Inductive Synthesis

Neil Immerman
www.cs.umass.edu
joint work with
Shachar Itzhaky, Sumit Gulwani, and Mooly Sagiv

Inductive Synthesis: Goal

Write specification, φ, in high level logical language, e.g., SO.

Inductive Synthesis: Goal

Write specification, φ, in high level logical language, e.g., SO.
Synthesize efficient implementation, $\alpha \equiv \varphi$, in target language, T.

Inductive Synthesis: Goal

Write specification, φ, in high level logical language, e.g., SO.
Synthesize efficient implementation, $\alpha \equiv \varphi$, in target language, T.
Analogy: given query, $\varphi \in S Q L$, derive equivalent query, $\alpha \in S Q L$, with better runtime.

Inductive Synthesis: Goal

Write specification, φ, in high level logical language, e.g., SO.
Synthesize efficient implementation, $\alpha \equiv \varphi$, in target language, T.
Analogy: given query, $\varphi \in S Q L$, derive equivalent query, $\alpha \in S Q L$, with better runtime.

Example 1: Given FO equations $C=f(x, y)$ to be maintained given small changes to variables, x, y. Derive finite differencing code in T_{0}, performing updates to C in constant time.

Inductive Synthesis: Goal

Write specification, φ, in high level logical language, e.g., SO.
Synthesize efficient implementation, $\alpha \equiv \varphi$, in target language, T.
Analogy: given query, $\varphi \in S Q L$, derive equivalent query, $\alpha \in S Q L$, with better runtime.

Example 1: Given FO equations $C=f(x, y)$ to be maintained given small changes to variables, x, y. Derive finite differencing code in T_{0}, performing updates to C in constant time.

Example 2: Given graph properties, e.g., "is connected", "is a tree", in $\mathrm{FO}(\mathrm{TC})$, derive implementations in T_{1} with guaranteed linear runtime.

Descriptive Complexity

$$
\begin{array}{cc}
\text { Query } \\
q_{1} q_{2} \cdots q_{n}
\end{array} \mapsto \text { Computation } \mapsto
$$

Descriptive Complexity

Restrict attention to the complexity of computing individual bits of the answer, i.e., decision problems.

Descriptive Complexity

$$
\begin{array}{cc}
\text { Query } \\
q_{1} q_{2} \cdots q_{n}
\end{array} \mapsto \text { Computation } \mapsto \quad \begin{array}{cccc}
& \text { Answer } \\
a_{1} & a_{2} & \cdots & a_{i} \\
\cdots & \cdots & a_{n}
\end{array}
$$

Restrict attention to the complexity of computing individual bits of the answer, i.e., decision problems.

How hard is it to check if query has property a?

Descriptive Complexity

$$
\left.\begin{array}{cc}
\text { Query } \\
q_{1} q_{2} \cdots q_{n}
\end{array} \mapsto \text { Computation } \mapsto \quad \begin{array}{c}
\text { Answer } \\
a_{1} a_{2} \cdots \\
\cdots
\end{array}\right) a_{i} \cdots a_{n^{k}}
$$

Restrict attention to the complexity of computing individual bits of the answer, i.e., decision problems.

How hard is it to check if query has property a?

How rich a language do we need to express property a ?

Descriptive Complexity

$$
\begin{array}{cc}
\text { Query } \\
q_{1} q_{2} \cdots q_{n}
\end{array} \mapsto \quad \text { Computation } \mapsto \quad \begin{gathered}
\text { Answer } \\
a_{1} a_{2} \cdots \\
a_{i}
\end{gathered} \cdots a_{n^{k}}
$$

Restrict attention to the complexity of computing individual bits of the answer, i.e., decision problems.

How hard is it to check if query has property a?

How rich a language do we need to express property a ?

There is a constructive isomorphism between these two approaches.

Encode Input via Relations

Graph

$$
G=\left(\left\{v_{1}, \ldots, v_{n}\right\}, E, s, t\right)
$$

Binary

$$
\begin{aligned}
\mathcal{A}_{w} & =\left(\left\{p_{1}, \ldots, p_{8}\right\}, S\right) \\
S & =\left\{p_{2}, p_{5}, p_{7}, p_{8}\right\} \\
w & =01001011
\end{aligned}
$$

Vocabularies: $\tau_{g}=\left(E^{2}, s, t\right), \quad \tau_{s}=\left(S^{1}\right)$

First-Order Logic

input symbols: from τ variables: x, y, z, \ldots
boolean connectives: \wedge, \vee, \neg
quantifiers: \forall, \exists
numeric symbols: $=, \leq,+, \times, \min , \max$

$$
\begin{aligned}
\alpha & \equiv \forall x \exists y(E(x, y)) & \in \mathcal{L}\left(\tau_{g}\right) \\
\beta & \equiv \exists x \forall y(x \leq y \wedge S(x)) & \in \mathcal{L}\left(\tau_{s}\right) \\
\beta & \equiv S(\min) & \in \mathcal{L}\left(\tau_{s}\right)
\end{aligned}
$$

Second-Order Logic

$$
\begin{aligned}
\Phi_{3-\text { color }} \equiv & \exists R^{1} Y^{1} B^{1} \forall x y((R(x) \vee Y(x) \vee B(x))) \wedge \\
& (E(x, y) \rightarrow(\neg(R(x) \wedge R(y)) \wedge \neg(Y(x) \wedge Y(y)) \\
& \wedge \neg(B(x) \wedge B(y)))))
\end{aligned}
$$

Second-Order Logic

Fagin's Theorem: $\quad \mathrm{NP}=\mathrm{SO} \exists$

$$
\begin{gathered}
\Phi_{3 \text {-color }} \equiv \exists R^{1} Y^{1} B^{1} \forall x y((R(x) \vee Y(x) \vee B(x)) \wedge \\
(E(x, y) \rightarrow(\neg(R(x) \wedge R(y)) \wedge \neg(Y(x) \wedge Y(y)) \\
\wedge \quad \neg(B(x) \wedge B(y)))))
\end{gathered}
$$

Logic as Specification Language

Model Checking rather than Satisfiabliity

Inductive Synthesis: Goal

Write specification, φ, in high level logical language, e.g., SO.
Synthesize efficient implementation, $\alpha \equiv \varphi$, in target language, T.
Could have a range of target languages: T_{0}, guaranteed constant runtime, T_{1}, guaranteed linear runtime, T_{2}, guaranteed $O\left(n^{2}\right)$ runtime, etc.

Example 1: Given FO equations $C=f(x, y)$ to be maintained given small changes to variables, x, y. Derive finite differencing code in T_{0}, performing updates to C in constant time.

Example 2: Given graph properties, e.g., "is connected", "is a tree", in $\mathrm{FO}(\mathrm{TC})$, derive implementations in T_{1} with guaranteed linear runtime.

Sketch of Method

1. Input: $\varphi \in$ SO; vocabularies: $\sigma \subseteq \sigma^{\prime}$; target language: L
2. Generate instances $\mathcal{M}=\left\{\mathcal{A}_{1}, \ldots, \mathcal{A}_{k}\right\} \models \varphi$
3. Find minimum size formula $\alpha \in L$ s.t. α covers^ \mathcal{M}
4. If (exists small instance $\mathcal{A} \models \varphi$ not covered by α) Then $\mathcal{M}+=\{\mathcal{A}\} ;$ Goto 3 .
5. Return α

* α covers \mathcal{M} iff $\mathcal{M} \models \alpha$ and
α determines the correct output bits on each $\mathcal{A} \in \mathcal{M}$,

$$
\alpha \wedge \Delta_{\sigma}(\mathcal{A}) \vdash \Delta_{\sigma^{\prime}}(\mathcal{A})
$$

Finite Differencing [Paige]

Maintain $C==f\left(x_{1}, \ldots, x_{k}\right) \quad$ where $\quad x_{i}+=\delta$

Example:

Expression: $\quad C=T+S$
Change:

$$
T+=\{a\}
$$

Derived Code: $\quad C+=\{a\}$

Finite Differencing [Paige]

Maintain $C==f\left(x_{1}, \ldots, x_{k}\right) \quad$ where $\quad x_{i}+=\delta$

Example:

Expression: $\quad C=T+S$
Change:

$$
T+=\{a\}
$$

Derived Code: $\quad C+=\{a\}$
Synthesized $\quad v=a \rightarrow c^{\prime}(v)=1$
Formula:

$$
v \neq a \rightarrow c^{\prime}(v)=c(v)
$$

Expression	Change	Synthesized Derivative	Code
$C=T+S$	$T+=\{a\}$	$v=a \rightarrow c^{\prime}(v)=1$ $v \neq a \rightarrow c^{\prime}(v)=c(v)$	$C+=\{a\}$

$$
\begin{aligned}
\sigma & =(s, t, c, a ; \text { suc }, 0,1,=) \\
\sigma^{\prime} & =\sigma \cup\left(t^{\prime}, c^{\prime}\right)
\end{aligned}
$$

$$
B_{0}(\sigma)=\left\{\forall v\left(\ell_{1}\right), \forall v\left(\ell_{1} \rightarrow \ell_{2}\right) \mid \ell_{1}, \ell_{2} \text { literals }\right\}
$$

$$
B_{0}(\sigma)=s(a)=0, s(a)=1 \rightarrow c^{\prime}(a)=1, \ldots
$$

$T_{0}(\sigma)=$ conjunctions of base formulas from $B_{0}(\sigma)$

Expression	Change	Synthesized Derivative	Code
$C=T+S$	$T+=\{a\}$	$v=a \rightarrow c^{\prime}(v)=1$ $v \neq a \rightarrow c^{\prime}(v)=c(v)$	$C+=\{a\}$

T	S	a	T^{\prime}	C	C^{\prime}	$c^{\prime}(1)$	$c^{\prime}(2)$	$c^{\prime}(3)$
$\{1\}$	$\{2\}$	1	$\{1\}$	$\{1,2\}$	$\{1,2\}$	1	1	0
$\{1\}$	$\{2\}$	2	$\{1,2\}$	$\{1,2\}$	$\{1,2\}$	1	1	0
$\{1\}$	$\{2\}$	3	$\{1,3\}$	$\{1,2\}$	$\{1,2,3\}$	1	1	1

$$
\begin{aligned}
& v=a \quad \rightarrow \quad c^{\prime}(v)=1 \\
& v \neq a \quad \rightarrow \quad c^{\prime}(v)=c(v)
\end{aligned}
$$

Expression	Change	Synthesized Derivative	Code
$C=T+S$	$T+=\{a\}$	$v=a \rightarrow c^{\prime}(v)=1$ $v \neq a \rightarrow c^{\prime}(v)=c(v)$	$C+=\{a\}$
$C=T+S$	$T-=\{a\}$	$v \neq a \rightarrow c^{\prime}(v)=c(v)$ $\neg T(a) \rightarrow c^{\prime}(a)=0$ $T(a) \rightarrow c^{\prime}(a)=c(a)$	f $a \notin S: C-=\{a\}$
$C=T-S$	$T+=\{a\}$	$v \neq a \rightarrow c^{\prime}(v)=c(v)$ $\checkmark S(a) \rightarrow c^{\prime}(a)=1$ $S(a) \rightarrow c^{\prime}(a)=0$	f $a \notin S: C+=\{a\}$
$C=T-S$	$T-=\{a\}$	$c(v)=0 \rightarrow c^{\prime}(v)=0$ $v \neq a \rightarrow c^{\prime}(v)=c(v)$ $v=a \rightarrow c^{\prime}(a)=0$	$C-=\{a\}$

Expression	Change	Synthesized Derivative	Code
$C=f(S)$	+ = \{a\}	$\begin{aligned} & v \neq f(a) \rightarrow c^{\prime}(v)=c(v) \\ & v=a \rightarrow c^{\prime}(f(a))=1 \end{aligned}$	$C+=\{f(a)\}$
$C=f^{-1}(S)$	$f(a)=b$	$\begin{aligned} & v \neq a \rightarrow c^{\prime}(v)=c(v) \\ & S(b) \rightarrow c^{\prime}(a)=1 \\ & \neg S(b) \rightarrow c^{\prime}(a)=0 \end{aligned}$	$\begin{gathered} \text { f } b \notin S: C-=\{a\} \\ \text { else } C+=\{a\} \end{gathered}$
$c_{s}=\# S$	$+=\{a\}$	$\begin{aligned} & S(a) \rightarrow c_{S}^{\prime}=c_{S} \\ & \neg S(a) \rightarrow c_{S}+1=c_{S}^{\prime} \end{aligned}$	if $\mathrm{a} \notin \mathrm{S}: \mathrm{cs}_{S}+=1$
$c_{s}=\# S$	$-=\{a\}$	$\begin{aligned} & \neg S(a) \rightarrow c_{S}^{\prime}=c_{S} \\ & S(a) \rightarrow c_{S}^{\prime}+1=c_{S} \end{aligned}$	if $a \in S: c_{s}-=1$
$c=(\# S==0)$	S $+=\{a\}$	$v=a \rightarrow c^{\prime}=0$	$c=$ false
$=(\# S==0)$	S $-=\{a\}$	$\begin{aligned} & c_{s} \neq 1 \rightarrow c^{\prime}=c \\ & c_{s}^{\prime}=c_{S} \rightarrow c=c^{\prime} \\ & c_{s}^{\prime}=0 \rightarrow c^{\prime}=1 \end{aligned}$	$\begin{aligned} & \text { if } a \in S: c_{S}-=1 \\ & c=\left(c_{S}==0\right) \end{aligned}$

Deriving Graph Classifiers

Name	Example	Input Spec. (+Integrity Const.)	Synthesized Formula
SLL	$\square \rightarrow \square^{N}$	$1: 1 N \wedge$ $\forall u\left(\neg N^{+}(u, u)\right)$	$\# p_{N}(r)=0 \wedge$
	$\square r^{N}$	$\left.\begin{array}{c}\text { root } r \text { via } N \\ \text { functional } N\end{array}\right)$	$\forall v\left(\# p_{N}(v) \leq 1\right)$

Abbreviation	Meaning
self-loop-free N	$\forall u(\neg N(u, u))$
root r via N	$\forall u\left(N^{\star}(r, u)\right)$
functional N	$\forall u, v, x(N(x, u) \wedge N(x, v) \rightarrow u=v)$
$1: 1 N$	$\forall u, v, x(N(u, x) \wedge N(v, x) \rightarrow u=v)$

$$
s_{e}(i)=\{j \mid i \xrightarrow{e} j\} \quad p_{e}(i)=\{j \mid j \xrightarrow{e} i\}
$$

Target Language T_{1}

$$
\begin{aligned}
& R(\sigma)=\{\text { e } \mid \text { e a reg exp over } \sigma\} ; \quad S(\sigma)=\{A \mid A \in \sigma\} \\
& s_{e}(i)=\{j \mid i \xrightarrow{e} j\} ; \quad p_{e}(i)=\{j \mid j \xrightarrow{e} i\}
\end{aligned}
$$

Thm: Every element of the language T_{1} runs in expected linear time in the worst case.

Name	Example	$\begin{gathered} \text { Input Spec. } \\ \text { (+ Integrity Const.) } \end{gathered}$	Synthesized Formula
SLL	$\begin{aligned} & \square^{N} \square_{v} \\ & \square_{N} \square^{n} \\ & \square^{N} \eta^{n} \end{aligned}$	$\begin{gathered} 1: 1 N \wedge \\ \forall u\left(\neg N^{+}(u, u)\right) \\ \binom{\text { root } r \text { via } N}{\text { functional } N} \end{gathered}$	$\begin{gathered} \# p_{N}(r)=0 \wedge \\ \forall v\left(\# p_{N}(v) \leq 1\right) \end{gathered}$
CYCLE		$\begin{gathered} \forall u, v\left(N^{\star}(u, v)\right) \\ \binom{\text { root } r \text { via } N}{\text { functional } N} \end{gathered}$	$\# p_{N}(r)=1$
DLL		$\begin{gathered} 1: 1 F \wedge 1: 1 B \wedge \\ \forall u, v((F(u, v) \leftrightarrow B(v, u)) \\ \left.\wedge \neg F^{+}(u, u)\right) \\ \binom{\text { root } r \operatorname{via} F}{\text { functional } F, B} \\ \hline \end{gathered}$	$\begin{gathered} \# p_{F}(r)=0 \wedge \\ \forall v\left(s_{F}(v)=p_{B}(v)\right) \end{gathered}$

Name	Example	$\begin{gathered} \text { Input Spec. } \\ \text { (+Integrity Const.) } \\ \hline \end{gathered}$	Synthesized Formula
TREE		$\begin{gathered} 1: 1 C \wedge \\ \forall u(\neg C(u, r)) \\ (\operatorname{root} r \text { via } C) \end{gathered}$	$\begin{gathered} \# p_{C}(r)=0 \wedge \\ \forall v\left(\# p_{C}(v) \leq 1\right) \end{gathered}$
TREEPP		$\begin{gathered} 1: 1 C \wedge \\ \forall u, v((C(u, v) \leftrightarrow P(v, u)) \\ \wedge \neg C(u, r)) \\ \binom{\text { root } r \text { via } C}{\text { functional } P} \end{gathered}$	$\begin{gathered} \# s_{P}(r)=0 \wedge \\ \forall v\left(s_{P}(v)=p_{C}(v)\right) \end{gathered}$
TREERP		$\begin{gathered} 1: 1 C \wedge \\ \forall u, v(\neg C(u, s) \wedge \neg R(r, u) \\ \wedge(u \neq s \rightarrow R(u, r))) \\ \binom{\text { root } r \text { via } C}{\text { functional } R} \end{gathered}$	$\begin{gathered} \# p_{C}(r)=0 \wedge \\ p_{R}(r)=s_{C+}(r) \wedge \\ \forall v\left(\# p_{C}(v) \leq 1\right) \end{gathered}$

Example: Testing If a Graph is Bipartite

$$
\Phi_{b p} \equiv \exists S^{1} \forall x y(E(x, y) \rightarrow(S(x) \leftrightarrow \neg S(y)))
$$

Example: Testing If a Graph is Bipartite

$$
\Phi_{b p} \equiv \exists S^{1} \forall x y(E(x, y) \rightarrow(S(x) \leftrightarrow \neg S(y)))
$$

Maintain Invariant: $\beta \equiv \forall x y(E(x, y) \rightarrow(S(x) \leftrightarrow \neg S(y)))$ incrementally as we add edges to an initially empty graph.

Example: Testing If a Graph is Bipartite

$$
\Phi_{b p} \equiv \exists S^{1} \forall x y(E(x, y) \rightarrow(S(x) \leftrightarrow \neg S(y)))
$$

Maintain Invariant: $\beta \equiv \forall x y(E(x, y) \rightarrow(S(x) \leftrightarrow \neg S(y)))$ incrementally as we add edges to an initially empty graph.

Base Case: $G_{0}=(V, \emptyset, \emptyset) \models \beta$

Example: Testing If a Graph is Bipartite

$$
\Phi_{b p} \equiv \exists S^{1} \forall x y(E(x, y) \rightarrow(S(x) \leftrightarrow \neg S(y)))
$$

Maintain Invariant: $\beta \equiv \forall x y(E(x, y) \rightarrow(S(x) \leftrightarrow \neg S(y)))$ incrementally as we add edges to an initially empty graph.

Base Case: $G_{0}=(V, \emptyset, \emptyset) \models \beta$

Inductively Assume: $G=(V, E, S) \vDash \beta$ and add add an edge $(a, b): E^{\prime}:=E \cup\{(a, b)\}$

Example: Testing If a Graph is Bipartite

$$
\Phi_{b p} \equiv \exists S^{1} \forall x y(E(x, y) \rightarrow(S(x) \leftrightarrow \neg S(y)))
$$

Maintain Invariant: $\beta \equiv \forall x y(E(x, y) \rightarrow(S(x) \leftrightarrow \neg S(y)))$ incrementally as we add edges to an initially empty graph.

Base Case: $G_{0}=(V, \emptyset, \emptyset) \models \beta$

Inductively Assume: $G=(V, E, S) \vDash \beta$ and add add an edge $(a, b): E^{\prime}:=E \cup\{(a, b)\}$

Case 1: $\left(V, E^{\prime}, S\right) \models \beta$ so we're fine.

Case 2: $\left(V, E^{\prime}, S\right) \models \neg \beta$

$$
(G, a / x, b / y) \models(S(x) \leftrightarrow S(y))
$$

Case 2: $\left(V, E^{\prime}, S\right) \models \neg \beta$

$$
(G, a / x, b / y) \models(S(x) \leftrightarrow S(y))
$$

WLOG to reestablish β we must change the value of $S(a)$.

Case 2: $\left(V, E^{\prime}, S\right) \models \neg \beta$

$$
(G, a / x, b / y) \models(S(x) \leftrightarrow S(y))
$$

WLOG to reestablish β we must change the value of $S(a)$.

Naive Incremental Algorithm: If b is in this connected component, report failure
Else: change the value of $S(c)$ for all c in the connected component of a.

Naive Algorithm takes time $O(n m)$.

Better Incremental Algorithm

Keep track of connected component of a in two disjoint parts:

$$
S(a)=C(a) \cap S \quad \bar{S}(a)=C(a) \cap \bar{S}
$$

Better Incremental Algorithm

Keep track of connected component of a in two disjoint parts:

$$
S(a)=C(a) \cap S \quad \bar{S}(a)=C(a) \cap \bar{S}
$$

1. if $(S(a)=S(b))$: return("not bipartite")
2. $S(b):=S(b) \cup \bar{S}(a) ; \quad \bar{S}(b):=\bar{S}(b) \cup S(a)$

Better Incremental Algorithm

Keep track of connected component of a in two disjoint parts:

$$
S(a)=C(a) \cap S \quad \bar{S}(a)=C(a) \cap \bar{S}
$$

1. if $(S(a)=S(b))$: return("not bipartite")
2. $S(b):=S(b) \cup \bar{S}(a) ; \quad \bar{S}(b):=\bar{S}(b) \cup S(a)$

Finally, revisit case 1 and maintain the data structure:

$$
S(b):=S(b) \cup S(a) ; \quad \bar{S}(b):=\bar{S}(b) \cup \bar{S}(a)
$$

Better Incremental Algorithm

Keep track of connected component of a in two disjoint parts:

$$
S(a)=C(a) \cap S \quad \bar{S}(a)=C(a) \cap \bar{S}
$$

1. if $(S(a)=S(b))$: return("not bipartite")
2. $S(b):=S(b) \cup \bar{S}(a) ; \quad \bar{S}(b):=\bar{S}(b) \cup S(a)$

Finally, revisit case 1 and maintain the data structure:

$$
S(b):=S(b) \cup S(a) ; \quad \bar{S}(b):=\bar{S}(b) \cup \bar{S}(a)
$$

With the sets S, \bar{S} instantiated using Union/Find, the complexity of this incremental algorithm is then essentially linear, i.e, $O(m)$.

Future Directions $\quad \mathcal{M}=\left\{\mathcal{A}_{1}, \ldots, \mathcal{A}_{k}\right\}$

- Apply this simple methodology to many more settings.
- Use to program by example.
- Use to automatically take care of the tedious part of programming and maintaining software.
- Use to translate back and forth between different formalisms and levels.
- Use to generate distributed algorithms, reactive systems, incremental algorithms.
- Build in composition to make this approach scale.
- Increase the sophistication of our learning/synthesis approach.

