P versus NP: Approaches, Rebuttals, and Does It Matter?

Neil Immerman

www.cs.umass.edu/~immerman

Spike of attention to P vs. NP problem, Aug. 2010

"Deolalikar claimed that he had tamed the wildness of algorithms and shown that P indeed doesnt equal NP. Within a few hours of his e-mail, the paper got an impressive endorsement: 'This appears to be a relatively serious claim to have solved P versus NP,' emailed Stephen Cook of the University of Toronto, the scientist who had initially formulated the question. That evening, a blogger posted Deolalikar's paper. And the next day, long before researchers had had time to examine the 103-page paper in detail, the recommendation site Slashdot picked it up, sending a fire hose of tens of thousands of readers and dozens of journalists to the paper."

Julie Rehmeyer, Science News, Sept. 9, 2010

NTIME $[t(n)]:$

input w

$$
|w|=n
$$

$\mathrm{NP}=$
 ∞
 \bigcup NTIME $\left[n^{k}\right]$
 $k=1$

Many optimization problems we want to solve are NP complete.

$\mathrm{NP}=$
 ∞
 \bigcup NTIME $\left[n^{k}\right]$
 $k=1$

Many optimization problems we want to solve are NP complete．

4 ロ＞4吕〉（

$\mathrm{NP}=$
 ∞
 \bigcup NTIME $\left[n^{k}\right]$
 $k=1$

Many optimization problems we want to solve are NP complete．

4 ロ＞4吕〉（

Descriptive Complexity

Query
 $q_{1} q_{2} \cdots q_{n}$
 \mapsto Computation \mapsto

Answer

$$
\begin{array}{lllll}
a_{1} & a_{2} & \cdots & a_{i} & \cdots
\end{array} a_{m}
$$

Descriptive Complexity

$$
\begin{array}{cc}
\begin{array}{c}
\text { Query } \\
q_{1} q_{2} \cdots q_{n}
\end{array} & \mapsto
\end{array} \begin{gathered}
\text { Computation }
\end{gathered} \quad \text { Answer }
$$

Restrict attention to the complexity of computing individual bits of the output, i.e., decision problems.

Descriptive Complexity

$$
\left.\begin{array}{cc}
\text { Query } \\
q_{1} q_{2} \cdots q_{n}
\end{array} \mapsto \begin{array}{l}
\text { Computation }
\end{array} \begin{array}{c}
\text { Answer } \\
a_{1} a_{2} \cdots \\
\cdots
\end{array}\right) a_{i} \cdots a_{m}
$$

Restrict attention to the complexity of computing individual bits of the output, i.e., decision problems.

How hard is it to check if input has property S ?

Descriptive Complexity

$$
\begin{aligned}
& \begin{array}{c}
\text { Query } \\
q_{1} q_{2} \cdots q_{n}
\end{array} \mapsto \text { Computation } \mapsto \\
& \text { Answer } \\
& a_{1} a_{2} \cdots a_{i} \cdots a_{m} \\
& \ldots S_{i} \ldots
\end{aligned}
$$

Restrict attention to the complexity of computing individual bits of the output, i.e., decision problems.

How hard is it to check if input has property S ?

How rich a language do we need to express property S ?

Descriptive Complexity

$$
\begin{aligned}
& \begin{array}{c}
\text { Query } \\
q_{1} q_{2} \cdots q_{n}
\end{array} \mapsto \text { Computation } \mapsto \\
& \text { Answer } \\
& a_{1} a_{2} \cdots a_{i} \cdots a_{m} \\
& \ldots S_{i} \ldots
\end{aligned}
$$

Restrict attention to the complexity of computing individual bits of the output, i.e., decision problems.

How hard is it to check if input has property S ?

How rich a language do we need to express property S ?

There is a constructive isomorphism between these two approaches.

Interpret Input as Finite Logical Structure

Graph

$$
G=\left(\left\{v_{1}, \ldots, v_{n}\right\}, E, s, t\right)
$$

Binary
String

$$
\begin{aligned}
\mathcal{A}_{w} & =\left(\left\{p_{1}, \ldots, p_{8}\right\}, S\right) \\
S & =\left\{p_{2}, p_{5}, p_{7}, p_{8}\right\} \\
w & =01001011
\end{aligned}
$$

Vocabularies: $\tau_{g}=\left(E^{2}, s, t\right), \quad \tau_{s}=\left(S^{1}\right)$

First-Order Logic

input symbols: from τ variables: x, y, z, \ldots
boolean connectives: \wedge, \vee, \neg
quantifiers: \forall, \exists
numeric symbols: $=, \leq,+, \times, \min , \max$

$$
\begin{aligned}
\alpha & \equiv \forall x \exists y(E(x, y)) & \in \mathcal{L}\left(\tau_{g}\right) \\
\beta & \equiv \exists x \forall y(x \leq y \wedge S(x)) & \in \mathcal{L}\left(\tau_{s}\right) \\
\beta & \equiv S(\min) & \in \mathcal{L}\left(\tau_{s}\right)
\end{aligned}
$$

Second-Order Logic

$$
\begin{gathered}
\Phi_{3-\text { color }} \equiv \exists R^{1} G^{1} B^{1} \forall x y((R(x) \vee G(x) \vee B(x)) \wedge \\
(E(x, y) \rightarrow(\neg(R(x) \wedge R(y)) \wedge \neg(G(x) \wedge G(y)) \\
\wedge \neg(B(x) \wedge B(y)))))
\end{gathered}
$$

Second-Order Logic

Fagin's Theorem: $\quad \mathrm{NP}=\mathrm{SO} \exists$

$$
\begin{aligned}
\Phi_{3-\text { color }} \equiv & \exists R^{1} G^{1} B^{1} \forall x y((R(x) \vee G(x) \vee B(x)) \wedge \\
& (E(x, y) \rightarrow(\neg(R(x) \wedge R(y)) \wedge \neg(G(x) \wedge G(y))
\end{aligned}
$$

Addition is First-Order

$Q_{+}: \operatorname{STRUC}\left[\tau_{A B}\right] \rightarrow \operatorname{STRUC}\left[\tau_{s}\right]$

A
B
S
:---
b_{1}
s_{1}

Addition is First-Order

$Q_{+}: \operatorname{STRUC}\left[\tau_{A B}\right] \rightarrow \operatorname{STRUC}\left[\tau_{s}\right]$

$$
\begin{aligned}
& A \quad a_{1} \quad a_{2} \quad \ldots \quad a_{n-1} \quad a_{n} \\
& B+b_{1} \quad b_{2} \ldots b_{n-1} \quad b_{n} \\
& \begin{array}{llllll}
S & s_{1} & s_{2} & \ldots & s_{n-1} & s_{n}
\end{array} \\
& C(i) \equiv(\exists j>i)(A(j) \wedge B(j) \wedge \\
& (\forall k . j>k>i)(A(k) \vee B(k)))
\end{aligned}
$$

Addition is First-Order

$Q_{+}: \operatorname{STRUC}\left[\tau_{A B}\right] \rightarrow \operatorname{STRUC}\left[\tau_{s}\right]$

$$
\begin{aligned}
& \begin{array}{llllll}
A & a_{1} & a_{2} & \ldots & a_{n-1} & a_{n}
\end{array} \\
& B+b_{1} \quad b_{2} \ldots b_{n-1} \quad b_{n} \\
& \begin{array}{llllll}
S & s_{1} & s_{2} & \ldots & s_{n-1} & s_{n}
\end{array} \\
& C(i) \equiv(\exists j>i)(A(j) \wedge B(j) \wedge \\
& (\forall k . j>k>i)(A(k) \vee B(k))) \\
& Q_{+}(i) \equiv A(i) \oplus B(i) \oplus C(i)
\end{aligned}
$$

Parallel Machines:

$\operatorname{CRAM}[t(n)]=\mathrm{CRCW}-\operatorname{PRAM}-\operatorname{TIME}[t(n)]-\operatorname{HARD}\left[n^{O(1)}\right]$

Parallel Machines:

Quantifiers are Parallel

$\operatorname{CRAM}[t(n)]=$ CRCW-PRAM-TIME $[t(n)]-\operatorname{HARD}\left[n^{O(1)}\right]$
Assume array $A[x]: x=1, \ldots, r$ in memory.

Parallel Machines:

Quantifiers are Parallel

$\operatorname{CRAM}[t(n)]=$ CRCW-PRAM-TIME $[t(n)]-\operatorname{HARD}\left[n^{O(1)}\right]$
Assume array $A[x]: x=1, \ldots, r$ in memory.

$$
\forall x(A(x)) \equiv \text { write }(1) ; \text { proc } p_{i}: \text { if }(A[i]=0) \text { then write }(0)
$$

Inductive Definitions

$$
E^{\star}(x, y) \equiv x=y \vee E(x, y) \vee \exists z\left(E^{\star}(x, z) \wedge E^{\star}(z, y)\right)
$$

Inductive Definitions

$$
\begin{aligned}
E^{\star}(x, y) & \equiv x=y \vee E(x, y) \vee \exists z\left(E^{\star}(x, z) \wedge E^{\star}(z, y)\right) \\
\varphi_{t c}(R, x, y) & \equiv x=y \vee E(x, y) \vee \exists z(R(x, z) \wedge R(z, y))
\end{aligned}
$$

Inductive Definitions

$$
\begin{aligned}
E^{\star}(x, y) & \equiv x=y \vee E(x, y) \vee \exists z\left(E^{\star}(x, z) \wedge E^{\star}(z, y)\right) \\
\varphi_{t c}(R, x, y) & \equiv x=y \vee E(x, y) \vee \exists z(R(x, z) \wedge R(z, y)) \\
G \in \mathrm{REACH} & \Leftrightarrow G \models\left(\operatorname{LFP} \varphi_{t c}\right)(s, t)
\end{aligned}
$$

Inductive Definitions

$$
\begin{aligned}
E^{\star}(x, y) & \equiv x=y \vee E(x, y) \vee \exists z\left(E^{\star}(x, z) \wedge E^{\star}(z, y)\right) \\
\varphi_{t c}(R, x, y) & \equiv x=y \vee E(x, y) \vee \exists z(R(x, z) \wedge R(z, y)) \\
G \in \mathrm{REACH} & \Leftrightarrow G \models\left(\operatorname{LFP} \varphi_{t c}\right)(s, t)
\end{aligned}
$$

Thus, REACH $\in \operatorname{IND}[\log n]$.

Inductive Definitions

$$
\begin{aligned}
E^{\star}(x, y) & \equiv x=y \vee E(x, y) \vee \exists z\left(E^{\star}(x, z) \wedge E^{\star}(z, y)\right) \\
\varphi_{t c}(R, x, y) & \equiv x=y \vee E(x, y) \vee \exists z(R(x, z) \wedge R(z, y)) \\
G \in \mathrm{REACH} & \Leftrightarrow G \models\left(\operatorname{LFP} \varphi_{t c}\right)(s, t)
\end{aligned}
$$

Thus, REACH $\in \operatorname{IND}[\log n]$.

Next, we'll show that REACH $\in \mathrm{FO}[\log n]$.

$$
\varphi_{t c}(R, x, y) \equiv x=y \vee E(x, y) \vee \exists z(R(x, z) \wedge R(z, y))
$$

1. Dummy universal quantification for base case:

$$
\begin{aligned}
\varphi_{t c}(R, x, y) & \equiv\left(\forall z \cdot M_{1}\right)(\exists z)(R(x, z) \wedge R(z, y)) \\
M_{1} & \equiv \neg(x=y \vee E(x, y))
\end{aligned}
$$

$\varphi_{t c}(R, x, y) \equiv x=y \vee E(x, y) \vee \exists z(R(x, z) \wedge R(z, y))$

1. Dummy universal quantification for base case:

$$
\begin{aligned}
\varphi_{t c}(R, x, y) & \equiv\left(\forall z \cdot M_{1}\right)(\exists z)(R(x, z) \wedge R(z, y)) \\
M_{1} & \equiv \neg(x=y \vee E(x, y))
\end{aligned}
$$

2. Using \forall, replace two occurrences of R with one:

$$
\begin{aligned}
\varphi_{t c}(R, x, y) & \equiv\left(\forall z \cdot M_{1}\right)(\exists z)\left(\forall u v \cdot M_{2}\right) R(u, v) \\
M_{2} & \equiv(u=x \wedge v=z) \vee(u=z \wedge v=y)
\end{aligned}
$$

$\varphi_{t c}(R, x, y) \equiv x=y \vee E(x, y) \vee \exists z(R(x, z) \wedge R(z, y))$

1. Dummy universal quantification for base case:

$$
\begin{aligned}
\varphi_{t c}(R, x, y) & \equiv\left(\forall z \cdot M_{1}\right)(\exists z)(R(x, z) \wedge R(z, y)) \\
M_{1} & \equiv \neg(x=y \vee E(x, y))
\end{aligned}
$$

2. Using \forall, replace two occurrences of R with one:

$$
\begin{aligned}
\varphi_{t c}(R, x, y) & \equiv\left(\forall z \cdot M_{1}\right)(\exists z)\left(\forall u v \cdot M_{2}\right) R(u, v) \\
M_{2} & \equiv(u=x \wedge v=z) \vee(u=z \wedge v=y)
\end{aligned}
$$

3. Requantify x and y.

$$
\begin{gathered}
M_{3} \equiv(x=u \wedge y=v) \\
\varphi_{t c}(R, x, y) \equiv\left[\left(\forall z \cdot M_{1}\right)(\exists z)\left(\forall u v \cdot M_{2}\right)\left(\exists x y \cdot M_{3}\right)\right] R(x, y)
\end{gathered}
$$

Every FO inductive definition is equivalent to a quantifier block.

$\mathrm{QB}_{t c} \equiv\left[\left(\forall z \cdot M_{1}\right)(\exists z)\left(\forall u v \cdot M_{2}\right)\left(\forall x y \cdot M_{3}\right)\right]$

$$
\varphi_{t c}(R, x, y) \equiv\left[\left(\forall z \cdot M_{1}\right)(\exists z)\left(\forall u v \cdot M_{2}\right)\left(\exists x y \cdot M_{3}\right)\right] R(x, y)
$$

$\mathrm{QB}_{t c} \equiv\left[\left(\forall z \cdot M_{1}\right)(\exists z)\left(\forall u v \cdot M_{2}\right)\left(\forall x y \cdot M_{3}\right)\right]$

$$
\begin{aligned}
\varphi_{t c}(R, x, y) & \equiv\left[\left(\forall z \cdot M_{1}\right)(\exists z)\left(\forall u v \cdot M_{2}\right)\left(\exists x y \cdot M_{3}\right)\right] R(x, y) \\
\varphi_{t c}(R, x, y) & \equiv\left[\mathrm{QB}_{t c}\right] R(x, y)
\end{aligned}
$$

$\mathrm{QB}_{t c} \equiv\left[\left(\forall z \cdot M_{1}\right)(\exists z)\left(\forall u v \cdot M_{2}\right)\left(\forall x y \cdot M_{3}\right)\right]$

$$
\begin{aligned}
\varphi_{t c}(R, x, y) & \equiv\left[\left(\forall z \cdot M_{1}\right)(\exists z)\left(\forall u v \cdot M_{2}\right)\left(\exists x y \cdot M_{3}\right)\right] R(x, y) \\
\varphi_{t c}(R, x, y) & \equiv\left[\mathrm{QB}_{t c}\right] R(x, y) \\
\varphi_{t c}^{r}(\emptyset) & \equiv\left[\mathrm{QB}_{t c}\right]^{r}(\text { false })
\end{aligned}
$$

$\mathrm{QB}_{t c} \equiv\left[\left(\forall z \cdot M_{1}\right)(\exists z)\left(\forall u v \cdot M_{2}\right)\left(\forall x y \cdot M_{3}\right)\right]$

$$
\begin{aligned}
\varphi_{t c}(R, x, y) & \equiv\left[\left(\forall z \cdot M_{1}\right)(\exists z)\left(\forall u v \cdot M_{2}\right)\left(\exists x y \cdot M_{3}\right)\right] R(x, y) \\
\varphi_{t c}(R, x, y) & \equiv\left[\mathrm{QB}_{t c}\right] R(x, y) \\
\varphi_{t c}^{r}(\emptyset) & \equiv\left[\mathrm{QB}_{t c}\right]^{r}(\text { false })
\end{aligned}
$$

Thus, for any structure $\mathcal{A} \in \operatorname{STRUC}\left[\tau_{g}\right]$,

$$
\begin{aligned}
\mathcal{A} \in \operatorname{REACH} & \Leftrightarrow \mathcal{A} \\
& \Leftrightarrow\left(\operatorname{LFP} \varphi_{t c}\right)(s, t) \\
& \Leftrightarrow \mathcal{A} \models\left(\left[\mathrm{QB}_{t c}\right]^{[1+\log \|\mathcal{A}\|]} \text { false }\right)(s, t)
\end{aligned}
$$

$\operatorname{CRAM}[t(n)]=$ concurrent parallel random access machine; polynomial hardware, parallel time $O(t(n))$
$\operatorname{IND}[t(n)]=$ first-order, depth $t(n)$ inductive definitions
$\mathrm{FO}[t(n)]=t(n)$ repetitions of a block of restricted quantifiers:

$$
\begin{aligned}
\mathrm{QB} & =\left[\left(Q_{1} x_{1} \cdot M_{1}\right) \cdots\left(Q_{k} x_{k} \cdot M_{k}\right)\right] ; \quad M_{i} \text { quantifier-free } \\
\varphi_{n} & =\underbrace{[\mathrm{QB}][\mathrm{QB}] \cdots[\mathrm{QB}]}_{t(n)} M_{0}
\end{aligned}
$$

parallel time $=$ inductive depth $=$ QB iteration

Thm: For all constructible, polynomially bounded $t(n)$,

$$
\operatorname{CRAM}[t(n)]=\operatorname{IND}[t(n)]=\mathrm{FO}[t(n)]
$$

Thm: For all $t(n)$, even beyond polynomial,

$$
\operatorname{CRAM}[t(n)]=\operatorname{FO}[t(n)]
$$

For $t(n)$ poly bdd,
$\operatorname{CRAM}[t(n)]$

Thm: For $v=1,2, \ldots, \quad \operatorname{DSPACE}\left[n^{v}\right]=\operatorname{VAR}[v+1]$

Number of variables corresponds to amount of hardware.

Since variables range over a universe of size n, a constant number of variables can specify a polynomial number of gates:

A bounded number of variables corresponds to polynomially much hardware.

Key Issue: Parallel Time versus Amount of Hardware

- We would love to understand this tradeoff.

Key Issue: Parallel Time versus Amount of Hardware

- We would love to understand this tradeoff.
- Is there such a thing as an inherently sequential problem? No one knows.

Key Issue: Parallel Time versus Amount of Hardware

- We would love to understand this tradeoff.
- Is there such a thing as an inherently sequential problem? No one knows.
- Same tradeoff as number of variables vs. number of iterations of a quantifier block.

Key Issue: Parallel Time versus Amount of Hardware

- We would love to understand this tradeoff.
- Is there such a thing as an inherently sequential problem? No one knows.
- Same tradeoff as number of variables vs. number of iterations of a quantifier block.
- One second-order variable can name 2^{n} gates.

Key Issue: Parallel Time versus Amount of Hardware

- We would love to understand this tradeoff.
- Is there such a thing as an inherently sequential problem? No one knows.
- Same tradeoff as number of variables vs. number of iterations of a quantifier block.
- One second-order variable can name 2^{n} gates.
- Thus, $\mathrm{SO}[t(n)]=\mathrm{CRAM}-\operatorname{HARD}\left[t(n), 2^{n^{O(1)}}\right]$.

$\mathrm{SO}[t(n)]$
 $=$

CRAM-HARD
$\left[t(n), 2^{n^{O(1)}}\right]$

Recent Breakthroughs in Descriptive Complexity

> Theorem [Ben Rossman] Any first-order formula with any numeric relations ($\leq,+, \times, \ldots$) that means "I have a clique of size k " must have at least $k / 4$ variables.

Creative new proof idea using Håstad's Switching Lemma gives the essentially optimal bound.

This lower bound is for a fixed formula, if it were for a sequence of polynomially-sized formulas, i.e., a fixed-point formula, it would follow that CLIQUE $\notin \mathrm{P}$ and thus $\mathrm{P} \neq \mathrm{NP}$.

Best previous bounds:

- k variables necessary and sufficient without ordering or other numeric relations [1 1980].
- Nothing was known with ordering except for the trivial fact that 2 variables are not enough.

Recent Breakthroughs in Descriptive Complexity

> Theorem [Martin Grohe] Fixed-Point Logic with Counting captures Polynomial Time on all classes of graphs with excluded minors.

Grohe proves that for every class of graphs with excluded minors, there is a constant k such that two graphs of the class are isomorphic iff they agree on all k-variable formulas in fixed-point logic with counting.

Using Ehrenfeucht-Fraïssé games, this can be checked in polynomial time, $\left(O\left(n^{k}(\log n)\right)\right)$. In the same time we can give a canonical description of the isomorphism type of any graph in the class. Thus every class of graphs with excluded minors admits the same general polynomial time canonization algorithm: we're isomorphic iff we agree on all formulas in C_{k} and in particular, you are isomorphic to me iff your C_{k} canonical description is equal to mine.

What We Know

- Diagonalization: more of the same resource gives us more: DTIME $[n] \varsubsetneqq$ DTIME $\left[n^{2}\right]$,
same for DSPACE, NTIME, NSPACE, ...

What We Know

- Diagonalization: more of the same resource gives us more: DTIME[$n] \varsubsetneqq$ DTIME[n^{2}], same for DSPACE, NTIME, NSPACE, ...
- Natural Complexity Classes have Natural Complete Problems

SAT for NP, CVAL for P, QSAT for PSPACE, ...

What We Know

- Diagonalization: more of the same resource gives us more: DTIME[$n] \varsubsetneqq$ DTIME[n^{2}], same for DSPACE, NTIME, NSPACE, ...
- Natural Complexity Classes have Natural Complete Problems

SAT for NP, CVAL for P, QSAT for PSPACE, ...

- Major Missing Idea: concept of work or conservation of energy in computation, i.e, in order to solve SAT or other hard problem we must do a certain amount of computational work.

Strong Lower Bounds on $\mathrm{FO}[t(n)]$ for small $t(n)$

- [Sipser]: strict first-order alternation hierarchy: FO.

Strong Lower Bounds on $\mathrm{FO}[t(n)]$ for small $t(n)$

- [Sipser]: strict first-order alternation hierarchy: FO.
- [Beame-Håstad]: hierarchy remains strict up to FO $[\log n / \log \log n]$.

Strong Lower Bounds on FO[$t(n)]$ for small $t(n)$

- [Sipser]: strict first-order alternation hierarchy: FO.
- [Beame-Håstad]: hierarchy remains strict up to FO[$\log n / \log \log n]$.
- $\mathrm{NC}^{1} \subseteq \mathrm{FO}[\log n / \log \log n]$ and this is tight.

Strong Lower Bounds on FO[$t(n)]$ for small $t(n)$

- [Sipser]: strict first-order alternation hierarchy: FO.
- [Beame-Håstad]: hierarchy remains strict up to FO[$\log n / \log \log n]$.
- $\mathrm{NC}^{1} \subseteq \mathrm{FO}[\log n / \log \log n]$ and this is tight.
- Does REACH require FO[log $n]$? This would imply $\mathrm{NC}^{1} \neq \mathrm{NL}$.

Does It Matter? How important is $\mathrm{P} \neq \mathrm{NP}$?

- Much is known about approximation, e.g., some NP complete problems, e.g., Knapsack, Euclidean TSP, can be approximated as closely as we want, others, e.g., Clique, can't be.

Does It Matter? How important is $\mathrm{P} \neq \mathrm{NP}$?

- Much is known about approximation, e.g., some NP complete problems, e.g., Knapsack, Euclidean TSP, can be approximated as closely as we want, others, e.g., Clique, can't be.
- We conjecture that SAT requires DTIME $\left[\Omega\left(2^{\epsilon n}\right)\right]$ for some $\epsilon>0$, but no one has yet proved that it requires more than DTIME[n].

Does It Matter? How important is $P \neq N P$?

- Much is known about approximation, e.g., some NP complete problems, e.g., Knapsack, Euclidean TSP, can be approximated as closely as we want, others, e.g., Clique, can't be.
- We conjecture that SAT requires $\operatorname{DTIME}\left[\Omega\left(2^{\epsilon n}\right)\right]$ for some $\epsilon>0$, but no one has yet proved that it requires more than DTIME[n].
- Basic trade-offs are not understood, e.g., trade-off between time and number of processors. Are any problems inherently sequential? How can we best use mulitcores?

Does It Matter? How important is $\mathrm{P} \neq \mathrm{NP}$?

- Much is known about approximation, e.g., some NP complete problems, e.g., Knapsack, Euclidean TSP, can be approximated as closely as we want, others, e.g., Clique, can't be.
- We conjecture that SAT requires $\operatorname{DTIME}\left[\Omega\left(2^{\epsilon n}\right)\right]$ for some $\epsilon>0$, but no one has yet proved that it requires more than DTIME[n].
- Basic trade-offs are not understood, e.g., trade-off between time and number of processors. Are any problems inherently sequential? How can we best use mulitcores?
- SAT solvers are impressive new general purpose problem solvers, e.g., used in model checking, Al planning, code synthesis. How good are current SAT solvers? How much can they be improved?

Descriptive Complexity

Fact: For constructible $t(n), \operatorname{FO}[t(n)]=\operatorname{CRAM}[t(n)]$

Fact: For $k=1,2, \ldots, \operatorname{VAR}[k+1]=\operatorname{DSPACE}\left[n^{k}\right]$

The complexity of computing a query is closely tied to the complexity of describing the query.

$$
\begin{gathered}
\mathrm{P}=\mathrm{NP} \Leftrightarrow \mathrm{FO}(\mathrm{LFP})=\mathrm{SO} \\
\mathrm{ThC}^{0}=\mathrm{NP} \Leftrightarrow \mathrm{FO}(\mathrm{MAJ})=\mathrm{SO} \\
\mathrm{P}=\mathrm{PSPACE} \Leftrightarrow \mathrm{FO}(\mathrm{LFP})=\mathrm{SO}(\mathrm{TC})
\end{gathered}
$$

