Towards Capturing Order-Independent P

Neil Immerman

College of Computer and Information Sciences University of Massachusetts, Amherst Amherst, MA, USA

people.cs.umass.edu/~immerman

$$\begin{array}{ccc} \textbf{Query} & & & \textbf{Answer} \\ q_1 \ q_2 \ \cdots \ q_n & & & \\ \end{array} \mapsto \begin{array}{cccc} \textbf{Computation} & \mapsto & & & \textbf{a}_1 \ a_2 \ \cdots \ a_i \ \cdots \ a_m \end{array}$$

$$\begin{array}{ccc} \textbf{Query} & & & \textbf{Answer} \\ q_1 \ q_2 \ \cdots \ q_n & & & & \\ \end{array} \mapsto \begin{array}{cccc} \textbf{Computation} & \mapsto & & & \textbf{a}_1 \ a_2 \ \cdots \ a_i \ \cdots \ a_m \end{array}$$

Restrict attention to the complexity of computing individual bits of the output, i.e., **decision problems**.

Restrict attention to the complexity of computing individual bits of the output, i.e., **decision problems**.

How hard is it to **check** if input has property *S*?

Restrict attention to the complexity of computing individual bits of the output, i.e., **decision problems**.

How hard is it to **check** if input has property *S*?

How rich a language do we need to express property S?

Restrict attention to the complexity of computing individual bits of the output, i.e., **decision problems**.

How hard is it to **check** if input has property S?

How rich a language do we need to **express** property S?

There is a **computable isomorphism** between these two approaches.

$$H = (\{a, b, c\}, \leq, E^H, R^H, G^H, B^H)$$

Colored Graph

Н

$$H = (\{a,b,c\}, \leq, E^H, R^H, G^H, B^H)$$

Colored $E^H = \{(a,b), (b,a), (b,c), (c,b), (c,a), (a,c)\}$

Graph

Н

Colored
$$E^{H} = \{(a,b), (b,a), (b,c), (c,b), (c,a), (a,c)\}$$

Graph $R^{H} = \{a\}$
 $G^{H} = \{b\}$
 $B^{H} = \{c\}$

Н

Н

 $(\{a, b, c\}, <, E^H, R^H, G^H, B^H)$

$$\begin{array}{lll} H & = & (\{a,b,c\},\leq,E^{H},R^{H},G^{H},B^{H}) \\ & \leq^{H} & = & \{(a,a),(a,b),(a,c),(b,b),(b,c),(c,c)\} \\ \text{Colored} & E^{H} & = & \{(a,b),(b,a),(b,c),(c,b),(c,a),(a,c)\} \\ \text{Graph} & R^{H} & = & \{a\} \\ & G^{H} & = & \{b\} \\ & B^{H} & = & \{c\} \end{array}$$

Н

input symbols: E, R, Y, B, \dots

variables: x, y, z, \dots

boolean connectives: \land, \lor, \lnot

quantifiers: \forall , \exists

numeric symbols: $=, \leq, +, \times, min, max$

$$\alpha \equiv \forall x \exists y \ E(x,y)$$

$$\beta \equiv \forall xy (\neg E(x,x) \land (E(x,y) \rightarrow E(y,x)))$$

$$\gamma \equiv \forall x ((\forall y \ x \leq y) \rightarrow R(x))$$

input symbols: E, R, Y, B, \dots

variables: x, y, z, \dots

boolean connectives: \land, \lor, \lnot

quantifiers: \forall , \exists

numeric symbols: $=, \leq, +, \times, min, max$

$$\alpha \equiv \forall x \exists y \ E(x,y)$$

$$\beta \equiv \forall xy \ (\neg E(x,x) \land (E(x,y) \rightarrow E(y,x)))$$

$$\gamma \equiv \forall x \ ((\forall y \ x \le y) \rightarrow R(x))$$

In this setting, with the structure of interest being the **finite input**, FO is a **weak** complexity class.

input symbols: E, R, Y, B, \dots

variables: x, y, z, \dots

boolean connectives: \land, \lor, \lnot

quantifiers: \forall , \exists

numeric symbols: $=, \leq, +, \times, min, max$

$$\alpha \equiv \forall x \exists y \ E(x,y)$$

$$\beta \equiv \forall xy \ (\neg E(x,x) \land (E(x,y) \rightarrow E(y,x)))$$

$$\gamma \equiv \forall x \ ((\forall y \ x \le y) \rightarrow R(x))$$

In this setting, with the structure of interest being the **finite input**, FO is a **weak** complexity class.

It is **easy** to test if input, H, satisfies α $(H \models \alpha)$.

$$G$$
 $1 \le 2 \le 3$

$$\alpha \equiv \forall x \exists y \ E(x, y)$$

$$\beta \equiv \forall x y \ (\neg E(x, x) \land (E(x, y) \rightarrow E(y, x)))$$

$$\gamma \equiv \forall x \ ((\forall y \ x \le y) \rightarrow R(x))$$

$$\alpha \equiv \forall x \exists y \ E(x, y)$$

$$\beta \equiv \forall x y \ (\neg E(x, x) \land (E(x, y) \rightarrow E(y, x)))$$

$$\gamma \equiv \forall x ((\forall y \ x \le y) \rightarrow R(x))$$

$$\alpha \equiv \forall x \exists y \ E(x, y)$$

$$\beta \equiv \forall x y \ (\neg E(x, x) \land (E(x, y) \rightarrow E(y, x)))$$

$$\gamma \equiv \forall x ((\forall y \ x \le y) \rightarrow R(x))$$

 α and β are order independent; γ is order dependent

Second-Order Logic: FO plus Relation Variables

$$\Phi_{3\text{color}} \equiv \exists R^1 G^1 B^1 \forall x y ((R(x) \vee G(x) \vee B(x)) \land (E(x,y) \rightarrow (\neg (R(x) \land R(y)) \land \neg (G(x) \land G(y)) \land \neg (B(x) \land B(y)))))$$

Second-Order Logic: FO plus Relation Variables

Fagin's Theorem: $NP = SO\exists$

$$\Phi_{3\text{color}} \equiv \exists R^1 G^1 B^1 \forall x y ((R(x) \vee G(x) \vee B(x)) \wedge (E(x,y) \rightarrow (\neg (R(x) \wedge R(y)) \wedge \neg (G(x) \wedge G(y)) \wedge \neg (B(x) \wedge B(y)))))$$

-r.e. complete	Ari	thmetic Hierarchy	FO(N)		r.e. comple
co-r.e	. FO∀(N)	Recursive	r.e.	FO∃(N)	Halt
		Primitive Recur	sive		
		SO(LFP)	$\mathrm{SO}[2^{n^{O(1)}}]$	E	XPTIME
		QSAT PSPACE con	mplete		PSPACE
$\mathrm{FO}[2^{n^{O(1)}}]$	FO(PFP)	SO(TC)	$\mathrm{SO}[n^{O(1)}]$	r	SPACE
o-NP complete SAT co-N		PTIME Hierarchy			NP comple SAT
CO-P	NP SO∀	NP ∩ co-NP	NP	EOS	
$FO[n^{O(1)}]$ $FO(LFP)$	SO(Horn)	Horn- SAT	complete		P
$FO[(\log n)^{O(1)}]$		"truly	1		NC
$\operatorname{FO}[\log n]$		feasible"	1		\mathbf{AC}^1
FO(CFL)		/	1		sAC ¹
FO(TC)	SO(Krom)	2SAT NL com	<u>p.</u>		NL
FO(DTC)	7	2COLOR L cor	np.		L

m, e0

EO/COLINE

$$\mathsf{REACH} = \{G, s, t \mid s \stackrel{\star}{\to} t\}$$

REACH =
$$\{G, s, t \mid s \stackrel{\star}{\rightarrow} t\}$$
 REACH \notin FO

$$E^*(x,y) \stackrel{\text{def}}{=} x = y \vee E(x,y) \vee \exists z (E^*(x,z) \wedge E^*(z,y))$$

REACH =
$$\{G, s, t \mid s \stackrel{\star}{\rightarrow} t\}$$
 REACH \notin FO

$$E^*(x,y) \stackrel{\text{def}}{=} x = y \lor E(x,y) \lor \exists z (E^*(x,z) \land E^*(z,y))$$

 $\varphi_{tc}(R,x,y) \equiv x = y \lor E(x,y) \lor \exists z (R(x,z) \land R(z,y))$

REACH =
$$\{G, s, t \mid s \stackrel{\star}{\rightarrow} t\}$$
 REACH \notin FO

$$E^{\star}(x,y) \stackrel{\mathrm{def}}{=} x = y \lor E(x,y) \lor \exists z (E^{\star}(x,z) \land E^{\star}(z,y))$$

$$\varphi_{tc}(R,x,y) \equiv x = y \lor E(x,y) \lor \exists z (R(x,z) \land R(z,y))$$

$$\varphi_{tc}^{G} : \mathsf{binRel}(G) \to \mathsf{binRel}(G)$$

$$\mathsf{monotone} \qquad R \subseteq S \Rightarrow \varphi_{tc}^{G}(R) \subseteq \varphi_{tc}^{G}(S)$$

REACH =
$$\{G, s, t \mid s \stackrel{\star}{\rightarrow} t\}$$
 REACH \notin FO

$$E^{\star}(x,y) \stackrel{\mathrm{def}}{=} x = y \lor E(x,y) \lor \exists z (E^{\star}(x,z) \land E^{\star}(z,y))$$
 $\varphi_{tc}(R,x,y) \equiv x = y \lor E(x,y) \lor \exists z (R(x,z) \land R(z,y))$
 $\varphi_{tc}^{G} : \mathsf{binRel}(G) \to \mathsf{binRel}(G)$
monotone $R \subseteq S \Rightarrow \varphi_{tc}^{G}(R) \subseteq \varphi_{tc}^{G}(S)$
 $E^{\star} = (\mathsf{LFP}\varphi_{tc})$

$$\mathsf{REACH} \ = \ \big\{ G, s, t \ \big| \ s \overset{\star}{\to} t \big\} \qquad \qquad \mathsf{REACH} \not \in \mathsf{FO}$$

$$E^{\star}(x,y) \stackrel{\mathrm{def}}{=} x = y \lor E(x,y) \lor \exists z (E^{\star}(x,z) \land E^{\star}(z,y))$$

$$\varphi_{tc}(R,x,y) \equiv x = y \lor E(x,y) \lor \exists z (R(x,z) \land R(z,y))$$

$$\varphi_{tc}^{G} : \mathsf{binRel}(G) \to \mathsf{binRel}(G)$$

$$\mathsf{monotone} \qquad R \subseteq S \Rightarrow \varphi_{tc}^{G}(R) \subseteq \varphi_{tc}^{G}(S)$$

$$G \in \mathsf{REACH} \Leftrightarrow G \models (\mathsf{LFP}\varphi_{tc})(s,t) \qquad E^{\star} = (\mathsf{LFP}\varphi_{tc})$$

$$\mathsf{REACH} = \{G, s, t \mid s \stackrel{\star}{\to} t\} \qquad \mathsf{REACH} \not\in \mathsf{FO}$$

Thm.
$$P = FO(LFP) = FO[n^{O(1)}]$$

FO[$n^{O(1)}$] means for graphs with n vertices, the formula φ_n expressing the property has $n^{O(1)}$ quantifiers, but only a **fixed number** of requantified **variables**, x_1, \ldots, x_k , i.e, $\varphi_n \in \mathcal{L}^k$.

Thm.
$$P = FO(LFP) = FO[n^{O(1)}]$$

Graphs are completely general structures, i.e., any structure can be encoded as a graph.

FO[$n^{O(1)}$] means for graphs with n vertices, the formula φ_n expressing the property has $n^{O(1)}$ quantifiers, but only a **fixed number** of requantified **variables**, x_1, \ldots, x_k , i.e, $\varphi_n \in \mathcal{L}^k$.

Thm.
$$P = FO(LFP) = FO[n^{O(1)}]$$

Graphs are completely general structures, i.e., any structure can be encoded as a graph. **Restrict to graphs.**

FO[$n^{O(1)}$] means for graphs with n vertices, the formula φ_n expressing the property has $n^{O(1)}$ quantifiers, but only a **fixed number** of requantified **variables**, x_1, \ldots, x_k , i.e, $\varphi_n \in \mathcal{L}^k$.

Thm.
$$P = FO(LFP) = FO[n^{O(1)}]$$

Graphs are completely general structures, i.e., any structure can be encoded as a graph. **Restrict to graphs.**

FO[$n^{O(1)}$] means for graphs with n vertices, the formula φ_n expressing the property has $n^{O(1)}$ quantifiers, but only a **fixed number** of requantified **variables**, x_1, \ldots, x_k , i.e, $\varphi_n \in \mathcal{L}^k$.

Above Thm requires ordering relation, \leq .

Thm.
$$P = FO(LFP) = FO[n^{O(1)}]$$

Graphs are completely general structures, i.e., any structure can be encoded as a graph. **Restrict to graphs.**

FO[$n^{O(1)}$] means for graphs with n vertices, the formula φ_n expressing the property has $n^{O(1)}$ quantifiers, but only a **fixed number** of requantified **variables**, x_1, \ldots, x_k , i.e, $\varphi_n \in \mathcal{L}^k$.

Above Thm requires ordering relation, \leq .

Necessary for encoding computation – inputs to computers are ordered.

Thm.
$$P = FO(LFP) = FO[n^{O(1)}]$$

Graphs are completely general structures, i.e., any structure can be encoded as a graph. **Restrict to graphs.**

FO[$n^{O(1)}$] means for graphs with n vertices, the formula φ_n expressing the property has $n^{O(1)}$ quantifiers, but only a **fixed number** of requantified **variables**, x_1, \ldots, x_k , i.e, $\varphi_n \in \mathcal{L}^k$.

Above Thm requires ordering relation, \leq .

Necessary for encoding computation – inputs to computers are ordered.

Unnatural for graphs – the ordering of the vertices is irrelevant.

Thm.
$$P = FO(LFP) = FO[n^{O(1)}]$$

Graphs are completely general structures, i.e., any structure can be encoded as a graph. **Restrict to graphs.**

FO[$n^{O(1)}$] means for graphs with n vertices, the formula φ_n expressing the property has $n^{O(1)}$ quantifiers, but only a **fixed number** of requantified **variables**, x_1, \ldots, x_k , i.e, $\varphi_n \in \mathcal{L}^k$.

Above Thm requires ordering relation, \leq .

Necessary for encoding computation – inputs to computers are ordered.

Unnatural for graphs – the ordering of the vertices is irrelevant.

Wanted: a language capturing Order-Independent P (OIP).

Want to Capture Order-Independent P (OIP)

```
FO(LFP) = P
FO(wo \le)(LFP) \subseteq OP
```

Want to Capture Order-Independent P (OIP)

```
egin{aligned} & 	ext{FO(LFP)} &= & 	ext{P} \ & 	ext{FO(wo} \leq) (	ext{LFP}) &\subseteq & 	ext{OIP} \ & 	ext{EVEN} & \stackrel{	ext{def}}{=} & \left\{ \textit{G} \; \middle| \; |\textit{V}^{\textit{G}}| \equiv 0 \, (\text{mod} \, 2) 
ight\} \end{aligned}
```

Want to Capture Order-Independent P (OIP)

```
\begin{split} & \text{FO}(\text{LFP}) \ = \ P \\ & \text{FO}(\text{wo} \le) \big( \text{LFP} \big) \ \subseteq \ \text{OIP} \\ & \text{EVEN} \ \stackrel{\text{def}}{=} \ \big\{ \textit{G} \ \big| \ |\textit{V}^{\textit{G}}| \equiv 0 \, (\text{mod} \, 2) \big\} \\ & \text{EVEN} \in \text{OIP} - \text{FO}(\text{wo} \le) \big( \text{LFP} \big). \end{split}
```

Want to Capture Order-Independent P (OIP)

```
\begin{array}{l} {\rm FO(LFP)} \ = \ P \\ \\ {\rm FO(wo\leq)(LFP)} \ \subseteq \ \mbox{OIP} \\ \\ {\rm EVEN} \ \stackrel{\rm def}{=} \ \left\{ \ G \ \middle| \ |V^G| \equiv 0 \ ({\rm mod} \ 2) \right\} \\ \\ {\rm EVEN} \ \in \ \mbox{OIP} - {\rm FO(wo\leq)(LFP)}. \\ \\ {\rm Thus,} \quad {\rm FO(wo\leq)(LFP)} \ \subsetneqq \ \mbox{OIP} \end{array}
```

Want to Capture Order-Independent P (OIP)

```
FO(LFP) = P
FO(wo \le)(LFP) \subseteq OIP
\mathsf{EVEN} \stackrel{\mathrm{def}}{=} \left\{ G \mid |V^G| \equiv 0 \, (\bmod \, 2) \right\}
EVEN \in OIP - FO(wo<)(LFP).
Thus, FO(wo<)(LFP) \subseteq OIP
How do we prove EVEN \notin FO(wo\le)(LFP) ?
```

 $\mathcal{G}_m^k(G,H)$

 $\it m$ moves,

k pebbles,

2 players

 $\mathcal{G}_m^k(G, H)$ m moves, k pebbles, 2 players

Samson: show a difference.

 $\mathcal{G}_m^k(G, H)$ m moves, k pebbles, 2 players

 $\mathcal{G}_m^k(G,H)$ m moves, k pebbles, 2 players

 $\mathcal{G}_m^k(G,H)$ m moves, k pebbles, 2 players

 $\mathcal{G}_m^k(G, H)$ m moves, k pebbles, 2 players

 $\mathcal{G}_m^k(G, H)$ m moves, k pebbles, 2 players

Samson: show a difference. **Delilah**: preserve isomorphism.

 $\mathcal{G}_m^k(G, H)$ m moves, k pebbles, 2 players

Samson: show a difference. **Delilah**: preserve isomorphism.

 $\mathcal{G}_m^k(G, H)$ m moves, k pebbles, 2 players

Samson: show a difference. **Delilah**: preserve isomorphism.

 $\mathcal{G}_m^k(G, H)$ m moves, k pebbles, 2 players

Samson: show a difference. **Delilah**: preserve isomorphism.

 $\mathcal{G}_m^k(G, H)$ m moves, k pebbles, 2 players

Samson: show a difference. **Delilah**: preserve isomorphism.

For all m, **D** wins $\mathcal{G}_m^2(G, H)$; but **S** wins $\mathcal{G}_3^3(G, H)$.

Fundamental Thm of Ehrenfeucht-Fraïssé Games

Notation: $G \sim_m^k H$ means that **Delilah** has a winning strategy for $\mathcal{G}_m^k(G, H)$.

Fundamental Thm of Ehrenfeucht-Fraïssé Games

Notation: $G \sim_m^k H$ means that **Delilah** has a winning strategy for $\mathcal{G}_m^k(G, H)$.

Thm. D has a winning strategy on the m-move, k-pebble game on G, H iff G and H agree on all formulas using k variables and quantifier depth m.

$$G \sim_m^k H \Leftrightarrow G \equiv_m^k H$$

$$G_{2m} \quad \begin{array}{c} g_1 \\ \vdots \\ g_2 \\ \vdots \\ \vdots \\ g_{2m} \\ x_{2m} \\ \end{array}$$

$$G_{2m} \quad \begin{array}{c} f_1 \\ \vdots \\ f_2 \\ \vdots \\ f_{2m+1} \\ \vdots \\ f_{2m+1} \\ \end{array}$$

$$G_{2m} \sim^{2m} H_{2m+1}$$

Two sorts: Numbers: $\{0, 1, ..., n\}, \le$, Plus, Times and

Vertices: $\{v_1, \ldots, v_n\}, E, C_1, C_2 \ldots$

Two sorts: Numbers: $\{0, 1, ..., n\}$, \leq , Plus, Times and Vertices: $\{v_1, ..., v_n\}$, E, C_1, C_2 ...

Combine with counting terms: $\#x(\varphi(x))$.

```
Two sorts: Numbers: \{0, 1, ..., n\}, \leq, Plus, Times and Vertices: \{v_1, ..., v_n\}, E, C_1, C_2 ...
```

Combine with counting terms: $\#x(\varphi(x))$.

$$\mathsf{EVEN} \quad \equiv \quad \exists i \, (\mathsf{Plus}(i,i,\#x(x=x)))$$

Two sorts: Numbers: $\{0, 1, ..., n\}$, \leq , Plus, Times and Vertices: $\{v_1, ..., v_n\}$, $E, C_1, C_2 ...$

Combine with counting terms: $\#x(\varphi(x))$.

$$\mathsf{EVEN} \quad \equiv \quad \exists i \, (\mathsf{Plus}(i, i, \# x (x = x)))$$

Let $C^k \stackrel{\text{def}}{=} FO^k(\text{COUNT})$; FPC $\stackrel{\text{def}}{=} FO(\text{LFP}, \text{COUNT})$.

Two sorts: Numbers: $\{0, 1, ..., n\}$, \leq , Plus, Times and Vertices: $\{v_1, ..., v_n\}$, $E, C_1, C_2 ...$

Combine with counting terms: $\#x(\varphi(x))$.

$$\mathsf{EVEN} \quad \equiv \quad \exists i \, (\mathsf{Plus}(i,i,\#x(x=x)))$$

Let $C^k \stackrel{\text{def}}{=} FO^k(\text{COUNT})$; FPC $\stackrel{\text{def}}{=} FO(\text{LFP}, \text{COUNT})$.

$$FO(wo \le)(LFP) \subseteq FPC \subseteq OIP$$

Stable Coloring of Vertices

Start with a colored graph, and repeatedly color each vertex by how many neighbors it has of each color.

Stable Coloring of Vertices

Start with a colored graph, and repeatedly color each vertex by how many neighbors it has of each color.

Stable Coloring of Vertices

Start with a colored graph, and repeatedly color each vertex by how many neighbors it has of each color.

Stable Coloring of Vertices

Start with a colored graph, and repeatedly color each vertex by how many neighbors it has of each color.

Stable Coloring of Vertices

Start with a colored graph, and repeatedly color each vertex by how many neighbors it has of each color.

Stable Coloring of Vertices

Start with a colored graph, and repeatedly color each vertex by how many neighbors it has of each color.

Thm. Stable Coloring of Vertices $= C^2$ type.

Round m of stable coloring is quantifier depth of C^2 formula.

Thm. [Babai, Erdos, Selkow] With high probability, after four iterations of stable coloring, each vertex of a random graph has a unique color, i.e., the C_4^2 -type of each vertex is unique.

Thm. [Babai, Erdos, Selkow] With high probability, after four iterations of stable coloring, each vertex of a random graph has a unique color, i.e., the C_4^2 -type of each vertex is unique.

Thus, for almost all graphs, there is a linear time algorithm to canonize the graph, i.e., sort the vertices by their C^2 type, so that two graphs are isomorphic iff their canonical forms are equal.

Thm. [Babai, Erdos, Selkow] With high probability, after four iterations of stable coloring, each vertex of a random graph has a unique color, i.e., the C_4^2 -type of each vertex is unique.

Thus, for almost all graphs, there is a linear time algorithm to canonize the graph, i.e., sort the vertices by their C^2 type, so that two graphs are isomorphic iff their canonical forms are equal.

With high probability, $G \cong H$ iff $G \equiv_4^2 H$.

Thm. [Babai, Erdos, Selkow] With high probability, after four iterations of stable coloring, each vertex of a random graph has a unique color, i.e., the C_4^2 -type of each vertex is unique.

Thus, for almost all graphs, there is a linear time algorithm to canonize the graph, i.e., sort the vertices by their C^2 type, so that two graphs are isomorphic iff their canonical forms are equal.

With high probability, $G \cong H$ iff $G \equiv_4^2 H$.

Thus, Graph Isomorphism (GI) is linear time for random graphs.

Thm. [Babai, Erdos, Selkow] With high probability, after four iterations of stable coloring, each vertex of a random graph has a unique color, i.e., the C_4^2 -type of each vertex is unique.

Thus, for almost all graphs, there is a linear time algorithm to canonize the graph, i.e., sort the vertices by their C^2 type, so that two graphs are isomorphic iff their canonical forms are equal.

With high probability, $G \cong H$ iff $G \equiv_4^2 H$.

Thus, Graph Isomorphism (GI) is linear time for random graphs.

In general the complexity of GI is unknown.

Thm. [Babai, Erdos, Selkow] With high probability, after four iterations of stable coloring, each vertex of a random graph has a unique color, i.e., the C_4^2 -type of each vertex is unique.

Thus, for almost all graphs, there is a linear time algorithm to canonize the graph, i.e., sort the vertices by their C^2 type, so that two graphs are isomorphic iff their canonical forms are equal.

With high probability, $G \cong H$ iff $G \equiv_4^2 H$.

Thus, Graph Isomorphism (GI) is linear time for random graphs.

In general the complexity of GI is unknown.

Thm. [Babai, 2015] $GI \in DTIME[n^{\log^7 n}]$. (Before this it was only known that $GI \in DTIME[n^{\sqrt{n}}]$.)

Def. Language \mathcal{L} **characterizes** a graph G iff for all graphs H,

$$G \equiv_{\mathcal{L}} H \Leftrightarrow G \cong H$$
.

Def. Language \mathcal{L} **characterizes** a graph G iff for all graphs H,

$$G \equiv_{\mathcal{L}} H \Leftrightarrow G \cong H$$
.

- C² characterizes almost all random graphs.
- C² characterizes all trees.
- $ightharpoonup C^3$ characterizes all graphs of color class size 3.

Def. Language \mathcal{L} **characterizes** a graph G iff for all graphs H,

$$G \equiv_{\mathcal{L}} H \Leftrightarrow G \cong H$$
.

- C² characterizes almost all random graphs.
- C² characterizes all trees.
- $ightharpoonup C^3$ characterizes all graphs of color class size 3.

Thm. We can test if $G \equiv_{C^k} H$ in FPC and DTIME[$n^k \log n$].

Def. Language \mathcal{L} characterizes a graph G iff for all graphs H,

$$G \equiv_{\mathcal{L}} H \Leftrightarrow G \cong H$$
.

- C² characterizes almost all random graphs.
- C² characterizes all trees.
- $ightharpoonup C^3$ characterizes all graphs of color class size 3.

Thm. We can test if $G \equiv_{C^k} H$ in FPC and DTIME[$n^k \log n$].

Cor. If C^k characterizes all graphs in a class of graphs \mathcal{G} that is closed under particularizing, then \mathcal{G} admits C^k canonization, and thus FPC captures **OIP** over \mathcal{G} .

Def. Language \mathcal{L} characterizes a graph G iff for all graphs H,

$$G \equiv_{\mathcal{L}} H \Leftrightarrow G \cong H$$
.

- C² characterizes almost all random graphs.
- C² characterizes all trees.
- $ightharpoonup C^3$ characterizes all graphs of color class size 3.

Thm. We can test if $G \equiv_{C^k} H$ in FPC and DTIME[$n^k \log n$].

Cor. If C^k characterizes all graphs in a class of graphs \mathcal{G} that is closed under particularizing, then \mathcal{G} admits C^k canonization, and thus FPC captures **OIP** over \mathcal{G} .

proof: Apply arbitrary FO(LFP) formula to the canonical form of the input graph. \Box

Particularizing Means Uniquely Coloring Some Vertex

Particularizing Means Uniquely Coloring Some Vertex

Is FPC Equal to OF?

► Is FPC Equal to OIP?

Is FPC Equal to OIP?

- Is FPC Equal to OIP?
- Does C⁴ characterize all graphs?

Is FPC Equal to OP?

- Is FPC Equal to OIP?
- Does C⁴ characterize all graphs?
- ▶ If yes, then FPC = OIP and for all graphs, $G \cong H \Leftrightarrow G \equiv_{C^4} H$.

Thus, GI would be in DTIME[$n^4 \log n$].

Is FPC Equal to OF?

- Is FPC Equal to OIP?
- Does C⁴ characterize all graphs?
- If yes, then FPC = OIP and for all graphs, $G \cong H \Leftrightarrow G \equiv_{C^4} H$.

Thus, GI would be in DTIME[$n^4 \log n$].

Thm. [CFI] No!

A simple graph property (now called the CFI property) checkable in $\mathrm{DTIME}[n]$, requires $v = \Omega(n)$ variables to express in C^v . Thus, $\mathrm{CFI} \in \mathsf{OIP} - \mathrm{FPC}$

CFI Gadget X: Each m_i adjacent to an even number of a_j 's.

CFI Gadget X: Each m_i adjacent to an even number of a_j 's. Automorphisms of X: switch an **even number** of (a_ib_i) pairs.

CFI Gadget X: Each m_i adjacent to an even number of a_j 's. Automorphisms of X: switch an **even number** of (a_ib_i) pairs.

Automorphism: $(a_2b_2)(a_3b_3)(m_1m_2)(m_3m_4)$

CFI Gadget X: Each m_i adjacent to an even number of a_j 's. Automorphisms of X: switch an **even number** of (a_ib_i) pairs.

Automorphism: $(a_1b_1)(a_2b_2)(m_1m_4)(m_2m_3)$

G_n

Let G_n be a regular, degree 3 graph with O(n) vertices, color class size 1 and separator size n.

G_n

- Let G_n be a regular, degree 3 graph with O(n) vertices, color class size 1 and separator size n.
- ▶ If we remove any n vertices from G_n , it still has a connected component with more than $|V^{G_n}|/2$ vertices.

- Let G_n be a regular, degree 3 graph with O(n) vertices, color class size 1 and separator size n.
- ▶ If we remove any n vertices from G_n , it still has a connected component with more than $|V^{G_n}|/2$ vertices.
- Such regular degree 3 graphs with linear-size separators exist.

- Let G_n be a regular, degree 3 graph with O(n) vertices, color class size 1 and separator size n.
- ▶ If we remove any n vertices from G_n , it still has a connected component with more than $|V^{G_n}|/2$ vertices.
- Such regular degree 3 graphs with linear-size separators exist.
- Color class size 1 means every vertex of G_n has a unique color.

- Let G_n be a regular, degree 3 graph with O(n) vertices, color class size 1 and separator size n.
- ▶ If we remove any n vertices from G_n , it still has a connected component with more than $|V^{G_n}|/2$ vertices.
- Such regular degree 3 graphs with linear-size separators exist.
- Color class size 1 means every vertex of G_n has a unique color.
- ▶ Let $X(G_n)$ be the result of replacing each vertex $v \in V^{G_n}$ by a copy of X of v's color.

- Let G_n be a regular, degree 3 graph with O(n) vertices, color class size 1 and separator size n.
- ▶ If we remove any n vertices from G_n , it still has a connected component with more than $|V^{G_n}|/2$ vertices.
- Such regular degree 3 graphs with linear-size separators exist.
- Color class size 1 means every vertex of G_n has a unique color.
- ▶ Let $X(G_n)$ be the result of replacing each vertex $v \in V^{G_n}$ by a copy of X of v's color.
- ▶ Thus $X(G_n)$ has color class size 4.

 $X(G_n)$: replace each vertex $v \in V^{G_n}$ by a copy of X of v's color, connecting a to a and b to b.

 $\tilde{X}(G)$ is X(G) with any one edge pair flipped.

 $\tilde{X}(G)$ is X(G) with any one edge pair flipped.

Is it $X(G_n)$ or $\tilde{X}(G_n)$?

Prop. Let $X'(G_n)$ be $X(G_n)$ with some number, m, of the magenta edges flipped.

Then $X'(G_n)\cong X(G_n)$ iff m is even and $X'(G_n)\cong \tilde{X}(G_n)$ iff m is odd.

Is it $X(G_n)$ or $\tilde{X}(G_n)$?

Prop. Let $X'(G_n)$ be $X(G_n)$ with some number, m, of the magenta edges flipped.

Then $X'(G_n) \cong X(G_n)$ iff m is even and $X'(G_n) \cong \tilde{X}(G_n)$ iff m is odd.

proof: Using the automorphisms of

proof: Using the automorphisms of X, we can move any two flips towards each other until they eliminate each other.

Is it $X(G_n)$ or $\tilde{X}(G_n)$?

Prop. Let $X'(G_n)$ be $X(G_n)$ with some number, m, of the magenta edges flipped.

Then $X'(G_n)\cong X(G_n)$ iff m is even and $X'(G_n)\cong \tilde{X}(G_n)$ iff m is odd.

Is it $X(G_n)$ or $\tilde{X}(G_n)$?

Prop. Let $X'(G_n)$ be $X(G_n)$ with some number, m, of the magenta edges flipped.

Then $X'(G_n)\cong X(G_n)$ iff m is even and $X'(G_n)\cong \tilde{X}(G_n)$ iff m is odd.

proof: Using the automorphisms of X, we can move any two flips towards each other until they eliminate each other.

 $\tilde{X}(G_n)$

 $\tilde{X}(G_n)$

Every one of the m_i 's is connected to an even number of a_i 's.

Every one of the m_i 's is connected to an odd number of a_j 's.

The CFI Problem

Def. CFI = $\{(X'(G) \mid X'(G) \cong X(G))\}$ for G is connected, reg. deg. 3, cc(G) = 1.

The CFI Problem

```
Def. CFI = \{(X'(G) \mid X'(G) \cong X(G))\} for G is connected, reg. deg. 3, cc(G) = 1.

Prop. CFI \in DTIME[n].
```

The CFI Problem

Def. CFI = $\{(X'(G) \mid X'(G) \cong X(G))\}$ for G is connected, reg. deg. 3, cc(G) = 1.

Prop. $CFI \in DTIME[n]$.

proof Use the ordering to label boundary pairs a_i , b_i when $a_i \le b_i$. Then count the number, m, of flips of vertices and edges mod 2. $X'(G) \in CFI$ iff m is even.

.

 $\tilde{X}(G_n)$

proof We show that $X(G_n) \equiv_{C^n} \tilde{X}(G_n)$.

proof We show that $X(G_n) \equiv_{C^n} \tilde{X}(G_n)$.

Counting doesn't help since $cc(X(G_n)) = 4$. Suffices to show that $X(G_n) \sim^n \tilde{X}(G_n)$.

proof We show that $X(G_n) \equiv_{C^n} \tilde{X}(G_n)$.

Counting doesn't help since $cc(X(G_n)) = 4$. Suffices to show that $X(G_n) \sim^n \tilde{X}(G_n)$.

Initially no pebbles on the board, **Samson** places x_1 on X(v) in one of the two graphs. Note that the largest connected component C_1 of $G - \{v\}$ includes over half the vertices of G. **Delilah** moves the flip into C_1 . If she removes the flip, then the two graphs are isomorphic. **Delilah** answers according to this isomorphism.

proof We show that $X(G_n) \equiv_{C^n} \tilde{X}(G_n)$.

Counting doesn't help since $cc(X(G_n)) = 4$. Suffices to show that $X(G_n) \sim^n \tilde{X}(G_n)$.

Initially no pebbles on the board, **Samson** places x_1 on X(v) in one of the two graphs. Note that the largest connected component C_1 of $G - \{v\}$ includes over half the vertices of G. **Delilah** moves the flip into C_1 . If she removes the flip, then the two graphs are isomorphic. **Delilah** answers according to this isomorphism.

Inductively, after step m, **Delilah** has not yet lost, so there is an isomorphism from chosen points in $X(G_n)$ to chosen points in $\tilde{X}(G_n)$ which extends to an isomorphism of the whole graphs in which a flip in \tilde{G}_n in C_m has been removed.

Samson picks up the x_i pebbles and places one on some X(v). Note that C_m and C_{m+1} both contain over half the vertices of G_n .

Thus they have some vertex $w \in C_m \cap C_{m+1}$.

Samson picks up the x_i pebbles and places one on some X(v). Note that C_m and C_{m+1} both contain over half the vertices of G_n .

Thus they have some vertex $w \in C_m \cap C_{m+1}$.

Delilah mentally moves the flip to X(w). She then answers according to the isomorphism from $X(G_n)$ to $\tilde{X}(G_n)$ where that flip in X(w) has been removed.

Samson picks up the x_i pebbles and places one on some X(v). Note that C_m and C_{m+1} both contain over half the vertices of G_n .

Thus they have some vertex $w \in C_m \cap C_{m+1}$.

Delilah mentally moves the flip to X(w). She then answers according to the isomorphism from $X(G_n)$ to $\tilde{X}(G_n)$ where that flip in X(w) has been removed.

Thus **Delilah** never loses.

Recap

We have shown that the linear-time CFI problem is in $\ensuremath{\mathsf{OIP}} - \ensuremath{\mathsf{FPC}}.$

Cor. $\Omega(n)$ variables are needed to characterize graphs.

Martin Grohe has shown that many classes of graphs are characterized by C^k for some k. This includes planer graphs, graphs of bounded genus, graphs of bounded tree width and culminating in

Martin Grohe has shown that many classes of graphs are characterized by C^k for some k. This includes planer graphs, graphs of bounded genus, graphs of bounded tree width and culminating in

Thm. [Grohe] Any class \mathcal{G} of graphs that excludes some minor is characterized by C^k for some fixed k.

Martin Grohe has shown that many classes of graphs are characterized by C^k for some k. This includes planer graphs, graphs of bounded genus, graphs of bounded tree width and culminating in

Thm. [Grohe] Any class \mathcal{G} of graphs that excludes some minor is characterized by C^k for some fixed k. Thus,

- FPC captures **OIP** on \mathcal{G} . Thus, for graphs from \mathcal{G} , graph isomorphism and canonization are in P.
- ▶ For $G, H \in \mathcal{G}$, $G \cong H$ iff $G \equiv_{C^k} H$.

Martin Grohe has shown that many classes of graphs are characterized by C^k for some k. This includes planer graphs, graphs of bounded genus, graphs of bounded tree width and culminating in

Thm. [Grohe] Any class \mathcal{G} of graphs that excludes some minor is characterized by C^k for some fixed k. Thus,

- FPC captures **OIP** on \mathcal{G} . Thus, for graphs from \mathcal{G} , graph isomorphism and canonization are in P.
- ▶ For $G, H \in \mathcal{G}$, $G \cong H$ iff $G \equiv_{C^k} H$.

Thm. [Anderson, Dawar and Holm] Linear Programming is in FPC.

Two other languages are candidates for capturing **OIP**:

Two other languages are candidates for capturing **OIP**:

Choiceless Polynomial Time (CPT) [Blass and Gurevich] Compute using sets of sets of sets, etc., where instead of choosing the first vertex, we consider the set of all such choices, keeping the total size of all sets polynomial.

Two other languages are candidates for capturing **OIP**:

- Choiceless Polynomial Time (CPT) [Blass and Gurevich] Compute using sets of sets of sets, etc., where instead of choosing the first vertex, we consider the set of all such choices, keeping the total size of all sets polynomial.
- Rank Logic [Dawar, Grohe, Holm, and Laubner] Compute the rank of matrices expressed in an unordered setting.

Two other languages are candidates for capturing **OIP**:

- Choiceless Polynomial Time (CPT) [Blass and Gurevich] Compute using sets of sets of sets, etc., where instead of choosing the first vertex, we consider the set of all such choices, keeping the total size of all sets polynomial.
- Rank Logic [Dawar, Grohe, Holm, and Laubner] Compute the rank of matrices expressed in an unordered setting.

CFI is expresible in CPT and in Rank Logic, thus these are strict extensions of FPC.

Two other languages are candidates for capturing **OIP**:

- Choiceless Polynomial Time (CPT) [Blass and Gurevich] Compute using sets of sets of sets, etc., where instead of choosing the first vertex, we consider the set of all such choices, keeping the total size of all sets polynomial.
- Rank Logic [Dawar, Grohe, Holm, and Laubner] Compute the rank of matrices expressed in an unordered setting.

CFI is expresible in CPT and in Rank Logic, thus these are strict extensions of FPC.

What I want: more natural extension to FPC that adds group theory and characterizes graphs using $O(\log n)$ variables.

co-r.e. complete	Arith	metic Hierarchy	FO(N)	_	r.e. complete
Co-r.e.	FO∀(N)	Recursive	r.e.	FO∃(N)	Halt
		Primitive Recurs	ive		
		SO(LFP)	$SO[2^{n^{O(1)}}]$	E	XPTIME
		SAT PSPACE com			
$\mathrm{FO}[2^{n^{O(1)}}]$	FO(PFP)	SO(TC)	$\mathrm{SO}[n^{O(1)}]$	F	PSPACE
co-NP complete	P	ГІМЕ Hierarchy	SO		NP complete
co-NP	SO∀	>><	NP	SO∃	SAT
		$NP \cap co-NP$			
$FO[n^{O(1)}]$		Horn-	omplete		P
FO(LFP)	SO(Horn)	SAT			
$FO[(\log n)^{O(1)}]$		"truly	\		NC
$FO[\log n]$		feasible"	1		\mathbf{AC}^1
FO(CFL)	/		1		\mathbf{sAC}^1
FO(TC)	SO(Krom)	2SAT NL comp			NL
FO(DTC)	7	2COLOR L com	p		L
FO(REGULAR)					\mathbf{NC}^1
FO(COUNT)	- /		1		ThC ⁰