

Administration

- Both HW#3 and PA#3 going out today.
- HW#3 due first.
- We will have a quiz on HMMs, etc before the midterm. "Practice midterm" :-)

Grammatical categories: parts-of-speech

- · Nouns: people, animals, concepts, things
- Verbs: expresses action in the sentence
- · Adjectives: describe properties of nouns

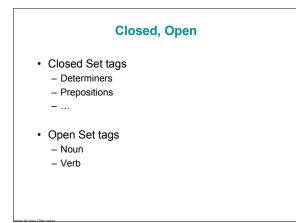
The Part-of-speech Tagging Task

Input: the lead paint is unsafe

Output: the/Det lead/N paint/N is/V unsafe/Adj

· Uses:

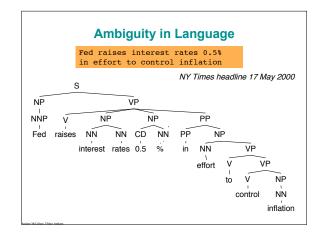
- text-to-speech (how do we pronounce "lead"?)
- can differentiate word senses that involve part of speech differences (what is the meaning of "interest")
- can write regexps like Det Adj* N* over the output (for filtering collocations)
- can be used as simpler "backoff" context in various Markov models when too little is known about a particular history based on words instead.
- preprocessing to speed up parser (but a little dangerous)
 tagged text helps linguists find interesting syntactic constructions in texts ("ssh" used as a verb)

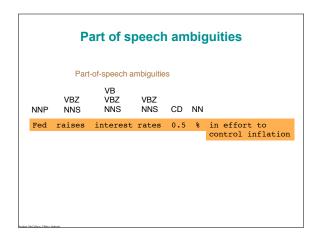

Tagged Data Sets

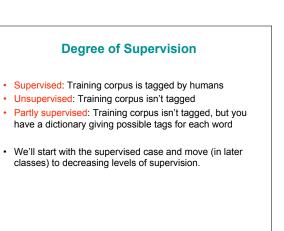
Brown Corpus

Designed to be a representative sample from 1961
 news, poetry, ...
 87 different tags

- Claws5 "C5"
 62 different tags
- Penn Treebank
 - 45 different tagsMost widely used currently


Part-of-speech tags, examples			
· · · ·	PART-OF-SPEECH Adjective Adjective, comparative Adjective, cardinal number Adverb Conjunction, subordination Conjunction, subordinating Determiner	TAG JJ JJR CD RB CC IN DT	EXAMPLES happy, bad happier, worse 3, fifteen often, particularly and, or although, when this, each, other, the, a, some
• • • • •	Determiner, postdeterminer Noun, plural Noun, proper, singular Noun, proper, plural Pronoun, personal Pronoun, question Verb, base present form	JJ NN NNS NNP NNPS PRP WP VBP	aircraft, data women, books London, Michael Australians, Methodists you, we, she, it who, whoever take, live



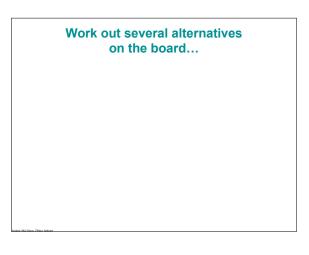

Why is this such a big part of NLP?

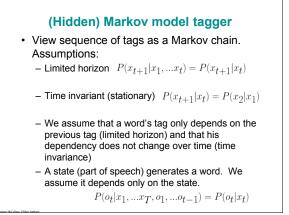
Input: the lead paint is unsafe Output: the/Det lead/N paint/N is/V unsafe/Adj

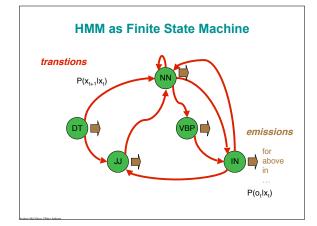
- · The first statistical NLP task
- Been done to death by different methods
- Easy to evaluate (how many tags are correct?)
- Canonical finite-state task
 - Can be done well with methods that look at local context
 - (Though should "really" do it by parsing!)

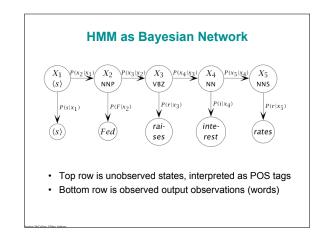
Current Performance

Input: the lead paint is unsafe Output: the/Det lead/N paint/N is/V unsafe/Adj


- Using state-of-the-art automated method, how many tags are correct?
 - About 97% currently
 - But baseline is already 90%
 - Baseline is performance of simplest possible method:
 - Tag every word with its most frequent tag
 - Tag unknown words as nouns


Recipe for solving an NLP task


Input: the lead paint is unsafe Observations


Output: the/Det lead/N paint/N is/V unsafe/Adj Tags

- 1) Data: Notation, representation
- 2) **Problem**: Write down the problem in notation
- 3) Model: Make some assumptions, define a parametric model (often generative model of the data)
- 4) Inference: How to search through possible answers to find the best one
- 5) Learning: How to estimate parameters
- 6) Implementation: Engineering considerations for an efficient implementation

Applications of HMMs

NLP

- Part-of-speech tagging
- Word segmentation
- Information extractionOptical Character Recognition (OCR)
- Speech recognition
- Modeling acoustics
- Computer Vision
- gesture recognition
- Biology
 - Gene finding
 - Protein structure prediction
- · Economics, Climatology, Communications, Robotics...

Probabilistic Inference in an HMM

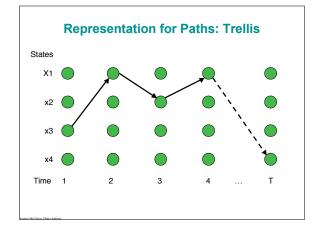
Three fundamental questions for an HMM:

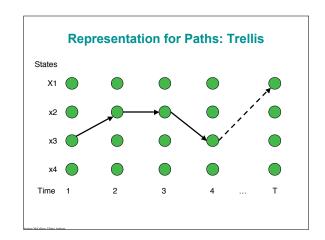
- Compute the probability of a given observation sequence, when tag sequence is hidden (language modeling)
- 2) Given an observation sequence, find the most likely hidden state sequence (tagging) DO THIS NOW
- Given observation sequence(s) and a set of states, find the parameters that would make the observations most likely (parameter estimation)

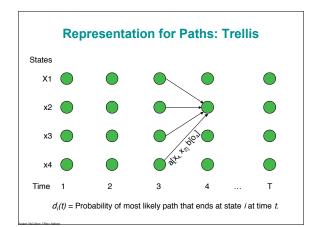
(One) Standard HMM formalism

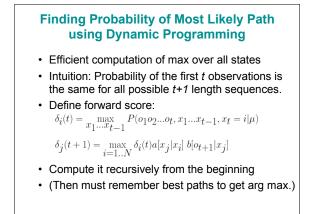
- (X, O, x_s , A, B) are all variables. Model μ = (A, B)
- X is state sequence of length T; O is observation seq.
- $x_{\rm s}$ is a designated start state (with no incoming transitions). (Can also be separated into π as in book.)
- A is matrix of transition probabilities (each row is a conditional probability table (CPT)
- B is matrix of output probabilities (vertical CPTs)

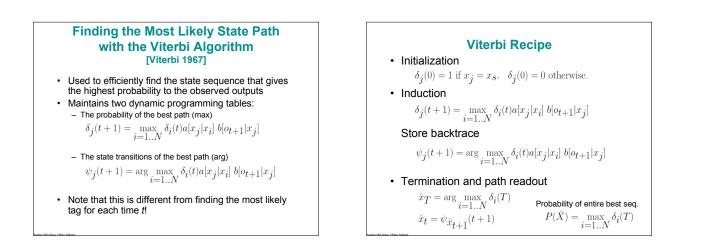
$$P(X, O|\mu) = \prod_{t=1}^{I} a[x_t|x_{t-1}] b[o_t|x_t]$$


- HMM is a probabilistic (nondeterministic) finite state automaton, with probabilistic outputs (from vertices, not arcs, in the simple case)
- · Book describes more complex "outputs on arcs" formulation.


Most likely hidden state sequence


- Given O = (o_1, \dots, o_T) and model μ = (A,B)
- · We want to find


$\arg\max_{X} P(X|O,\mu) = \arg\max_{X} \frac{P(X,O|\mu)}{P(O|\mu)} = \arg\max_{X} P(X,O|\mu)$


- $P(O|X, \mu) = b[x_1|o_1] b[x_2|o_2] \dots b[x_T|o_T]$
- $P(X|\mu) = a[x_1|x_2] a[x_2|x_3] \dots a[x_{T-1}|x_T]$
- $P(O,X|\mu) = P(O|X,\mu) P(X|\mu)$
- arg max_x P(O,X| μ) = arg max x₁, x₂,... x_T
- Problem: arg max is exponential in sequence length!

