingly this can all be maintained via quantifier-free formulas,
without remembering which edges we are leaving out in
computing P. �

Using Thm. 2, the above methodology has been extended to cyclic
deterministic graphs.

I Itzhaky, Banerjee, Immerman, Aleks Nanevski, Sagiv,
“Effectively-Propositional Reasoning About Reachability in
Linked Data Structures” CAV 2013.

I Itzhaky, Banerjee, Immerman, Lahav, Nanevski, Sagiv,
“Modular Reasoning about Heap Paths via Effectively
Propositional Formulas”, POPL 2014
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SAT Solvers

I SAT was the first NP Complete problem, thus hard.

I Through amazing increases of computer speed and memory,
plus terrific engineering and algorithmic ideas – clause
learning, and good heuristics, SAT solvers are typically
incredibly fast – seconds on formulas with a million variables.

I They provably aren’t good on all instances, but they do
extremely well in practice.

I Thus we have a general purpose problem solver.

I Very useful for checking the correctness of programs,
automatically finding counter-example runs, and for
synthesizing good code from specifications.
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Software Crisis

I Software is everywhere, controlling more and more of our lives.

I Software is buggy, insecure, brittle, hard to change.

I Logic and its application to automatic model checking and
synthesis are – in my opinion – our best hope.

I Thank you!
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Arithmetic Hierarchy FO(N) r.e. complete
Halt

co-r.e. complete
Halt

r.e. FO∃(N)co-r.e. FO∀(N)
Recursive

Primitive Recursive

SO(LFP) SO[2n
O(1)

]
EXPTIME

QSAT PSPACE complete

FO[2n
O(1)

] FO(PFP) SO(TC) SO[nO(1)]
PSPACE

PTIME Hierarchy SO NP complete
SAT

co-NP complete
SAT

NP SO∃co-NP SO∀
NP ∩ co-NP

P complete
Horn-
SAT P

FO[nO(1)]

FO(LFP) SO(Horn)

FO[(log n)O(1)] NC“truly

feasible”FO[log n] AC1

sAC1FO(CFL)

NL2SAT NL comp.FO(TC) SO(Krom)

2COLOR L comp. LFO(DTC)

NC1FO(REGULAR)

ThC0FO(COUNT)

AC0FO LOGTIME Hierarchy
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