Towards Capturing Order-Independent P

Neil Immerman

College of Computer and Information Sciences
University of Massachusetts, Amherst
Amherst, MA, USA

```
people.cs.umass.edu/~immerman
```


Descriptive Complexity

$$
\begin{gathered}
\text { Query } \\
q_{1} q_{2} \cdots q_{n}
\end{gathered} \mapsto \text { Computation } \mapsto
$$

$$
\begin{gathered}
\text { Answer } \\
a_{1} a_{2} \cdots a_{i} \cdots a_{m}
\end{gathered}
$$

Descriptive Complexity

$$
\begin{array}{cc}
\text { Query } \\
q_{1} q_{2} \cdots q_{n}
\end{array} \mapsto \text { Computation } \mapsto \quad a_{1} a_{2} \cdots a_{i} \cdots a_{m}
$$

Restrict attention to the complexity of computing individual bits of the output, i.e., decision problems.

Descriptive Complexity

Restrict attention to the complexity of computing individual bits of the output, i.e., decision problems.

How hard is it to check if input has property S ?

Descriptive Complexity

Restrict attention to the complexity of computing individual bits of the output, i.e., decision problems.

How hard is it to check if input has property S ?

How rich a language do we need to express property S ?

Descriptive Complexity

Restrict attention to the complexity of computing individual bits of the output, i.e., decision problems.

How hard is it to check if input has property S ?

How rich a language do we need to express property S ?

There is a computable isomorphism between these two approaches.

Think of the Input as a Finite Logical Structure

$$
H \quad=\quad\left(\{a, b, c\}, \leq, E^{H}, R^{H}, G^{H}, B^{H}\right)
$$

Colored
Graph

Think of the Input as a Finite Logical Structure

$$
H \quad=\quad\left(\{a, b, c\}, \leq, E^{H}, R^{H}, G^{H}, B^{H}\right)
$$

Colored $\quad E^{H}=\{(a, b),(b, a),(b, c),(c, b),(c, a),(a, c)\}$ Graph

Think of the Input as a Finite Logical Structure

$$
H
$$

$$
\left(\{a, b, c\}, \leq, E^{H}, R^{H}, G^{H}, B^{H}\right)
$$

Colored

$$
E^{H}=\{(a, b),(b, a),(b, c),(c, b),(c, a),(a, c)\}
$$

Graph

$$
\left.\begin{array}{ll}
R^{H}= & \{a\} \\
G^{H} & = \\
B^{H} & =
\end{array}\right\}\{b\}
$$

Think of the Input as a Finite Logical Structure

H

Colored
Graph

$$
\begin{array}{rlc}
& = & \left(\{a, b, c\}, \leq, E^{H}, R^{H}, G^{H}, B^{H}\right) \\
\leq^{H} & = & \{(a, a),(a, b),(a, c),(b, b),(b, c),(c, c)\} \\
E^{H} & = & \{(a, b),(b, a),(b, c),(c, b),(c, a),(a, c)\} \\
R^{H} & = & \{a\} \\
G^{H} & = & \{b\} \\
B^{H} & = & \{c\}
\end{array}
$$

First-Order Logic

input symbols: E, R, Y, B, \ldots
variables: $\quad x, y, z, \ldots$
boolean connectives: \wedge, \vee, \neg
quantifiers: \forall, \exists
numeric symbols: $=, \leq,+, \times, \min , \max$

$$
\begin{aligned}
\alpha & \equiv \forall x \exists y E(x, y) \\
\beta & \equiv \forall x y(\neg E(x, x) \wedge(E(x, y) \rightarrow E(y, x))) \\
\gamma & \equiv \forall x((\forall y x \leq y) \rightarrow R(x))
\end{aligned}
$$

First-Order Logic

input symbols: E, R, Y, B, \ldots
variables: $\quad x, y, z, \ldots$
boolean connectives: \wedge, \vee, \neg
quantifiers: \forall, \exists
numeric symbols: $=, \leq,+, \times, \min , \max$

$$
\begin{aligned}
\alpha & \equiv \forall x \exists y E(x, y) \\
\beta & \equiv \forall x y(\neg E(x, x) \wedge(E(x, y) \rightarrow E(y, x))) \\
\gamma & \equiv \forall x((\forall y x \leq y) \rightarrow R(x))
\end{aligned}
$$

In this setting, with the structure of interest being the finite input, FO is a weak complexity class.

First-Order Logic

input symbols: E, R, Y, B, \ldots
variables: $\quad x, y, z, \ldots$
boolean connectives: \wedge, \vee, \neg
quantifiers: \forall, \exists
numeric symbols: $=, \leq,+, \times, \min , \max$

$$
\begin{aligned}
\alpha & \equiv \forall x \exists y E(x, y) \\
\beta & \equiv \forall x y(\neg E(x, x) \wedge(E(x, y) \rightarrow E(y, x))) \\
\gamma & \equiv \forall x((\forall y x \leq y) \rightarrow R(x))
\end{aligned}
$$

In this setting, with the structure of interest being the finite input, FO is a weak complexity class.

It is easy to test if input, H, satisfies $\alpha \quad(H \mid=\alpha)$.

First-Order Logic

H $\quad a \leq b \leq c$

$$
G \quad 1 \leq 2 \leq 3
$$

$$
\begin{aligned}
\alpha & \equiv \forall x \exists y E(x, y) \\
\beta & \equiv \forall x y(\neg E(x, x) \wedge(E(x, y) \rightarrow E(y, x))) \\
\gamma & \equiv \forall x((\forall y x \leq y) \rightarrow R(x))
\end{aligned}
$$

First-Order Logic

H $\quad a \leq b \leq c$

$$
\text { G } \quad 1 \leq 2 \leq 3
$$

$H \models \alpha \wedge \beta \wedge \gamma$

$$
\begin{aligned}
\alpha & \equiv \forall x \exists y E(x, y) \\
\beta & \equiv \forall x y(\neg E(x, x) \wedge(E(x, y) \rightarrow E(y, x))) \\
\gamma & \equiv \forall x((\forall y x \leq y) \rightarrow R(x))
\end{aligned}
$$

First-Order Logic

$$
\begin{aligned}
& H \quad a \leq b \leq c \\
& \alpha \models \alpha \wedge \beta \wedge \gamma \\
& \beta \not \equiv \forall x \exists y E(x, y) \\
& \gamma \equiv \forall x y(\neg E(x, x) \wedge(E(x, y) \rightarrow E(y, x))) \\
& \gamma
\end{aligned}
$$

First-Order Logic

$$
H \quad a \leq b \leq c
$$

$$
G \quad 1 \leq 2 \leq 3
$$

$$
H \models \alpha \wedge \beta \wedge \gamma
$$

$$
\begin{aligned}
\alpha & \equiv \forall x \exists y E(x, y) \\
\beta & \equiv \forall x y(\neg E(x, x) \wedge(E(x, y) \rightarrow E(y, x))) \\
\gamma & \equiv \forall x((\forall y x \leq y) \rightarrow R(x))
\end{aligned}
$$

α and β are order independent; γ is order dependent

Second-Order Logic: FO plus Relation Variables

$$
\begin{aligned}
\Phi_{\text {scolor }} \equiv & \exists R^{1} G^{1} B^{1} \forall x y((R(x) \vee G(x) \vee B(x)) \wedge(E(x, y) \rightarrow \\
& (\neg(R(x) \wedge R(y)) \wedge \neg(G(x) \wedge G(y)) \wedge \neg(B(x) \wedge B(y)))))
\end{aligned}
$$

Second-Order Logic: FO plus Relation Variables

Fagin's Theorem: $\quad \mathrm{NP}=\mathrm{SO} \exists$

$$
\begin{aligned}
\Phi_{\text {color }} \equiv & \exists R^{1} G^{1} B^{1} \forall x y((R(x) \vee G(x) \vee B(x)) \wedge(E(x, y) \rightarrow \\
& (\neg(R(x) \wedge R(y)) \wedge \neg(G(x) \wedge G(y)) \wedge \neg(B(x) \wedge B(y)))))
\end{aligned}
$$

Inductive Definitions and Least Fixed Point

REACH $=\{G, s, t \mid s \xrightarrow{\star} t\}$

Inductive Definitions and Least Fixed Point

REACH $=\{G, s, t \mid s \xrightarrow{\star} t\}$
REACH $\notin \mathrm{FO}$

Inductive Definitions and Least Fixed Point

$$
E^{\star}(x, y) \stackrel{\text { def }}{=} x=y \vee E(x, y) \vee \exists z\left(E^{\star}(x, z) \wedge E^{\star}(z, y)\right)
$$

REACH $=\{G, s, t \mid s \xrightarrow{\star} t\}$
REACH \notin FO

Inductive Definitions and Least Fixed Point

$$
\begin{aligned}
E^{\star}(x, y) & \stackrel{\text { def }}{=} x=y \vee E(x, y) \vee \exists z\left(E^{\star}(x, z) \wedge E^{\star}(z, y)\right) \\
\varphi_{t c}(R, x, y) & \equiv x=y \vee E(x, y) \vee \exists z(R(x, z) \wedge R(z, y))
\end{aligned}
$$

REACH $=\{G, s, t \mid s \xrightarrow{\star} t\}$
REACH $\notin \mathrm{FO}$

Inductive Definitions and Least Fixed Point

$$
\begin{aligned}
E^{\star}(x, y) & \stackrel{\text { def }}{=} x=y \vee E(x, y) \vee \exists z\left(E^{\star}(x, z) \wedge E^{\star}(z, y)\right) \\
\varphi_{t c}(R, x, y) & \equiv x=y \vee E(x, y) \vee \exists z(R(x, z) \wedge R(z, y)) \\
\varphi_{t c}^{G}: \operatorname{binRel}(G) & \rightarrow \operatorname{binRel}(G) \\
\text { monotone } & R \subseteq S \Rightarrow \varphi_{t c}^{G}(R) \subseteq \varphi_{t c}^{G}(S)
\end{aligned}
$$

$$
\mathrm{REACH}=\{G, s, t \mid s \xrightarrow{\star} t\} \quad \text { REACH } \notin \mathrm{FO}
$$

Inductive Definitions and Least Fixed Point

$$
\begin{aligned}
E^{\star}(x, y) & \stackrel{\text { def }}{=} x=y \vee E(x, y) \vee \exists z\left(E^{\star}(x, z) \wedge E^{\star}(z, y)\right) \\
\varphi_{t c}(R, x, y) & \equiv x=y \vee E(x, y) \vee \exists z(R(x, z) \wedge R(z, y))
\end{aligned}
$$

$\varphi_{t c}^{G}: \operatorname{binRel}(G) \rightarrow \operatorname{binRel}(G)$ monotone $\quad R \subseteq S \Rightarrow \varphi_{t c}^{G}(R) \subseteq \varphi_{t c}^{G}(S)$

$$
E^{\star}=\left(\operatorname{LFP} \varphi_{t c}\right)
$$

$$
\mathrm{REACH}=\{G, s, t \mid s \xrightarrow{\star} t\} \quad \text { REACH } \notin \mathrm{FO}
$$

Inductive Definitions and Least Fixed Point

$$
\begin{aligned}
E^{\star}(x, y) & \stackrel{\text { def }}{=} x=y \vee E(x, y) \vee \exists z\left(E^{\star}(x, z) \wedge E^{\star}(z, y)\right) \\
\varphi_{t c}(R, x, y) & \equiv x=y \vee E(x, y) \vee \exists z(R(x, z) \wedge R(z, y))
\end{aligned}
$$

$\varphi_{t c}^{G}: \operatorname{binRel}(G) \rightarrow \operatorname{binRel}(G)$
monotone $\quad R \subseteq S \Rightarrow \varphi_{t c}^{G}(R) \subseteq \varphi_{t c}^{G}(S)$

$$
G \in \operatorname{REACH} \Leftrightarrow G \models\left(\operatorname{LFP} \varphi_{t c}\right)(s, t) \quad E^{\star}=\left(\operatorname{LFP} \varphi_{t c}\right)
$$

$$
\mathrm{REACH}=\{G, s, t \mid s \xrightarrow{\star} t\} \quad \mathrm{REACH} \notin \mathrm{FO}
$$

LFP is a Polynomial Iteration Operator

Thm. $\quad \mathrm{P}=\mathrm{FO}(\mathrm{LFP})=\mathrm{FO}\left[n^{O(1)}\right]$
$\mathrm{FO}\left[n^{O(1)}\right]$ means for graphs with n vertices, the formula φ_{n} expressing the property has $n^{O(1)}$ quantifiers, but only a fixed number of requantified variables, x_{1}, \ldots, x_{k}, i.e, $\varphi_{n} \in \mathcal{L}^{k}$.

LFP is a Polynomial Iteration Operator

Thm. $\quad \mathrm{P}=\mathrm{FO}(\mathrm{LFP})=\mathrm{FO}\left[n^{O(1)}\right]$
Graphs are completely general structures, i.e., any structure can be encoded as a graph.

FO[$\left.n^{O(1)}\right]$ means for graphs with n vertices, the formula φ_{n} expressing the property has $n^{O(1)}$ quantifiers, but only a fixed number of requantified variables, x_{1}, \ldots, x_{k}, i.e, $\varphi_{n} \in \mathcal{L}^{k}$.

LFP is a Polynomial Iteration Operator

Thm. $\quad \mathrm{P}=\mathrm{FO}(\mathrm{LFP})=\mathrm{FO}\left[n^{O(1)}\right]$
Graphs are completely general structures, i.e., any structure can be encoded as a graph. Restrict to graphs.
$\mathrm{FO}\left[n^{O(1)}\right]$ means for graphs with n vertices, the formula φ_{n} expressing the property has $n^{O(1)}$ quantifiers, but only a fixed number of requantified variables, x_{1}, \ldots, x_{k}, i.e, $\varphi_{n} \in \mathcal{L}^{k}$.

LFP is a Polynomial Iteration Operator

Thm. $\quad \mathrm{P}=\mathrm{FO}(\mathrm{LFP})=\mathrm{FO}\left[n^{O(1)}\right]$
Graphs are completely general structures, i.e., any structure can be encoded as a graph. Restrict to graphs.
$\mathrm{FO}\left[n^{O(1)}\right]$ means for graphs with n vertices, the formula φ_{n} expressing the property has $n^{O(1)}$ quantifiers, but only a fixed number of requantified variables, x_{1}, \ldots, x_{k}, i.e, $\varphi_{n} \in \mathcal{L}^{k}$.

Above Thm requires ordering relation, \leq.

LFP is a Polynomial Iteration Operator

Thm. $\quad \mathrm{P}=\mathrm{FO}(\mathrm{LFP})=\mathrm{FO}\left[n^{O(1)}\right]$
Graphs are completely general structures, i.e., any structure can be encoded as a graph. Restrict to graphs.
$\mathrm{FO}\left[n^{O(1)}\right]$ means for graphs with n vertices, the formula φ_{n} expressing the property has $n^{O(1)}$ quantifiers, but only a fixed number of requantified variables, x_{1}, \ldots, x_{k}, i.e, $\varphi_{n} \in \mathcal{L}^{k}$.

Above Thm requires ordering relation, \leq.
Necessary for encoding computation - inputs to computers are ordered.

LFP is a Polynomial Iteration Operator

Thm. $\quad \mathrm{P}=\mathrm{FO}(\mathrm{LFP})=\mathrm{FO}\left[n^{O(1)}\right]$
Graphs are completely general structures, i.e., any structure can be encoded as a graph. Restrict to graphs.
$\mathrm{FO}\left[n^{O(1)}\right]$ means for graphs with n vertices, the formula φ_{n} expressing the property has $n^{O(1)}$ quantifiers, but only a fixed number of requantified variables, x_{1}, \ldots, x_{k}, i.e, $\varphi_{n} \in \mathcal{L}^{k}$.

Above Thm requires ordering relation, \leq.
Necessary for encoding computation - inputs to computers are ordered.

Unnatural for graphs - the ordering of the vertices is irrelevant.

LFP is a Polynomial Iteration Operator

Thm. $\quad \mathrm{P}=\mathrm{FO}(\mathrm{LFP})=\mathrm{FO}\left[n^{O(1)}\right]$
Graphs are completely general structures, i.e., any structure can be encoded as a graph. Restrict to graphs.
$\mathrm{FO}\left[n^{O(1)}\right]$ means for graphs with n vertices, the formula φ_{n} expressing the property has $n^{O(1)}$ quantifiers, but only a fixed number of requantified variables, x_{1}, \ldots, x_{k}, i.e, $\varphi_{n} \in \mathcal{L}^{k}$.

Above Thm requires ordering relation, \leq.
Necessary for encoding computation - inputs to computers are ordered.

Unnatural for graphs - the ordering of the vertices is irrelevant.
Wanted: a language capturing Order-Independent P (OIP).

Want to Capture Order-Independent P (OIP)

$$
\begin{aligned}
& \mathrm{FO}(\mathrm{LFP})=\mathrm{P} \\
& \mathrm{FO}(\mathrm{wo} \leq)(\mathrm{LFP}) \subseteq \mathrm{OIP}
\end{aligned}
$$

Want to Capture Order-Independent P (OIP)

$\mathrm{FO}(\mathrm{LFP})=\mathrm{P}$
$\mathrm{FO}(\mathrm{wo} \leq)(\mathrm{LFP}) \subseteq \mathrm{OIP}$
EVEN $\stackrel{\text { def }}{=}\left\{G\left|\left|V^{G}\right| \equiv 0(\bmod 2)\right\}\right.$

Want to Capture Order-Independent P (OIP)

$\mathrm{FO}(\mathrm{LFP})=\mathrm{P}$
$\mathrm{FO}(\mathrm{wo} \leq)(\mathrm{LFP}) \subseteq \mathrm{OIP}$
EVEN $\stackrel{\text { def }}{=}\left\{G\left|\left|V^{G}\right| \equiv 0(\bmod 2)\right\}\right.$
EVEN $\in \mathbf{O I P}-\mathrm{FO}(\mathrm{wo} \leq)(\mathrm{LFP})$.

Want to Capture Order-Independent P (OIP)

$\mathrm{FO}(\mathrm{LFP})=\mathrm{P}$
$\mathrm{FO}($ wo $\leq)(\mathrm{LFP}) \subseteq \mathrm{OIP}$
EVEN $\stackrel{\text { def }}{=}\left\{G\left|\left|V^{G}\right| \equiv 0(\bmod 2)\right\}\right.$
EVEN \in OIP $-\mathrm{FO}(\mathrm{wo} \leq)(\mathrm{LFP})$.
Thus, $\quad \mathrm{FO}(\mathrm{wo} \leq)(\mathrm{LFP}) \varsubsetneqq$ OIP

Want to Capture Order-Independent P (OIP)

$\mathrm{FO}(\mathrm{LFP})=\mathrm{P}$
$\mathrm{FO}($ wo $\leq)(\mathrm{LFP}) \subseteq \mathrm{OIP}$
EVEN $\stackrel{\text { def }}{=}\left\{G\left|\left|V^{G}\right| \equiv 0(\bmod 2)\right\}\right.$
EVEN \in OIP $-\mathrm{FO}(\mathrm{wo} \leq)(\mathrm{LFP})$.
Thus, $\quad \mathrm{FO}(\mathrm{wo} \leq)(\mathrm{LFP}) \varsubsetneqq$ OIP
How do we prove EVEN $\notin \mathrm{FO}($ wo $\leq)(\mathrm{LFP})$?

Ehrenfeucht-Fraïssé Game

$$
\mathcal{G}_{m}^{k}(G, H) \quad m \text { moves, } \quad k \text { pebbles, } \quad 2 \text { players }
$$

Ehrenfeucht-Fraïssé Game

$\mathcal{G}_{m}^{k}(G, H) \quad m$ moves, $\quad k$ pebbles, 2 players
Samson: show a difference.

Ehrenfeucht-Fraïssé Game

$\mathcal{G}_{m}^{k}(G, H) \quad m$ moves, $\quad k$ pebbles, 2 players

Samson: show a difference. Delilah: preserve isomorphism.

Ehrenfeucht-Fraïssé Game

$\mathcal{G}_{m}^{k}(G, H) \quad m$ moves, $\quad k$ pebbles, 2 players

Samson: show a difference. Delilah: preserve isomorphism.

Ehrenfeucht-Fraïssé Game

$\mathcal{G}_{m}^{k}(G, H) \quad m$ moves, $\quad k$ pebbles, 2 players

Samson: show a difference. Delilah: preserve isomorphism.

Ehrenfeucht-Fraïssé Game

$\mathcal{G}_{m}^{k}(G, H) \quad m$ moves, $\quad k$ pebbles, 2 players
Samson: show a difference. Delilah: preserve isomorphism.

Ehrenfeucht-Fraïssé Game

$\mathcal{G}_{m}^{k}(G, H) \quad m$ moves, $\quad k$ pebbles, 2 players
Samson: show a difference. Delilah: preserve isomorphism.

Ehrenfeucht-Fraïssé Game

$\mathcal{G}_{m}^{k}(G, H) \quad m$ moves, $\quad k$ pebbles, 2 players

Samson: show a difference. Delilah: preserve isomorphism.

Ehrenfeucht-Fraïssé Game

$\mathcal{G}_{m}^{k}(G, H) \quad m$ moves, $\quad k$ pebbles, 2 players

Samson: show a difference. Delilah: preserve isomorphism.

Ehrenfeucht-Fraïssé Game

$\mathcal{G}_{m}^{k}(G, H) \quad m$ moves, $\quad k$ pebbles, 2 players
Samson: show a difference. Delilah: preserve isomorphism.
For all m, \mathbf{D} wins $\mathcal{G}_{m}^{2}(G, H)$;

Ehrenfeucht-Fraïssé Game

$\mathcal{G}_{m}^{k}(G, H) \quad m$ moves, $\quad k$ pebbles, 2 players
Samson: show a difference. Delilah: preserve isomorphism.
For all m, \mathbf{D} wins $\mathcal{G}_{m}^{2}(G, H)$;

Ehrenfeucht-Fraïssé Game

$\mathcal{G}_{m}^{k}(G, H) \quad m$ moves, $\quad k$ pebbles, 2 players
Samson: show a difference. Delilah: preserve isomorphism.
For all m, \mathbf{D} wins $\mathcal{G}_{m}^{2}(G, H)$;

Ehrenfeucht-Fraïssé Game

$\mathcal{G}_{m}^{k}(G, H) \quad m$ moves, $\quad k$ pebbles, 2 players
Samson: show a difference. Delilah: preserve isomorphism.
For all m, \mathbf{D} wins $\mathcal{G}_{m}^{2}(G, H)$;

Ehrenfeucht-Fraïssé Game

$\mathcal{G}_{m}^{k}(G, H) \quad m$ moves, $\quad k$ pebbles, 2 players
Samson: show a difference. Delilah: preserve isomorphism. For all m, \mathbf{D} wins $\mathcal{G}_{m}^{2}(G, H) ; \quad$ but \mathbf{S} wins $\mathcal{G}_{3}^{3}(G, H)$.

Fundamental Thm of Ehrenfeucht-Fraïssé Games

Notation: $\quad G \sim_{m}^{k} H$ means that Delilah has a winning strategy for $\mathcal{G}_{m}^{k}(G, H)$.

Fundamental Thm of Ehrenfeucht-Fraïssé Games

Notation: $\quad G \sim_{m}^{k} H$ means that Delilah has a winning strategy for $\mathcal{G}_{m}^{k}(G, H)$.

Thm. $\quad \mathbf{D}$ has a winning strategy on the m-move, k-pebble game on G, H iff $\quad G$ and H agree on all formulas using k variables and quantifier depth m.

$$
G \sim_{m}^{k} H \quad \Leftrightarrow \quad G \equiv_{m}^{k} H
$$

Thm. EVEN requires $n+1$ variables without ordering. Thus EVEN $\notin \mathrm{FO}(\mathrm{wo} \leq)(\mathrm{LFP})$.

Thm. EVEN requires $n+1$ variables without ordering. Thus EVEN $\notin \mathrm{FO}$ (wo \leq)(LFP). proof:

Thm. EVEN requires $n+1$ variables without ordering. Thus EVEN $\notin \mathrm{FO}$ (wo \leq)(LFP). proof:

Thm. EVEN requires $n+1$ variables without ordering. Thus EVEN $\notin \mathrm{FO}(\mathrm{wo} \leq)(\mathrm{LFP})$.
proof:

Thm. EVEN requires $n+1$ variables without ordering. Thus EVEN $\notin \mathrm{FO}(\mathrm{wo} \leq)(\mathrm{LFP})$.
proof:

Thm. EVEN requires $n+1$ variables without ordering. Thus EVEN $\notin \mathrm{FO}(\mathrm{wo} \leq)(\mathrm{LFP})$.
proof:

Thm. EVEN requires $n+1$ variables without ordering. Thus EVEN $\notin \mathrm{FO}(\mathrm{wo} \leq)(\mathrm{LFP})$.
proof:

Thm. EVEN requires $n+1$ variables without ordering. Thus EVEN $\notin \mathrm{FO}(\mathrm{wo} \leq)(\mathrm{LFP})$.
proof:

Thm. EVEN requires $n+1$ variables without ordering. Thus EVEN $\notin \mathrm{FO}(\mathrm{wo} \leq)(\mathrm{LFP})$.
proof:

Add Counting to FO Logic

Two sorts: Numbers: $\{0,1, \ldots, n\}, \leq$, Plus, Times and Vertices: $\left\{v_{1}, \ldots, v_{n}\right\}, E, C_{1}, C_{2} \ldots$

Add Counting to FO Logic

Two sorts: Numbers: $\{0,1, \ldots, n\}, \leq$, Plus, Times and Vertices: $\left\{v_{1}, \ldots, v_{n}\right\}, E, C_{1}, C_{2} \ldots$

Combine with counting terms: $\# x(\varphi(x))$.

Add Counting to FO Logic

Two sorts: Numbers: $\{0,1, \ldots, n\}, \leq$, Plus, Times and Vertices: $\left\{v_{1}, \ldots, v_{n}\right\}, E, C_{1}, C_{2} \ldots$

Combine with counting terms: $\# x(\varphi(x))$.

$$
\text { EVEN } \equiv \exists i(\operatorname{Plus}(i, i, \# x(x=x)))
$$

Add Counting to FO Logic

Two sorts: Numbers: $\{0,1, \ldots, n\}, \leq$, Plus, Times and Vertices: $\left\{v_{1}, \ldots, v_{n}\right\}, E, C_{1}, C_{2} \ldots$

Combine with counting terms: $\# x(\varphi(x))$.

$$
\text { EVEN } \equiv \exists i(\operatorname{Plus}(i, i, \# x(x=x)))
$$

Let $C^{k} \stackrel{\text { def }}{=} \mathrm{FO}^{k}(\mathrm{COUNT}) ; \quad \mathrm{FPC} \stackrel{\text { def }}{=} \mathrm{FO}(\mathrm{LFP}, \mathrm{COUNT})$.

Add Counting to FO Logic

Two sorts: Numbers: $\{0,1, \ldots, n\}, \leq$, Plus, Times and Vertices: $\left\{v_{1}, \ldots, v_{n}\right\}, E, C_{1}, C_{2} \ldots$

Combine with counting terms: $\# x(\varphi(x))$.

$$
\text { EVEN } \equiv \exists i(\operatorname{Plus}(i, i, \# x(x=x)))
$$

Let $C^{k} \stackrel{\text { def }}{=} \mathrm{FO}^{k}(\mathrm{COUNT}) ; \quad \mathrm{FPC} \stackrel{\text { def }}{=} \mathrm{FO}(\mathrm{LFP}, \mathrm{COUNT})$.

$$
\mathrm{FO}(\mathrm{wo} \leq)(\mathrm{LFP}) \quad \varsubsetneqq \mathrm{FPC} \subseteq \mathrm{OIP}
$$

Stable Coloring of Vertices

Start with a colored graph, and repeatedly color each vertex by how many neighbors it has of each color.

Stable Coloring of Vertices

Start with a colored graph, and repeatedly color each vertex by how many neighbors it has of each color.

Stable Coloring of Vertices

Start with a colored graph, and repeatedly color each vertex by how many neighbors it has of each color.

Stable Coloring of Vertices

Start with a colored graph, and repeatedly color each vertex by how many neighbors it has of each color.

Stable Coloring of Vertices

Start with a colored graph, and repeatedly color each vertex by how many neighbors it has of each color.

Stable Coloring of Vertices

Start with a colored graph, and repeatedly color each vertex by how many neighbors it has of each color.

Thm. Stable Coloring of Vertices $=C^{2}$ type.
Round m of stable coloring is quantifier depth of C^{2} formula.

The Good News: Upper Bounds

Thm. [Babai, Erdos, Selkow] With high probability, after four iterations of stable coloring, each vertex of a random graph has a unique color, i.e., the C_{4}^{2}-type of each vertex is unique.

The Good News: Upper Bounds

Thm. [Babai, Erdos, Selkow] With high probability, after four iterations of stable coloring, each vertex of a random graph has a unique color, i.e., the C_{4}^{2}-type of each vertex is unique.

Thus, for almost all graphs, there is a linear time algorithm to canonize the graph, i.e., sort the vertices by their C^{2} type, so that two graphs are isomorphic iff their canonical forms are equal.

The Good News: Upper Bounds

Thm. [Babai, Erdos, Selkow] With high probability, after four iterations of stable coloring, each vertex of a random graph has a unique color, i.e., the C_{4}^{2}-type of each vertex is unique.

Thus, for almost all graphs, there is a linear time algorithm to canonize the graph, i.e., sort the vertices by their C^{2} type, so that two graphs are isomorphic iff their canonical forms are equal.

With high probability, $\quad G \cong H$ iff $G \equiv{ }_{4}^{2} H$.

The Good News: Upper Bounds

Thm. [Babai, Erdos, Selkow] With high probability, after four iterations of stable coloring, each vertex of a random graph has a unique color, i.e., the C_{4}^{2}-type of each vertex is unique.

Thus, for almost all graphs, there is a linear time algorithm to canonize the graph, i.e., sort the vertices by their C^{2} type, so that two graphs are isomorphic iff their canonical forms are equal.

With high probability, $\quad G \cong H$ iff $G \equiv{ }_{4}^{2} \mathrm{H}$.
Thus, Graph Isomorphism (GI) is linear time for random graphs.

The Good News: Upper Bounds

Thm. [Babai, Erdos, Selkow] With high probability, after four iterations of stable coloring, each vertex of a random graph has a unique color, i.e., the C_{4}^{2}-type of each vertex is unique.

Thus, for almost all graphs, there is a linear time algorithm to canonize the graph, i.e., sort the vertices by their C^{2} type, so that two graphs are isomorphic iff their canonical forms are equal.

With high probability, $\quad G \cong H$ iff $G \equiv{ }_{4}^{2} \mathrm{H}$.
Thus, Graph Isomorphism (GI) is linear time for random graphs.
In general the complexity of Gl is unknown.

The Good News: Upper Bounds

Thm. [Babai, Erdos, Selkow] With high probability, after four iterations of stable coloring, each vertex of a random graph has a unique color, i.e., the C_{4}^{2}-type of each vertex is unique.

Thus, for almost all graphs, there is a linear time algorithm to canonize the graph, i.e., sort the vertices by their C^{2} type, so that two graphs are isomorphic iff their canonical forms are equal.
With high probability, $\quad G \cong H$ iff $G \equiv{ }_{4}^{2} H$.
Thus, Graph Isomorphism (GI) is linear time for random graphs.
In general the complexity of Gl is unknown.
Thm. [Babai, 2015] Gl $\in \operatorname{DTIME}\left[n^{\log ^{7} n}\right.$]. (Before this it was only known that $\mathrm{Gl} \in \operatorname{DTIME}\left[n^{\sqrt{n}}\right]$.)

Logics Characterizing Graphs

Def. Language \mathcal{L} characterizes a graph G iff for all graphs H,

$$
G \equiv_{\mathcal{L}} H \quad \Leftrightarrow \quad G \cong H .
$$

Logics Characterizing Graphs

Def. Language \mathcal{L} characterizes a graph G iff for all graphs H,

$$
G \equiv_{\mathcal{L}} H \quad \Leftrightarrow \quad G \cong H
$$

- C^{2} characterizes almost all random graphs.
- C^{2} characterizes all trees.
- C^{3} characterizes all graphs of color class size 3.

Logics Characterizing Graphs

Def. Language \mathcal{L} characterizes a graph G iff for all graphs H,

$$
G \equiv_{\mathcal{L}} H \quad \Leftrightarrow \quad G \cong H
$$

- C^{2} characterizes almost all random graphs.
- C^{2} characterizes all trees.
- C^{3} characterizes all graphs of color class size 3.

Thm. We can test if $G \equiv_{C^{k}} H$ in FPC and DTIME[$\left.n^{k} \log n\right]$.

Logics Characterizing Graphs

Def. Language \mathcal{L} characterizes a graph G iff for all graphs H,

$$
G \equiv_{\mathcal{L}} H \quad \Leftrightarrow \quad G \cong H
$$

- C^{2} characterizes almost all random graphs.
- C^{2} characterizes all trees.
- C^{3} characterizes all graphs of color class size 3.

Thm. We can test if $G \equiv_{C^{k}} H$ in FPC and DTIME[$\left.n^{k} \log n\right]$.
Cor. If C^{k} characterizes all graphs in a class of graphs \mathcal{G} that is closed under particularizing, then \mathcal{G} admits C^{k} canonization, and thus FPC captures OIP over \mathcal{G}.

Logics Characterizing Graphs

Def. Language \mathcal{L} characterizes a graph G iff for all graphs H,

$$
G \equiv_{\mathcal{L}} H \quad \Leftrightarrow \quad G \cong H
$$

- C^{2} characterizes almost all random graphs.
- C^{2} characterizes all trees.
- C^{3} characterizes all graphs of color class size 3.

Thm. We can test if $G \equiv_{C^{k}} H$ in FPC and DTIME[$\left.n^{k} \log n\right]$.
Cor. If C^{k} characterizes all graphs in a class of graphs \mathcal{G} that is closed under particularizing, then \mathcal{G} admits C^{k} canonization, and thus FPC captures OIP over \mathcal{G}.
proof: Apply arbitrary FO(LFP) formula to the canonical form of the input graph.

Particularizing Means Uniquely Coloring Some Vertex

Particularizing Means Uniquely Coloring Some Vertex

Is FPC Equal to OIP?

- Is FPC Equal to OIP?

Is FPC Equal to OIP?

- Is FPC Equal to OIP?
- Does C^{4} characterize all graphs?

Is FPC Equal to OIP?

- Is FPC Equal to OIP?
- Does C^{4} characterize all graphs?
- If yes, then FPC = OIP and for all graphs, $G \cong H \Leftrightarrow G \equiv_{C^{4}} H$.
Thus, GI would be in DTIME $\left[n^{4} \log n\right]$.

Is FPC Equal to OIP?

- Is FPC Equal to OIP?
- Does C^{4} characterize all graphs?
- If yes, then FPC = OIP and for all graphs, $G \cong H \Leftrightarrow G \equiv_{C^{4}} H$.

Thus, GI would be in DTIME $\left[n^{4} \log n\right]$.
Thm. [CFI] No!
A simple graph property (now called the CFI property) checkable in DTIME[n], requires $v=\Omega(n)$ variables to express in C^{\vee}. Thus, $\quad \mathrm{CFI} \in \mathrm{OIP}-\mathrm{FPC}$

Proof of CFI Thm

Proof of CFI Thm

CFI Gadget $X: \quad$ Each m_{i} adjacent to an even number of a_{j} 's.

Proof of CFI Thm

CFI Gadget X : Each m_{i} adjacent to an even number of a_{j} 's. Automorphisms of X : switch an even number of ($a_{i} b_{i}$) pairs.

Proof of CFI Thm

CFI Gadget X : Each m_{i} adjacent to an even number of a_{j} 's. Automorphisms of X : switch an even number of ($a_{i} b_{i}$) pairs.

Automorphism: $\quad\left(a_{2} b_{2}\right)\left(a_{3} b_{3}\right)\left(m_{1} m_{2}\right)\left(m_{3} m_{4}\right)$

Proof of CFI Thm

CFI Gadget X : Each m_{i} adjacent to an even number of a_{j} 's. Automorphisms of X : switch an even number of ($a_{i} b_{i}$) pairs.

Automorphism: $\quad\left(a_{1} b_{1}\right)\left(a_{2} b_{2}\right)\left(m_{1} m_{4}\right)\left(m_{2} m_{3}\right)$

- Let G_{n} be a regular, degree 3 graph with $O(n)$ vertices, color class size 1 and separator size n.
- Let G_{n} be a regular, degree 3 graph with $O(n)$ vertices, color class size 1 and separator size n.
- If we remove any n vertices from G_{n}, it still has a connected component with more than $\left|V^{G_{n}}\right| / 2$ vertices.
- Let G_{n} be a regular, degree 3 graph with $O(n)$ vertices, color class size 1 and separator size n.
- If we remove any n vertices from G_{n}, it still has a connected component with more than $\left|V^{G_{n}}\right| / 2$ vertices.
- Such regular degree 3 graphs with linear-size separators exist.
- Let G_{n} be a regular, degree 3 graph with $O(n)$ vertices, color class size 1 and separator size n.
- If we remove any n vertices from G_{n}, it still has a connected component with more than $\left|V^{G_{n}}\right| / 2$ vertices.
- Such regular degree 3 graphs with linear-size separators exist.
- Color class size 1 means every vertex of G_{n} has a unique color.
- Let G_{n} be a regular, degree 3 graph with $O(n)$ vertices, color class size 1 and separator size n.
- If we remove any n vertices from G_{n}, it still has a connected component with more than $\left|V^{G_{n}}\right| / 2$ vertices.
- Such regular degree 3 graphs with linear-size separators exist.
- Color class size 1 means every vertex of G_{n} has a unique color.
- Let $X\left(G_{n}\right)$ be the result of replacing each vertex $v \in V^{G_{n}}$ by a copy of X of v 's color.
- Let G_{n} be a regular, degree 3 graph with $O(n)$ vertices, color class size 1 and separator size n.
- If we remove any n vertices from G_{n}, it still has a connected component with more than $\left|V^{G_{n}}\right| / 2$ vertices.
- Such regular degree 3 graphs with linear-size separators exist.
- Color class size 1 means every vertex of G_{n} has a unique color.
- Let $X\left(G_{n}\right)$ be the result of replacing each vertex $v \in V^{G_{n}}$ by a copy of X of v 's color.
- Thus $X\left(G_{n}\right)$ has color class size 4.

G_{n}
$X\left(G_{n}\right)$: replace each vertex $v \in V^{G_{n}}$ by a copy of X of v 's color, connecting a to a and b to b.

G_{n}

$\tilde{X}\left(G_{n}\right)$
$\tilde{X}(G)$ is $X(G)$ with any one edge pair flipped.

G_{n}

$\tilde{X}\left(G_{n}\right)$
$\tilde{X}(G)$ is $X(G)$ with any one edge pair flipped.

Is it $X\left(G_{n}\right)$ or $\tilde{X}\left(G_{n}\right)$?

Prop. Let $X^{\prime}\left(G_{n}\right)$ be $X\left(G_{n}\right)$ with some number, m, of the magenta edges flipped.

Then $X^{\prime}\left(G_{n}\right) \cong X\left(G_{n}\right)$ iff m is even and
$X^{\prime}\left(G_{n}\right) \cong \tilde{X}\left(G_{n}\right)$ iff m is odd.

Is it $X\left(G_{n}\right)$ or $\tilde{X}\left(G_{n}\right)$?

Prop. Let $X^{\prime}\left(G_{n}\right)$ be $X\left(G_{n}\right)$ with some number, m, of the magenta edges flipped.

Then $X^{\prime}\left(G_{n}\right) \cong X\left(G_{n}\right)$ iff m is even and
$X^{\prime}\left(G_{n}\right) \cong \tilde{X}\left(G_{n}\right)$ iff m is odd.
proof: Using the automorphisms of X, we can move any two flips towards each other until they eliminate each other.

Is it $X\left(G_{n}\right)$ or $\tilde{X}\left(G_{n}\right)$?

Prop. Let $X^{\prime}\left(G_{n}\right)$ be $X\left(G_{n}\right)$ with some number, m, of the magenta edges flipped.

Then $X^{\prime}\left(G_{n}\right) \cong X\left(G_{n}\right)$ iff m is even and
$X^{\prime}\left(G_{n}\right) \cong \tilde{X}\left(G_{n}\right)$ iff m is odd.

Is it $X\left(G_{n}\right)$ or $\tilde{X}\left(G_{n}\right)$?

Prop. Let $X^{\prime}\left(G_{n}\right)$ be $X\left(G_{n}\right)$ with some number, m, of the magenta edges flipped.

Then $X^{\prime}\left(G_{n}\right) \cong X\left(G_{n}\right)$ iff m is even and
$X^{\prime}\left(G_{n}\right) \cong \tilde{X}\left(G_{n}\right)$ iff m is odd.
proof: Using the automorphisms of X, we can move any two flips towards each other until they eliminate each other.

$\tilde{X}\left(G_{n}\right)$

$\tilde{X}\left(G_{n}\right)$

Every one of the m_{i} 's is connected to an even number of a_{j} 's.

Every one of the m_{i} 's is connected to an odd number of a_{j} 's.

The CFI Problem

Def. $\quad \mathrm{CFI}=\left\{\left(X^{\prime}(G) \mid X^{\prime}(G) \cong X(G)\right\} \quad\right.$ for G is connected, reg. deg. $3, \operatorname{cc}(G)=1$.

The CFI Problem

Def. $\mathrm{CFI}=\left\{\left(X^{\prime}(G) \mid X^{\prime}(G) \cong X(G)\right\} \quad\right.$ for G is connected, reg. deg. $3, \operatorname{cc}(G)=1$.

Prop. CFI \in DTIME[$n]$.

The CFI Problem

Def. $\quad \mathrm{CFI}=\left\{\left(X^{\prime}(G) \mid X^{\prime}(G) \cong X(G)\right\} \quad\right.$ for G is connected, reg. deg. $3, \operatorname{cc}(G)=1$.

Prop. CFI \in DTIME $n]$.
proof Use the ordering to label boundary pairs a_{i}, b_{i} when $a_{i} \leq b_{i}$. Then count the number, m, of flips of vertices and edges mod 2. $X^{\prime}(G) \in C F I$ iff m is even.

$\tilde{X}\left(G_{n}\right)$

Thm. $\mathrm{CFI} \in \mathrm{OIP}-\mathrm{FPC}$.

Thm. $\mathrm{CFI} \in \mathrm{OIP}-\mathrm{FPC}$.
proof We show that $X\left(G_{n}\right) \equiv C^{n} \tilde{X}\left(G_{n}\right)$.

Thm. $\mathrm{CFI} \in \mathrm{OIP}-\mathrm{FPC}$.

proof We show that $X\left(G_{n}\right) \equiv{ }_{C^{n}} \tilde{X}\left(G_{n}\right)$.
Counting doesn't help since $\operatorname{cc}\left(X\left(G_{n}\right)\right)=4$. Suffices to show that $X\left(G_{n}\right) \sim^{n} \tilde{X}\left(G_{n}\right)$.

Thm. $\mathrm{CFI} \in \mathrm{OIP}-\mathrm{FPC}$.

proof We show that $X\left(G_{n}\right) \equiv C^{n} \tilde{X}\left(G_{n}\right)$.
Counting doesn't help since $\operatorname{cc}\left(X\left(G_{n}\right)\right)=4$. Suffices to show that $X\left(G_{n}\right) \sim^{n} \tilde{X}\left(G_{n}\right)$.

Initially no pebbles on the board, Samson places x_{1} on $X(v)$ in one of the two graphs. Note that the largest connected component C_{1} of $G-\{v\}$ includes over half the vertices of G. Delilah moves the flip into C_{1}. If she removes the flip, then the two graphs are isomorphic. Delilah answers according to this isomorphism.

Thm. $\mathrm{CFI} \in \mathrm{OIP}-\mathrm{FPC}$.

proof We show that $X\left(G_{n}\right) \equiv C^{n} \tilde{X}\left(G_{n}\right)$.
Counting doesn't help since $\operatorname{cc}\left(X\left(G_{n}\right)\right)=4$. Suffices to show that $X\left(G_{n}\right) \sim^{n} \tilde{X}\left(G_{n}\right)$.

Initially no pebbles on the board, Samson places x_{1} on $X(v)$ in one of the two graphs. Note that the largest connected component C_{1} of $G-\{v\}$ includes over half the vertices of G. Delilah moves the flip into C_{1}. If she removes the flip, then the two graphs are isomorphic. Delilah answers according to this isomorphism.

Inductively, after step m, Delilah has not yet lost, so there is an isomorphism from chosen points in $X\left(G_{n}\right)$ to chosen points in $\tilde{X}\left(G_{n}\right)$ which extends to an isomorphism of the whole graphs in which a flip in \tilde{G}_{n} in C_{m} has been removed.

Inductively, after step m, Delilah has not yet lost, so there is an isomorphism from chosen points in $X\left(G_{n}\right)$ to chosen points in $\tilde{X}\left(G_{n}\right)$ which extends to an isomorphism of the whole graphs in which a flip in \tilde{G}_{n} in C_{m} has been removed.

Inductively, after step m, Delilah has not yet lost, so there is an isomorphism from chosen points in $X\left(G_{n}\right)$ to chosen points in $\tilde{X}\left(G_{n}\right)$ which extends to an isomorphism of the whole graphs in which a flip in \tilde{G}_{n} in C_{m} has been removed.

Samson picks up the x_{i} pebbles and places one on some $X(v)$. Note that C_{m} and C_{m+1} both contain over half the vertices of G_{n}.

Thus they have some vertex $w \in C_{m} \cap C_{m+1}$.

Inductively, after step m, Delilah has not yet lost, so there is an isomorphism from chosen points in $X\left(G_{n}\right)$ to chosen points in $\tilde{X}\left(G_{n}\right)$ which extends to an isomorphism of the whole graphs in which a flip in \tilde{G}_{n} in C_{m} has been removed.

Samson picks up the x_{i} pebbles and places one on some $X(v)$. Note that C_{m} and C_{m+1} both contain over half the vertices of G_{n}.

Thus they have some vertex $w \in C_{m} \cap C_{m+1}$.
Delilah mentally moves the flip to $X(w)$. She then answers according to the isomorphism from $X\left(G_{n}\right)$ to $\tilde{X}\left(G_{n}\right)$ where that flip in $X(w)$ has been removed.

Inductively, after step m, Delilah has not yet lost, so there is an isomorphism from chosen points in $X\left(G_{n}\right)$ to chosen points in $\tilde{X}\left(G_{n}\right)$ which extends to an isomorphism of the whole graphs in which a flip in \tilde{G}_{n} in C_{m} has been removed.

Samson picks up the x_{i} pebbles and places one on some $X(v)$. Note that C_{m} and C_{m+1} both contain over half the vertices of G_{n}.

Thus they have some vertex $w \in C_{m} \cap C_{m+1}$.
Delilah mentally moves the flip to $X(w)$. She then answers according to the isomorphism from $X\left(G_{n}\right)$ to $\tilde{X}\left(G_{n}\right)$ where that flip in $X(w)$ has been removed.

Thus Delilah never loses.

Recap

We have shown that the linear-time CFI problem is in OIP - FPC.

Cor. $\Omega(n)$ variables are needed to characterize graphs.

Recent Developments: FPC is Surprisingly Powerful

Martin Grohe has shown that many classes of graphs are characterized by C^{k} for some k. This includes planer graphs, graphs of bounded genus, graphs of bounded tree width and culminating in

Recent Developments: FPC is Surprisingly Powerful

Martin Grohe has shown that many classes of graphs are characterized by C^{k} for some k. This includes planer graphs, graphs of bounded genus, graphs of bounded tree width and culminating in

Thm. [Grohe] Any class \mathcal{G} of graphs that excludes some minor is characterized by C^{k} for some fixed k.

Recent Developments: FPC is Surprisingly Powerful

Martin Grohe has shown that many classes of graphs are characterized by C^{k} for some k. This includes planer graphs, graphs of bounded genus, graphs of bounded tree width and culminating in

Thm. [Grohe] Any class \mathcal{G} of graphs that excludes some minor is characterized by C^{k} for some fixed k. Thus,

- FPC captures OIP on \mathcal{G}. Thus, for graphs from \mathcal{G}, graph isomorphism and canonization are in P .
- For $G, H \in \mathcal{G}, \quad G \cong H$ iff $G \equiv_{C^{k}} H$.

Recent Developments: FPC is Surprisingly Powerful

Martin Grohe has shown that many classes of graphs are characterized by C^{k} for some k. This includes planer graphs, graphs of bounded genus, graphs of bounded tree width and culminating in

Thm. [Grohe] Any class \mathcal{G} of graphs that excludes some minor is characterized by C^{k} for some fixed k. Thus,

- FPC captures OIP on \mathcal{G}. Thus, for graphs from \mathcal{G}, graph isomorphism and canonization are in P .
- For $G, H \in \mathcal{G}, \quad G \cong H$ iff $G \equiv{ }_{C^{k}} H$.

Thm. [Anderson, Dawar and Holm] Linear Programming is in FPC.

Going Beyond FPC

Two other languages are candidates for capturing OIP:

Going Beyond FPC

Two other languages are candidates for capturing OIP:

- Choiceless Polynomial Time (CPT) [Blass and Gurevich] Compute using sets of sets of sets, etc., where instead of choosing the first vertex, we consider the set of all such choices, keeping the total size of all sets polynomial.

Going Beyond FPC

Two other languages are candidates for capturing OIP:

- Choiceless Polynomial Time (CPT) [Blass and Gurevich] Compute using sets of sets of sets, etc., where instead of choosing the first vertex, we consider the set of all such choices, keeping the total size of all sets polynomial.
- Rank Logic [Dawar, Grohe, Holm, and Laubner] Compute the rank of matrices expressed in an unordered setting.

Going Beyond FPC

Two other languages are candidates for capturing OIP:

- Choiceless Polynomial Time (CPT) [Blass and Gurevich] Compute using sets of sets of sets, etc., where instead of choosing the first vertex, we consider the set of all such choices, keeping the total size of all sets polynomial.
- Rank Logic [Dawar, Grohe, Holm, and Laubner] Compute the rank of matrices expressed in an unordered setting.

CFI is expresible in CPT and in Rank Logic, thus these are strict extenstions of FPC.

Going Beyond FPC

Two other languages are candidates for capturing OIP:

- Choiceless Polynomial Time (CPT) [Blass and Gurevich] Compute using sets of sets of sets, etc., where instead of choosing the first vertex, we consider the set of all such choices, keeping the total size of all sets polynomial.
- Rank Logic [Dawar, Grohe, Holm, and Laubner] Compute the rank of matrices expressed in an unordered setting.

CFI is expresible in CPT and in Rank Logic, thus these are strict extenstions of FPC.

What I want: more natural extension to FPC that adds group theory and characterizes graphs using $O(\log n)$ variables.

