Inductive Synthesis

Neil Immerman

www.cs.umass.edu

joint work with
Shachar ltzhaky, Sumit Gulwani, and Mooly Sagiv

Neil Immerman Inductive Synthesis

Inductive Synthesis: Goal

Write specification, ¢, in high level logical language, e.g., SO.

Neil Immerman Inductive Synthesis

Inductive Synthesis: Goal

Write specification, ¢, in high level logical language, e.g., SO.

Synthesize efficient implementation, oo = ¢, in target language, T.

Neil Immerman Inductive Synthesis

Inductive Synthesis: Goal

Write specification, ¢, in high level logical language, e.g., SO.
Synthesize efficient implementation, oo = ¢, in target language, T.

Analogy: given query, ¢ € SQL, derive equivalent query, o € SQL,
with better runtime.

Neil Immerman Inductive Synthesis

Inductive Synthesis: Goal

Write specification, ¢, in high level logical language, e.g., SO.
Synthesize efficient implementation, oo = ¢, in target language, T.

Analogy: given query, ¢ € SQL, derive equivalent query, o € SQL,
with better runtime.

Example 1: Given FO equations C = f(x,y) to be maintained
given small changes to variables, x, y. Derive finite differencing
code in Ty, performing updates to C in constant time.

Neil Immerman Inductive Synthesis

Inductive Synthesis: Goal

Write specification, ¢, in high level logical language, e.g., SO.
Synthesize efficient implementation, oo = ¢, in target language, T.

Analogy: given query, ¢ € SQL, derive equivalent query, o € SQL,
with better runtime.

Example 1: Given FO equations C = f(x,y) to be maintained
given small changes to variables, x, y. Derive finite differencing
code in Ty, performing updates to C in constant time.

Example 2: Given graph properties, e.g., “is connected”, “is a

tree”, in FO(TC), derive implementations in T; with guaranteed
linear runtime.

Neil Immerman Inductive Synthesis

Descriptive Complexity

uer : Answer
Query — | Computation| —
g1 492 - Qn aipaz - aj ccc apk

n

Neil Immerman Inductive Synthesis

Descriptive Complexity

uer : Answer
Query — | Computation| —
g1 492 - Qn aipaz - aj ccc apk

n

Restrict attention to the complexity of computing individual bits of
the answer, i.e., decision problems.

Neil Immerman Inductive Synthesis

Descriptive Complexity

uer : Answer
Query — | Computation| —
g1 492 - Qn aipaz - aj ccc auk

. a ...

Restrict attention to the complexity of computing individual bits of
the answer, i.e., decision problems.

How hard is it to check if query has property a ?

Neil Immerman Inductive Synthesis

Descriptive Complexity

uer : Answer
Query — | Computation| —
g1 492 - Qn aipaz - aj ccc auk

. a ...

Restrict attention to the complexity of computing individual bits of
the answer, i.e., decision problems.

How hard is it to check if query has property a ?

How rich a language do we need to express property a7

Neil Immerman Inductive Synthesis

Descriptive Complexity

uer : Answer
Query — | Computation| —
g1 492 - Qn aipaz - aj ccc auk

. a ...

Restrict attention to the complexity of computing individual bits of
the answer, i.e., decision problems.

How hard is it to check if query has property a ?
How rich a language do we need to express property a7

There is a constructive isomorphism between these two approaches.

Neil Immerman Inductive Synthesis

Encode Input via Relations

Graph G = ({w,...,wn},E,s,t)
Binary Av = ({p1,---,ps},S)
String S = {p2;ps,pr,ps}

w = 01001011

Vocabularies: 7, = (E?,s,t), 7= (S%)

Neil Immerman Inductive Synthesis

First-Order Logic

input symbols:
variables:

boolean connectives:
quantifiers:

numeric symbols:

=, <, 4, X, min, max

a = Vx3y(E(x,y)) € L(rg)

= IXVy(x<yAS(x)) € L(s)

B = S(min) € L(7s)

Neil Immerman Inductive Synthesis

Second-Order Logic

D3 color = IRVYIBLYxy ((R(x)V Y(x)V B(x)) A
(E(x,y) = (=(RG) A R(y)) A=(Y(x) A Y(y))
A =(B(x) A B(y)))))

Second-Order Logic

Fagin’s Theorem: NP = SO-

D3 color = IRVYIBLYxy ((R(x)V Y(x)V B(x)) A
(E(x,y) = (=(RG) A R(y)) A=(Y(x) A Y(y))
A =(B(x) A B(y)))))

Logic as
Specification
Language

Model Checking
rather than
Satisfiabliity

co-re. Arithmetic Hierarchy re.
complete co-r.e. FO(N) re. complete
FOV(N) Recursive FOAMN)
Primitive Recursive

sop" 1 EXPTIME SO(LFP)
FO[Z"D(” 1 som®® PSPACE FO(PFP) SO(TC)
co-NP Polynomial-Time Hierarchy NP
complete co-NP SO NP complete

so3
sov NP N co-NP
Fom°® P SO-Horn
FO(LFP) "truly feasible"
Follogn®™] NC
NC?
FO(CFL) sact
FO(TC) NSPACE][log n] SO-Krom
FO(DTC) DSPACE(log n]
FO(REGULAR) NCt
FO(M) Thc®
FO Logarithmic-Time Hierarchy ACO
Neil Immerman Inductive Synthesis

Inductive Synthesis: Goal

Write specification, ¢, in high level logical language, e.g., SO.
Synthesize efficient implementation, o = ¢, in target language, T.

Could have a range of target languages: Ty, guaranteed constant
runtime, 71, guaranteed linear runtime, T», guaranteed O(nz)
runtime, etc.

Example 1: Given FO equations C = f(x,y) to be maintained
given small changes to variables, x, y. Derive finite differencing
code in Ty, performing updates to C in constant time.

Example 2: Given graph properties, e.g., “is connected”, “is a

tree”, in FO(TC), derive implementations in T; with guaranteed
linear runtime.

Neil Immerman Inductive Synthesis

Sketch of Method

1. Input: ¢ € SO; vocabularies: o C ¢’; target language: L
2. Generate instances M = {A;,..., Ax} = ¢
3. Find minimum size formula o € L s.t. « covers* M
4. If (exists small instance A |= ¢ not covered by)
Then M+ = {A}; Goto 3.
5. Return «

* « covers M iff M Ea and
« determines the correct output bits on each A € M,

a A AL (A) F Ay (A)

Neil Immerman Inductive Synthesis

Finite Differencing [Paige]

Maintain C == f(xq,...,xx) where x;i+= 0

Example:
Expression: C=T+S
Change: T += {a}

Derived Code: C += {a}

Neil Immerman Inductive Synthesis

Finite Differencing [Paige]

Maintain C == f(xq,...,xx) where x;i+= 0

Example:
Expression: C=T+S
Change: T += {a}

Derived Code: C += {a}

Synthesized v=a — c'(v)=1
Formula: v#a — d(v)=c(v)

Neil Immerman Inductive Synthesis

Expression Change |Synthesized Derivative| Code

C=T+5 | T+={a} 523 - EZEZEM C+={a)

= (s,t,c,a;suc,0,1,=)
o = ouU(td)

Bo(O‘) = {Vv(fl),Vv(El —>£2) | by, 0> Iiterals}
Bo(o) = s(a)=0,s(a)=1—c'(a)=1,...

To(c) = conjunctions of base formulas from By(o)

Neil Immerman Inductive Synthesis

Expression Change |Synthesized Derivative| Code

v=a — d(v)=1

C=T+S | Th={ah |y 7 7 Gipy—cn) €= 12
TS [a] T C T (1)) 0)
Oy [{2r [1] {1 [{L2y || {12y | 1 1 0
Iy [{2y [2 [{12y [{2y || {12y | 1 1 0
1y [{2r [3[{1,3) [{12} [[{1,2,3} | 1 1 1

v=a — d(v)=1

Neil Immerman Inductive Synthesis

Expression Change |Synthesized Derivative Code

C=T+S| T+= {a} Zj:i:g;zc(v) C+= {a)
v#a — c(v)=c(v)

C=T+S|T—={a}|-T(a) —» (a)=0 ffagS:C—={a

T(a) — c(a) = c(a)

v#a — c(v)=c(v)
C=T-S|T+={a}|-S(a) — c(a)=1 ffagS:C+= {a

S(a) — d(a)=

C=T-S|T—-={a}|v#a — (v)=c(v) C—= {a}

Neil Immerman Inductive Synthesis

Expression | Change | Synthesized Derivative Code
C=1f(S) [5S+= {a Ki Z(i ?(fc(g;)) - 1C(V) C+= {f(a)}
v#a — c(v)=c(v)

C=f1YS) |f(a)=b| S(b) — c'(a)=1

-S5(b) — c'(a)=0

S(a) — cs=cs

-S(a) — ¢cs+1=cs
-S(a) — c5=cs

fbgS:.C—= {a}
else C += {a}

ifadS:cs+=1

cs=#S S—={a S(3) — ch+1—cs ifacS:cs—=1
c=(#S5==0)S+= {a v=a — =0 c = false
cs#1 — ' =c .
_ o L ;L o ifacS:cs—=1

7 r_
=0 — c=1

Neil Immerman Inductive Synthesis

Deriving Graph Classifiers

Input Spec. Synthesized
Name | Example (+Integrity Const.) Formula
L1 NA
SLL Vu(=N*(u, u)) #pn(r) =0 A
root r via N Vv(#pn(v) < 1)
< functional N >
Abbreviation Meaning
self-loop-free N Vu(=N(u, u))
root r via N Yu(N*(r, u))
functional N | Vu, v, x(N(x,u) A N(x,v) — u=v)
‘ L1IN | Vu, v, x(N(u,x) AN(v,x) = u=v) |

sy = {15y pl) =50}

Target Language T

R(c) ={e | e aregexp over o}; S(o)={A| Aca}

se(i) = U | iS4} peli) = 4|55}

(base) 1= (clause) — d | (clause) — —d |
—(clause) — d | —(clause) — —d
(clause) = (atom) | Vv (atom) |
Vv (v # r — (atom))
(atom) = (int) = (const) |
(int) < (const) | (set) = (set)
(int) == (const) | #(set)
(const) == 0]1
(set) == {r}[se(r) | pe(r) | e € R(o)
se(v) | pe(v) teS(0)

Thm: Every element of the language T7 runs in expected linear
time in the worst case.

Neil Immerman Inductive Synthesis

Input Spec. Synthesized
NameExample (+Integrity Const.) Formula
L1 NA
SLL Vu(=NT(u, u)) #pn(r) =0A
root r via N Vv(#pn(v) < 1)
functional N
Vu, v(N*(u,v)) #pn(r) =1
CYCLH root r via N
functional N
L1F ATLT1IBA
Vu,v((F(u,v) < B(v,u)) _
A =F*(u, u)) #pr(r) =0
root r via F #v(sr(v) = pa(v))
DLL functional F, B

Neil Immerman

Inductive Synthesis

Input Spec. Synthesized
Name | Example (+Integrity Const.) Formula
LLCA #pc(r) =0 A
Yu(—=C(u,r))
_ Vv(#pc(v) < 1)
TREE (root r via C)
L1 CA
Yu, v((C(u,v) = P(v,u)) _
A =C(u,r)) #p(r) =0
TREEPP root r via C Pv(sp(v) = pc(v))
functional P
L1 CA
Vu7v(—\C(u75)/\—\R(r,u) #pc(r)ZO/\
/\(U#S_)R(Lhr)) pR(r):sC+(r)/\
TREERP Vv(#pc(v) < 1)

root r via C
functional R

Neil Immerman Inductive Synthesis

Example: Testing If a Graph is Bipartite

by = 3SNxy(E(xy) = (S(x) « =S(1)))

Neil Immerman Inductive Synthesis

Example: Testing If a Graph is Bipartite

by = 3SNxy(E(xy) = (S(x) « =S(1)))

Maintain Invariant: 8 = Vxy(E(x,y) — (S(x) < =5(y)))
incrementally as we add edges to an initially empty graph.

Neil Immerman Inductive Synthesis

Example: Testing If a Graph is Bipartite

by = 3SNxy(E(xy) = (S(x) « =S(1)))

Maintain Invariant: 8 = Vxy(E(x,y) — (S(x) < =5(y)))
incrementally as we add edges to an initially empty graph.

Base Case: Gy = (V,0,0) = 3

Neil Immerman Inductive Synthesis

Example: Testing If a Graph is Bipartite

by = 3SNxy(E(xy) = (S(x) « =S(1)))

Maintain Invariant: 8 = Vxy(E(x,y) — (S(x) < =5(y)))
incrementally as we add edges to an initially empty graph.

Base Case: Gy = (V,0,0) = 3

Inductively Assume: G = (V,E,S) |= [and add add an edge
(a,b): E' := EU{(a,b)}

Neil Immerman Inductive Synthesis

Example: Testing If a Graph is Bipartite

by = 3SNxy(E(xy) = (S(x) « =S(1)))

Maintain Invariant: 8 = Vxy(E(x,y) — (S(x) < =5(y)))
incrementally as we add edges to an initially empty graph.

Base Case: Gy = (V,0,0) = 3

Inductively Assume: G = (V,E,S) |= [and add add an edge
(a,b): E' := EU{(a,b)}

Case 1: (V,E',S) = [so we're fine.

Neil Immerman Inductive Synthesis

Case 2: (V,E",S) = —p

(G, a/x;bly) = (S(x) = S(y))

Case 2: (V,E",S) = —p

(G, a/x;bly) = (S(x) = S(y))

WLOG to reestablish 3 we must change the value of S(a).

Neil Immerman Inductive Synthesis

Case 2: (V,E",S) = —p

(G, a/x;bly) = (S(x) = S(y))

WLOG to reestablish 3 we must change the value of S(a).

Naive Incremental Algorithm: If b is in this connected component,
report failure

Else: change the value of S(c) for all ¢ in the connected

component of a.

Naive Algorithm takes time O(nm).

Neil Immerman Inductive Synthesis

Better Incremental Algorithm

Keep track of connected component of a in two disjoint parts:

S(a) = C(a)nS S(a) = C(a)n'S

Neil Immerman Inductive Synthesis

Better Incremental Algorithm

Keep track of connected component of a in two disjoint parts:
S(a) = C(a)nS S(a) = C(a)n'S

1. if (S(a) = S(b)): return(“not bipartite”)
2. S(b):=S(b)uS(a); S(b):=S(b)US(a)

Neil Immerman Inductive Synthesis

Better Incremental Algorithm

Keep track of connected component of a in two disjoint parts:
S(a) = C(a)nS S(a) = C(a)n'S
1. if (S(a) = S(b)): return(“not bipartite”)
2. S(b) :=S(b)uU S(a); S(b):= S(b)US(a)

Finally, revisit case 1 and maintain the data structure:

S(b) := S(b)U S(a); S(b) :=S(b)US(a)

Neil Immerman Inductive Synthesis

Better Incremental Algorithm

Keep track of connected component of a in two disjoint parts:
S(a) = C(a)nS S(a) = C(a)n'S
1. if (S(a) = S(b)): return(“not bipartite”)
2. S(b) :=S(b)uU S(a); S(b):= S(b)US(a)

Finally, revisit case 1 and maintain the data structure:

S(b) := S(b)U S(a); S(b) :=S(b)US(a)

With the sets S, S instantiated using Union/Find, the complexity
of this incremental algorithm is then essentially linear, i.e, O(m).

Neil Immerman Inductive Synthesis

Directions M={A,...,

» Apply this simple methodology to many more settings.
» Use to program by example.

» Use to automatically take care of the tedious part of
programming and maintaining software.

» Use to translate back and forth between different formalisms
and levels.

» Use to generate distributed algorithms, reactive systems,
incremental algorithms.

» Build in composition to make this approach scale.

> Increase the sophistication of our learning/synthesis approach.

Neil Immerman Inductive Synthesis

