Inductive Synthesis

Neil Immerman

www.cs.umass.edu

joint work with Shachar Itzhaky, Sumit Gulwani, and Mooly Sagiv

伺 と く ヨ と く ヨ と

▲圖▶ ▲ 臣▶ ▲ 臣▶

3

Synthesize efficient implementation, $\alpha \equiv \varphi$, in target language, T.

個 と く ヨ と く ヨ と

Synthesize efficient implementation, $\alpha \equiv \varphi$, in target language, T.

Analogy: given query, $\varphi \in SQL$, derive equivalent query, $\alpha \in SQL$, with better runtime.

個 と くき とくき と

Synthesize efficient implementation, $\alpha \equiv \varphi$, in target language, T.

Analogy: given query, $\varphi \in SQL$, derive equivalent query, $\alpha \in SQL$, with better runtime.

Example 1: Given FO equations C = f(x, y) to be maintained given small changes to variables, x, y. Derive finite differencing code in T_0 , performing updates to C in constant time.

(4回) (日) (日)

Synthesize efficient implementation, $\alpha \equiv \varphi$, in target language, T.

Analogy: given query, $\varphi \in SQL$, derive equivalent query, $\alpha \in SQL$, with better runtime.

Example 1: Given FO equations C = f(x, y) to be maintained given small changes to variables, x, y. Derive finite differencing code in T_0 , performing updates to C in constant time.

Example 2: Given graph properties, e.g., "is connected", "is a tree", in FO(TC), derive implementations in T_1 with guaranteed linear runtime.

< □ > < @ > < 注 > < 注 > ... 注

Query
$$q_1 q_2 \cdots q_n$$
 \mapsto Answer
 $a_1 a_2 \cdots a_i \cdots a_{n^k}$

Neil Immerman Inductive Synthesis

æ

Query
$$\mapsto$$
Computation \mapsto Answer $q_1 \ q_2 \ \cdots \ q_n$ \mapsto $a_1 \ a_2 \ \cdots \ a_i \ \cdots \ a_{n^k}$

$$\begin{array}{ccc} \mathbf{Query} & & & \mathbf{Answer} \\ q_1 \ q_2 \ \cdots \ q_n & & \mapsto & \mathbf{Computation} & \mapsto & & \mathbf{a}_1 \ a_2 \ \cdots \ a_i \ \cdots \ a_{n^k} \\ & & & \cdots \ a \ \cdots \end{array}$$

How hard is it to **check** if query has property a ?

$$\begin{array}{ccc} \mathbf{Query} & & & \mathbf{Answer} \\ q_1 \ q_2 \ \cdots \ q_n & & \mapsto & \mathbf{Computation} & \mapsto & & \mathbf{a}_1 \ a_2 \ \cdots \ a_i \ \cdots \ a_{n^k} \\ & & & \cdots \ a \ \cdots \end{array}$$

How hard is it to **check** if query has property *a* ?

How rich a language do we need to express property a?

$$\begin{array}{ccc} \mathbf{Query} & & & \mathbf{Answer} \\ q_1 \ q_2 \ \cdots \ q_n & & \mapsto & \mathbf{Computation} & \mapsto & & \mathbf{a}_1 \ a_2 \ \cdots \ a_i \ \cdots \ a_{n^k} \\ & & & \cdots \ a \ \cdots \end{array}$$

How hard is it to **check** if query has property *a* ?

How rich a language do we need to express property a?

There is a constructive isomorphism between these two approaches.

Encode Input via Relations

First-Order Logic

input symbols:from τ variables: x, y, z, \dots boolean connectives: \wedge, \lor, \neg quantifiers: \forall, \exists numeric symbols: $=, \leq, +, \times, \min, max$

- $\alpha \equiv \forall x \exists y (E(x, y)) \in \mathcal{L}(\tau_g)$
- $\beta \equiv \exists x \forall y (x \leq y \land S(x)) \in \mathcal{L}(\tau_s)$
- $\beta \equiv S(\min) \in \mathcal{L}(\tau_s)$

(本部) (문) (문) (문

$\Phi_{3-\text{color}} \equiv \exists R^1 Y^1 B^1 \forall x y ((R(x) \lor Y(x) \lor B(x)) \land (E(x,y) \to (\neg(R(x) \land R(y)) \land \neg(Y(x) \land Y(y)) \land \neg(B(x) \land B(y)))))$

3

< ≣ ►

Second-Order Logic

Fagin's Theorem: NP = $SO\exists$

 $\Phi_{3-\text{color}} \equiv \exists R^1 Y^1 B^1 \forall x y ((R(x) \lor Y(x) \lor B(x)) \land (E(x,y) \to (\neg(R(x) \land R(y)) \land \neg(Y(x) \land Y(y)) \land \neg(B(x) \land B(y)))))$

æ

Logic as **Specification** Language

Model Checking rather than Satisfiabliity

æ

Synthesize efficient implementation, $\alpha \equiv \varphi$, in target language, T.

Could have a range of target languages: T_0 , guaranteed constant runtime, T_1 , guaranteed linear runtime, T_2 , guaranteed $O(n^2)$ runtime, etc.

Example 1: Given FO equations C = f(x, y) to be maintained given small changes to variables, x, y. Derive finite differencing code in T_0 , performing updates to C in constant time.

Example 2: Given graph properties, e.g., "is connected", "is a tree", in FO(TC), derive implementations in T_1 with guaranteed linear runtime.

< ロ > < 同 > < 巨 > < 巨 > -

Sketch of Method

- 1. Input: $\varphi \in SO$; vocabularies: $\sigma \subseteq \sigma'$; target language: L
- 2. Generate instances $\mathcal{M} = \{\mathcal{A}_1, \dots, \mathcal{A}_k\} \models \varphi$
- 3. Find minimum size formula $\alpha \in L$ s.t. α covers* \mathcal{M}
- 4. If (exists small instance $\mathcal{A} \models \varphi$ not covered by α)

Then $\mathcal{M}+=\{\mathcal{A}\}$; Goto 3.

- 5. Return α
- * α covers \mathcal{M} iff $\mathcal{M} \models \alpha$ and α determines the correct output bits on each $\mathcal{A} \in \mathcal{M}$,

$$\alpha \land \Delta_{\sigma}(\mathcal{A}) \vdash \Delta_{\sigma'}(\mathcal{A})$$

(4月) (王) (王) (王)

Maintain
$$C == f(x_1, \ldots, x_k)$$
 where $x_i + = \delta$

Example:

Expression:	C = T + S
Change:	$T += \{a\}$
Derived Code:	$C += \{a\}$

◆□ > ◆□ > ◆臣 > ◆臣 > ○

æ

Maintain
$$C == f(x_1, \ldots, x_k)$$
 where $x_i + = \delta$

Example:

Expression:	C = T + S
Change:	$T += \{a\}$
Derived Code:	$C += \{a\}$

Synthesized $v = a \rightarrow c'(v) = 1$ Formula: $v \neq a \rightarrow c'(v) = c(v)$

3

Expression	Change	Synthesized Derivative	Code
C = T + S	$T += \{a\}$	$v = a \rightarrow c'(v) = 1$ $v \neq a \rightarrow c'(v) = c(v)$	$C += \{a\}$

$$\sigma = (s, t, c, a; \operatorname{suc}, 0, 1, =)$$

$$\sigma' = \sigma \cup (t', c')$$

$$\begin{array}{lll} B_0(\sigma) &=& \left\{ \forall v(\ell_1), \forall v(\ell_1 \to \ell_2) \ \middle| \ \ell_1, \ell_2 \ \mathsf{literals} \right\} \\ B_0(\sigma) &=& s(a) = 0, \ s(a) = 1 \to c'(a) = 1, \dots \end{array}$$

$$T_0(\sigma) =$$
 conjunctions of base formulas from $B_0(\sigma)$

Expression	Change	Synthesized Derivative	Code
C = T + S	$T += \{a\}$	$v = a \rightarrow c'(v) = 1$ $v \neq a \rightarrow c'(v) = c(v)$	$C += \{a\}$

Т	S	а	Τ'	С	<i>C'</i>	c'(1)	<i>c</i> ′(2)	<i>c</i> ′(3)
{1}	{2}	1	{1}	$\{1, 2\}$	$\{1, 2\}$	1	1	0
{1}	{2}	2	$\{1, 2\}$	$\{1, 2\}$	$\{1, 2\}$	1	1	0
{1}	{2}	3	$\{1, 3\}$	$\{1, 2\}$	$\{1, 2, 3\}$	1	1	1

$$v = a \rightarrow c'(v) = 1$$

 $v \neq a \rightarrow c'(v) = c(v)$

Expression	Change	Synthesized Derivative	Code
C = T + S	$T += \{a\}$	$v = a \rightarrow c'(v) = 1$ $v \neq a \rightarrow c'(v) = c(v)$	$C += \{a\}$
C = T + S	$T = \{a\}$	$v \neq a \rightarrow c'(v) = c(v)$ $\neg T(a) \rightarrow c'(a) = 0$ $T(a) \rightarrow c'(a) = c(a)$	if $a \notin S : C = \{a\}$
C = T - S	$T += \{a\}$	$egin{array}{ll} v eq a & ightarrow c'(v)=c(v) \ eg S(a) & ightarrow c'(a)=1 \ S(a) & ightarrow c'(a)=0 \end{array}$	$if a \notin S : C + = \{a\}$
C = T - S	$T = \{a\}$	$c(v) = 0 \rightarrow c'(v) = 0$ $v \neq a \rightarrow c'(v) = c(v)$ $v = a \rightarrow c'(a) = 0$	$C = \{a\}$

Expression	Change	Synthesized Derivative	Code
C = f(S)	$S += \{a\}$	$egin{array}{ll} v eq f(a) & ightarrow c'(v) = c(v) \ v = a & ightarrow c'(f(a)) = 1 \end{array}$	$C += \{f(a)\}$
$C=f^{-1}(S)$	f(a) = b	$egin{array}{rl} v eq a \ ightarrow \ c'(v) = c(v) \ S(b) \ ightarrow \ c'(a) = 1 \ eg S(b) \ ightarrow \ c'(a) = 0 \end{array}$	f $b \notin S : C = \{a\}$ else $C += \{a\}$
$c_S = \#S$	$S += \{a\}$	$egin{array}{lll} S(a) & ightarrow \ c_S' = c_S \ eg S(a) & ightarrow \ c_S + 1 = c_S' \end{array}$	$\mathbf{if} \ \mathbf{a} \notin S : \mathbf{c}_S + = 1$
$c_S = \#S$	$S = \{a\}$	$ egned S(a) ightarrow c'_S = c_S \ S(a) ightarrow c'_S + 1 = c_S$	$if a \in S : c_S -= 1$
c = (#S == 0)	$S += \{a\}$	$v=a \rightarrow c'=0$	c = false
c = (#S == 0)	$S = \{a\}$	$egin{array}{rcl} c_S eq 1 & ightarrow c'=c\ c'_S=c_S & ightarrow c=c'\ c'_S=0 & ightarrow c'=1 \end{array}$	if $a \in S : c_S = 1$ $c = (c_S = 0)$

Deriving Graph Classifiers

Name	Example	Input Spec.	Synthesized
мате слатр		(+Integrity Const.)	Formula
SLL		$ \begin{array}{c} 1:1 \ N \land \\ \forall u (\neg N^+(u, u)) \\ \left(\begin{array}{c} \text{root } r \text{ via } N \\ \text{functional } N \end{array} \right) \end{array} $	$egin{aligned} &\# p_N(r) = 0 \ \wedge \ &orall v(\# p_N(v) \leq 1) \end{aligned}$

Abbreviation	Meaning	
self-loop-free N	$\forall u(\neg N(u,u))$	
root <i>r</i> via N	$\forall u(N^{\star}(r,u))$	
functional N	$\forall u, v, x \big(N(x, u) \land N(x, v) \to u = v \big)$	
1:1 N	$\forall u, v, x (N(u, x) \land N(v, x) \rightarrow u = v)$	

$$s_e(i) = \{j \mid i \stackrel{e}{\rightarrow} j\}$$

$$p_e(i) = \{j \mid j \xrightarrow{e} i\}$$

Target Language T_1

I

R($[\sigma) = \big\{ e \big $	e a re	eg exp over σ };	$S(\sigma) = \{A \mid A \in \sigma\}$
	$s_e(i) =$	= {j	$i \xrightarrow{e} j$; $p_e(i)$	$) = \{j \mid j \xrightarrow{e} i\}$
	$\langle base \rangle$::=	$\langle \text{clause} \rangle \rightarrow d \mid \langle \text{clause} \rangle$	$ ause\rangle \rightarrow \neg d $
			$\neg \langle \text{clause} \rangle \rightarrow d$	$ \neg \langle \text{clause} \rangle \rightarrow \neg d$
	$\langle clause \rangle$::=	$\langle \mathrm{atom} \rangle \mid \forall \mathbf{v} \langle \mathrm{ator} \rangle$	$m\rangle \mid$
			$\forall v \ (v \neq r \rightarrow \langle$	$\operatorname{atom}\rangle$)
	$\langle \mathrm{atom} \rangle$::=	$\langle \text{int} \rangle = \langle \text{const} \rangle \mid$	
			$\langle \text{int} \rangle \leq \langle \text{const} \rangle$	$\langle \operatorname{set} \rangle = \langle \operatorname{set} \rangle$
	$\langle \text{int} \rangle$::=	$\langle \text{const} \rangle \mid \# \langle \text{set} \rangle$	
	$\langle \text{const} \rangle$::=	0 1	
	$\langle \text{set} \rangle$::=	$\{r\} \mid s_e(r) \mid p_e(r)$) $e \in R(\sigma)$
			$s_\ell(v) \mid p_\ell(v)$	$\ell\in {\mathcal S}(\sigma)$

Thm: Every element of the language T_1 runs in expected linear time in the worst case.

NamoExample		Input Spec.	Synthesized
Name	Lxample	(+Integrity Const.)	Formula
SLI		$1:1 \ N \land \\ orall u(\neg N^+(u,u))$	$\#p_N(r) = 0 \land$
JLL		$\left(\begin{array}{c} \operatorname{root} r \text{ via } N \\ \operatorname{functional } N \end{array}\right)$	$\forall v (\# p_N(v) \leq 1)$
CYCLE		$ \forall u, v(N^{\star}(u, v)) \\ \left(\begin{array}{c} \text{root } r \text{ via } N \\ \text{functional } N \end{array} \right) $	$\#p_N(r)=1$
DLL		$ \begin{array}{c} 1:1 \ F \ \land \ 1:1 \ B \ \land \\ \forall u, v \left(\left(F(u, v) \leftrightarrow B(v, u) \right) \\ \land \neg F^+(u, u) \right) \\ \left(\begin{array}{c} \text{root } r \text{ via } F \\ \text{functional } F, B \end{array} \right) \end{array} $	$\# p_F(r) = 0 \land$ $\forall v(s_F(v) = p_B(v))$

Name	Example	Input Spec. (+Integrity Const.)	Synthesized Formula
TREE		$1:1 C \land \\ \forall u(\neg C(u, r)) \\ (\text{ root } r \text{ via } C)$	$\#p_C(r) = 0 \land$ $\forall v (\#p_C(v) \le 1)$
TREEPP		$ \begin{array}{c} 1:1 \ C \land \\ \forall u, v ((C(u, v) \leftrightarrow P(v, u)) \\ \land \neg C(u, r)) \\ \begin{pmatrix} \text{root } r \text{ via } C \\ \text{functional } P \end{array} $	$\# s_P(r) = 0 \land$ $\forall v(s_P(v) = p_C(v))$
TREERP		$1:1 C \land \\ \forall u, v (\neg C(u, s) \land \neg R(r, u) \\ \land (u \neq s \rightarrow R(u, r))) \\ \begin{pmatrix} \text{root } r \text{ via } C \\ \text{functional } R \end{pmatrix}$	$\#p_C(r) = 0 \land$ $p_R(r) = s_{C^+}(r) \land$ $\forall v(\#p_C(v) \le 1)$

$$\Phi_{bp} \equiv \exists S^1 \forall xy (E(x,y) \to (S(x) \leftrightarrow \neg S(y)))$$

→ 圖 → → 注 → → 注 →

æ

$$\Phi_{bp} \equiv \exists S^1 \forall xy (E(x,y) \rightarrow (S(x) \leftrightarrow \neg S(y)))$$

Maintain Invariant: $\beta \equiv \forall xy(E(x, y) \rightarrow (S(x) \leftrightarrow \neg S(y)))$ incrementally as we add edges to an initially empty graph.

向 と く ヨ と く ヨ と

$$\Phi_{bp} \equiv \exists S^1 \forall xy (E(x,y) \rightarrow (S(x) \leftrightarrow \neg S(y)))$$

Maintain Invariant: $\beta \equiv \forall xy(E(x, y) \rightarrow (S(x) \leftrightarrow \neg S(y)))$ incrementally as we add edges to an initially empty graph.

Base Case: $G_0 = (V, \emptyset, \emptyset) \models \beta$

・同・ ・ヨ・ ・ヨ・

$$\Phi_{bp} \equiv \exists S^1 \forall xy (E(x, y) \rightarrow (S(x) \leftrightarrow \neg S(y)))$$

Maintain Invariant: $\beta \equiv \forall xy(E(x, y) \rightarrow (S(x) \leftrightarrow \neg S(y)))$ incrementally as we add edges to an initially empty graph.

Base Case:
$$G_0 = (V, \emptyset, \emptyset) \models \beta$$

Inductively Assume: $G = (V, E, S) \models \beta$ and add and add an edge (a, b): $E' := E \cup \{(a, b)\}$

▲□ ▶ ▲ □ ▶ ▲ □ ▶

$$\Phi_{bp} \equiv \exists S^1 \forall xy (E(x,y) \rightarrow (S(x) \leftrightarrow \neg S(y)))$$

Maintain Invariant: $\beta \equiv \forall xy(E(x, y) \rightarrow (S(x) \leftrightarrow \neg S(y)))$ incrementally as we add edges to an initially empty graph.

Base Case:
$$G_0 = (V, \emptyset, \emptyset) \models \beta$$

Inductively Assume: $G = (V, E, S) \models \beta$ and add and add an edge (a, b): $E' := E \cup \{(a, b)\}$

Case 1: $(V, E', S) \models \beta$ so we're fine.

$(G,a/x,b/y)\models(S(x)\leftrightarrow S(y))$

Neil Immerman Inductive Synthesis

◆□> ◆□> ◆目> ◆目> ◆目 ● のへで

$(G,a/x,b/y)\models(S(x)\leftrightarrow S(y))$

WLOG to reestablish β we must change the value of S(a).

▲圖▶ ▲屋▶ ▲屋▶

2

$(G,a/x,b/y)\models(S(x)\leftrightarrow S(y))$

WLOG to reestablish β we must change the value of S(a).

Naive Incremental Algorithm: If b is in this connected component, report failure Else: change the value of S(c) for all c in the connected component of a.

Naive Algorithm takes time O(nm).

$$S(a) = C(a) \cap S$$
 $\overline{S}(a) = C(a) \cap \overline{S}$

→ < 문→

$$S(a) = C(a) \cap S$$
 $\overline{S}(a) = C(a) \cap \overline{S}$

1. if (S(a) = S(b)): return("not bipartite") 2. $S(b) := S(b) \cup \overline{S}(a)$; $\overline{S}(b) := \overline{S}(b) \cup S(a)$

$$S(a) = C(a) \cap S$$
 $\overline{S}(a) = C(a) \cap \overline{S}$

1. if (S(a) = S(b)): return("not bipartite") 2. $S(b) := S(b) \cup \overline{S}(a)$; $\overline{S}(b) := \overline{S}(b) \cup S(a)$

Finally, revisit case 1 and maintain the data structure: $S(b) := S(b) \cup S(a); \quad \overline{S}(b) := \overline{S}(b) \cup \overline{S}(a)$

$$S(a) = C(a) \cap S$$
 $\overline{S}(a) = C(a) \cap \overline{S}$

1. if (S(a) = S(b)): return("not bipartite") 2. $S(b) := S(b) \cup \overline{S}(a)$; $\overline{S}(b) := \overline{S}(b) \cup S(a)$

Finally, revisit case 1 and maintain the data structure: $S(b) := S(b) \cup S(a); \quad \overline{S}(b) := \overline{S}(b) \cup \overline{S}(a)$

With the sets S, \overline{S} instantiated using Union/Find, the complexity of this incremental algorithm is then essentially linear, i.e, O(m).

Future Directions

$\mathcal{M} = \{\mathcal{A}_1, \dots, \mathcal{A}_k\}$

- Apply this simple methodology to many more settings.
- Use to program by example.
- Use to automatically take care of the tedious part of programming and maintaining software.
- Use to translate back and forth between different formalisms and levels.
- Use to generate distributed algorithms, reactive systems, incremental algorithms.
- Build in composition to make this approach scale.
- Increase the sophistication of our learning/synthesis approach.

★御≯ ★注≯ ★注≯