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Example 1: Given FO equations C = f (x , y) to be maintained
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Inductive Synthesis: Goal

Write specification, ϕ, in high level logical language, e.g., SO.

Synthesize efficient implementation, α ≡ ϕ, in target language, T .

Analogy: given query, ϕ ∈ SQL, derive equivalent query, α ∈ SQL,
with better runtime.

Example 1: Given FO equations C = f (x , y) to be maintained
given small changes to variables, x , y . Derive finite differencing
code in T0, performing updates to C in constant time.

Example 2: Given graph properties, e.g., “is connected”, “is a
tree”, in FO(TC), derive implementations in T1 with guaranteed
linear runtime.
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Descriptive Complexity

Query
q1 q2 · · · qn

7→ Computation 7→
Answer

a1 a2 · · · ai · · · ank
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Descriptive Complexity

Query
q1 q2 · · · qn

7→ Computation 7→
Answer

a1 a2 · · · ai · · · ank

· · · a · · ·

Restrict attention to the complexity of computing individual bits of
the answer, i.e., decision problems.

How hard is it to check if query has property a ?

How rich a language do we need to express property a?

There is a constructive isomorphism between these two approaches.
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Encode Input via Relations

Graph G = ({v1, . . . , vn},E , s, t)
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Binary Aw = ({p1, . . . , p8},S)
String S = {p2, p5, p7, p8}

w = 01001011

Vocabularies: τg = (E 2, s, t), τs = (S1)
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First-Order Logic

input symbols: from τ
variables: x , y , z , . . .

boolean connectives: ∧,∨,¬
quantifiers: ∀,∃

numeric symbols: =,≤,+,×,min,max

α ≡ ∀x∃y(E (x , y)) ∈ L(τg )

β ≡ ∃x∀y(x ≤ y ∧ S(x)) ∈ L(τs)

β ≡ S(min) ∈ L(τs)
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Second-Order Logic

Φ3−color ≡ ∃R1 Y 1 B1 ∀ x y ((R(x) ∨ Y (x) ∨ B(x)) ∧

(E (x , y) → (¬(R(x) ∧ R(y)) ∧ ¬(Y (x) ∧ Y (y))

∧ ¬(B(x) ∧ B(y)))))

a

ds

b

c

g

t

f

e
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Second-Order Logic

Fagin’s Theorem: NP = SO∃

Φ3−color ≡ ∃R1 Y 1 B1 ∀ x y ((R(x) ∨ Y (x) ∨ B(x)) ∧

(E (x , y) → (¬(R(x) ∧ R(y)) ∧ ¬(Y (x) ∧ Y (y))

∧ ¬(B(x) ∧ B(y)))))

a

ds
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e
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Logic as
Specification
Language

Model Checking
rather than
Satisfiabliity
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Inductive Synthesis: Goal

Write specification, ϕ, in high level logical language, e.g., SO.

Synthesize efficient implementation, α ≡ ϕ, in target language, T .

Could have a range of target languages: T0, guaranteed constant
runtime, T1, guaranteed linear runtime, T2, guaranteed O(n2)
runtime, etc.

Example 1: Given FO equations C = f (x , y) to be maintained
given small changes to variables, x , y . Derive finite differencing
code in T0, performing updates to C in constant time.

Example 2: Given graph properties, e.g., “is connected”, “is a
tree”, in FO(TC), derive implementations in T1 with guaranteed
linear runtime.
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Sketch of Method

1. Input: ϕ ∈ SO; vocabularies: σ ⊆ σ′; target language: L

2. Generate instances M = {A1, . . . ,Ak} |= ϕ

3. Find minimum size formula α ∈ L s.t. α covers⋆ M

4. If (exists small instance A |= ϕ not covered by α)

Then M+ = {A}; Goto 3.

5. Return α

∗ α covers M iff M |= α and
α determines the correct output bits on each A ∈ M,

α ∧ ∆σ(A) ⊢ ∆σ′(A)
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Finite Differencing [Paige]

Maintain C == f (x1, . . . , xk) where xi += δ

Example:

Expression: C = T + S

Change: T += {a}

Derived Code: C += {a}
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Finite Differencing [Paige]

Maintain C == f (x1, . . . , xk) where xi += δ

Example:

Expression: C = T + S

Change: T += {a}

Derived Code: C += {a}

Synthesized v = a → c ′(v) = 1
Formula: v 6= a → c ′(v) = c(v)
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Expression Change Synthesized Derivative Code

C = T + S T += {a}
v = a → c ′(v) = 1
v 6= a → c ′(v) = c(v)

C += {a}

σ = (s, t, c , a; suc, 0, 1,=)

σ′ = σ ∪ (t ′, c ′)

B0(σ) =
{

∀v(ℓ1),∀v(ℓ1 → ℓ2)
∣

∣ ℓ1, ℓ2 literals
}

B0(σ) = s(a) = 0, s(a) = 1 → c ′(a) = 1, . . .

T0(σ) = conjunctions of base formulas from B0(σ)
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Expression Change Synthesized Derivative Code

C = T + S T += {a}
v = a → c ′(v) = 1
v 6= a → c ′(v) = c(v)

C += {a}

T S a T ′ C C ′ c ′(1) c ′(2) c ′(3)

{1} {2} 1 {1} {1, 2} {1, 2} 1 1 0

{1} {2} 2 {1, 2} {1, 2} {1, 2} 1 1 0

{1} {2} 3 {1, 3} {1, 2} {1, 2, 3} 1 1 1

v = a → c ′(v) = 1

v 6= a → c ′(v) = c(v)
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Expression Change Synthesized Derivative Code

C = T + S T += {a}
v = a → c ′(v) = 1
v 6= a → c ′(v) = c(v)

C += {a}

C = T + S T −= {a}
v 6= a → c ′(v) = c(v)
¬T (a) → c ′(a) = 0
T (a) → c ′(a) = c(a)

if a 6∈ S : C −= {a}

C = T − S T += {a}
v 6= a → c ′(v) = c(v)
¬S(a) → c ′(a) = 1
S(a) → c ′(a) = 0

if a 6∈ S : C += {a}

C = T − S T −= {a}
c(v) = 0 → c ′(v) = 0
v 6= a → c ′(v) = c(v)
v = a → c ′(a) = 0

C −= {a}
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Expression Change Synthesized Derivative Code

C = f (S) S += {a}
v 6= f (a) → c ′(v) = c(v)
v = a → c ′(f (a)) = 1

C += {f (a)}

C = f −1(S) f (a) = b

v 6= a → c ′(v) = c(v)
S(b) → c ′(a) = 1
¬S(b) → c ′(a) = 0

if b 6∈ S : C −= {a}
else C += {a}

cS = #S S += {a}
S(a) → c ′S = cS

¬S(a) → cS + 1 = c ′S
if a 6∈ S : cS += 1

cS = #S S −= {a}
¬S(a) → c ′S = cS

S(a) → c ′S + 1 = cS
if a ∈ S : cS −= 1

c = (#S == 0)S += {a} v = a → c ′ = 0 c = false

c = (#S == 0)S −= {a}
cS 6= 1 → c ′ = c

c ′S = cS → c = c ′

c ′S = 0 → c ′ = 1

if a ∈ S : cS −= 1
c = (cS == 0)
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Deriving Graph Classifiers

Name Example
Input Spec.

(+Integrity Const.)
Synthesized

Formula

SLL

r

N
N

N

N

N
1:1 N ∧

∀u(¬N+(u, u))
(

root r via N

functional N

)

#pN(r) = 0 ∧

∀v(#pN(v) ≤ 1)

Abbreviation Meaning

self-loop-free N ∀u(¬N(u, u))

root r via N ∀u(N⋆(r , u))

functional N ∀u, v , x
(

N(x , u) ∧ N(x , v) → u = v
)

1:1N ∀u, v , x
(

N(u, x) ∧ N(v , x) → u = v
)

se(i) =
{

j
∣

∣ i
e
→ j

}

pe(i) =
{

j
∣

∣ j
e
→ i

}
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Target Language T1

R(σ) =
{

e
∣

∣ e a reg exp over σ
}

; S(σ) =
{

A
∣

∣ A ∈ σ
}

se(i) =
{

j
∣

∣ i
e
→ j

}

; pe(i) =
{

j
∣

∣ j
e
→ i

}

〈base〉 ::= 〈clause〉 → d | 〈clause〉 → ¬d |
¬〈clause〉 → d | ¬〈clause〉 → ¬d

〈clause〉 ::= 〈atom〉 | ∀v 〈atom〉 |
∀v (v 6= r → 〈atom〉)

〈atom〉 ::= 〈int〉 = 〈const〉 |
〈int〉 ≤ 〈const〉 | 〈set〉 = 〈set〉

〈int〉 ::= 〈const〉 | #〈set〉
〈const〉 ::= 0 | 1

〈set〉 ::= {r} | se(r) | pe(r) | e ∈ R(σ)
sℓ(v) | pℓ(v) ℓ ∈ S(σ)

Thm: Every element of the language T1 runs in expected linear
time in the worst case.
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NameExample
Input Spec.

(+Integrity Const.)
Synthesized

Formula

SLL

r

N
N

N

N

N
1:1 N ∧

∀u(¬N+(u, u))
(

root r via N

functional N

)

#pN(r) = 0 ∧

∀v(#pN(v) ≤ 1)

CYCLE

r

N

N
N

N

N
N

∀u, v(N⋆(u, v))
(

root r via N

functional N

)

#pN(r) = 1

DLL

r

B
B

B

B
B

F

F

F

F

F

1:1 F ∧ 1:1 B ∧
∀u, v

(

(F (u, v) ↔ B(v , u))
∧ ¬F+(u, u)

)

(

root r via F

functional F ,B

)

#pF (r) = 0 ∧

∀v(sF (v) = pB(v))
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Name Example
Input Spec.

(+Integrity Const.)
Synthesized

Formula

TREE

r

C
C

CC 1:1 C ∧
∀u(¬C (u, r))

(

root r via C
)

#pC (r) = 0 ∧

∀v(#pC (v) ≤ 1)

TREEPP C

P

P

P

P

r

C C

C

1:1 C ∧
∀u, v

(

(C (u, v) ↔ P(v , u))
∧ ¬C (u, r)

)

(

root r via C

functional P

)

#sP(r) = 0 ∧

∀v(sP(v) = pC (v))

TREERP

r

R

R
R

R

C
C

CC

1:1 C ∧
∀u, v

(

¬C (u, s) ∧ ¬R(r , u)
∧ (u 6= s → R(u, r))

)

(

root r via C

functional R

)

#pC (r) = 0 ∧

pR(r) = sC+(r) ∧

∀v(#pC (v) ≤ 1)
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Example: Testing If a Graph is Bipartite

Φbp ≡ ∃S1∀xy(E (x , y) → (S(x) ↔ ¬S(y)))
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Maintain Invariant: β ≡ ∀xy(E (x , y) → (S(x) ↔ ¬S(y)))
incrementally as we add edges to an initially empty graph.

Base Case: G0 = (V , ∅, ∅) |= β

Inductively Assume: G = (V ,E ,S) |= β and add add an edge
(a, b): E ′ := E ∪ {(a, b)}
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Example: Testing If a Graph is Bipartite

Φbp ≡ ∃S1∀xy(E (x , y) → (S(x) ↔ ¬S(y)))

Maintain Invariant: β ≡ ∀xy(E (x , y) → (S(x) ↔ ¬S(y)))
incrementally as we add edges to an initially empty graph.

Base Case: G0 = (V , ∅, ∅) |= β

Inductively Assume: G = (V ,E ,S) |= β and add add an edge
(a, b): E ′ := E ∪ {(a, b)}

Case 1: (V ,E ′,S) |= β so we’re fine.
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Case 2: (V , E ′, S) |= ¬β

(G , a/x , b/y) |= (S(x) ↔ S(y))
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Case 2: (V , E ′, S) |= ¬β

(G , a/x , b/y) |= (S(x) ↔ S(y))

WLOG to reestablish β we must change the value of S(a).

Neil Immerman Inductive Synthesis



Case 2: (V , E ′, S) |= ¬β

(G , a/x , b/y) |= (S(x) ↔ S(y))

WLOG to reestablish β we must change the value of S(a).

Naive Incremental Algorithm: If b is in this connected component,
report failure
Else: change the value of S(c) for all c in the connected
component of a.

Naive Algorithm takes time O(nm).
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Better Incremental Algorithm

Keep track of connected component of a in two disjoint parts:

S(a) = C (a) ∩ S S(a) = C (a) ∩ S
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Better Incremental Algorithm

Keep track of connected component of a in two disjoint parts:

S(a) = C (a) ∩ S S(a) = C (a) ∩ S

1. if (S(a) = S(b)): return(“not bipartite”)

2. S(b) := S(b) ∪ S(a); S(b) := S(b) ∪ S(a)
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Better Incremental Algorithm
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1. if (S(a) = S(b)): return(“not bipartite”)

2. S(b) := S(b) ∪ S(a); S(b) := S(b) ∪ S(a)

Finally, revisit case 1 and maintain the data structure:
S(b) := S(b) ∪ S(a); S(b) := S(b) ∪ S(a)
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Better Incremental Algorithm

Keep track of connected component of a in two disjoint parts:

S(a) = C (a) ∩ S S(a) = C (a) ∩ S

1. if (S(a) = S(b)): return(“not bipartite”)

2. S(b) := S(b) ∪ S(a); S(b) := S(b) ∪ S(a)

Finally, revisit case 1 and maintain the data structure:
S(b) := S(b) ∪ S(a); S(b) := S(b) ∪ S(a)

With the sets S ,S instantiated using Union/Find, the complexity
of this incremental algorithm is then essentially linear, i.e, O(m).
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Future Directions M = {A1, . . . ,Ak}

◮ Apply this simple methodology to many more settings.

◮ Use to program by example.

◮ Use to automatically take care of the tedious part of
programming and maintaining software.

◮ Use to translate back and forth between different formalisms
and levels.

◮ Use to generate distributed algorithms, reactive systems,
incremental algorithms.

◮ Build in composition to make this approach scale.

◮ Increase the sophistication of our learning/synthesis approach.
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