Maximum Entropy

Lecture #13

Introduction to Natural Language Processing CMPSCI 585, Spring 2004

Andrew McCallum

(Slides from Jason Eisner)

summary of half of the course (statistics)

Probability is Useful

- · We love probability distributions!
 - We've learned how to define & <u>use</u> p(...) functions.
- Pick best output text T from a set of candidates
 - speech recognition; machine translation; OCR; spell correction...
 - $\underset{}{\text{maximize}} \ p_1(T)$ for some appropriate distribution p_1
- Pick best annotation T for a fixed input I
 - text categorization; parsing; part-of-speech tagging ...
 - maximize p(T | I); equivalently maximize joint probability p(I,T)
 - often define p(I,T) by noisy channel: $p(I,T) = p(T) * p(I \mid T)$
 - speech recognition & other tasks above are cases of this too:
 we're maximizing an appropriate p₁(T) defined by p(T | I)
- Pick best probability distribution (a meta-problem!)
 - really, pick best <u>parameters</u> θ: train HMM, PCFG, n-grams, clusters
 - maximum likelihood; smoothing; EM if unsupervised (incomplete data)
 - Smoothing: $\max p(\theta|\text{data}) = \max p(\theta, \text{data}) = p(\theta)p(\text{data}|\theta)$

summary of other half of the course (linguistics)

Probability is Flexible

- We love probability distributions!
 - We've learned how to define & use p(...) functions.
- We want p(...) to define probability of *linguistic* objects
 - Sequences of words, tags, morphemes, phonemes (n-grams, FSMs, FSTs; Viterbi, collocations)
 - Vectors (naïve Bayes; clustering word senses)
 - Trees of (non)terminals (PCFGs; CKY, Earley)
- We've also seen some not-so-probabilistic stuff
 - Syntactic features, morphology. Could be stochasticized?
 - Methods can be quantitative & data-driven but not fully probabilistic: clustering, collocations,...
- · But probabilities have wormed their way into most things
- $\ensuremath{\text{p(...)}}$ has to capture our intuitions about the ling. data

really so alternative?

An Alternative Tradition

- Old AI hacking technique:
 - Possible parses (or whatever) have scores.
 - Pick the one with the best score.
 - How do you define the score?
 - Completely ad hoc!
 - Throw anything you want into the stew
 - Add a bonus for this, a penalty for that, etc.
- "Learns" over time as you adjust bonuses and penalties by hand to improve performance.
- Total kludge, but totally flexible too ...
 - Can throw in any intuitions you might have

really so alternative?

An Alternative Tradition

• Old *A*

Probabilistic Revolution Not Really a Revolution, Critics Sav

PicHo

Log-probabilities no more than scores in disquise

"Lear pena" "We're just adding stuff up
Total like the old corrupt regime

like the old corrupt regime did," admits spokesperson

uses and nce. ☺

Nuthin' but adding weights

- **n-grams:** ... + log p(w7 | w5,w6) + log(w8 | w6, w7) + ...
- PCFG: $log p(NP VP \mid S) + log p(Papa \mid NP) + log p(VP PP \mid VP) ...$
- HMM tagging: ... + log p(t7 | t5, t6) + log p(w7 | t7) + ...
- Noisy channel: [log p(source)] + [log p(data | source)]
- Naïve Bayes:

log p(Class) + log p(feature1 | Class) + log p(feature2 | Class) ...

• Note: Just as in probability, bigger weights are better.

1

Nuthin' but adding weights

- n-grams: ... + log p(w7 | w5,w6) + log(w8 | w6, w7) + ...
- PCFG: log p(NP VP | S) + log p(Papa | NP) + log p(VP PP | VP) ...
- HMM tagging: ... + log p(t7 | t5, t6) + log p(w7 | t7) + ...
- Noisy channel: [log p(source)] + [log p(data | source)]
- Naïve Baves:
 - log(Class) + log(feature1 | Class) + log(feature2 | Class) + ...
 - Can regard any linguistic object as a collection of features (here, doc = a collection of words, but could have non-word features)
 - Weight of the object = total weight of features
 - Our weights have always been conditional log-probs (≤ 0) but that is going to change in a few minutes!

Probabilists Rally Behind their Paradigm

".2, .4, .6, .8! We're not gonna take your bait!"

- Can estimate our parameters automatically
 - e.g., log p(t7 | t5, t6) (trigram tag probability)
 - from supervised or unsupervised data (ratio of counts)
- Our results are more meaningful
 - Can use probabilities to place bets, quantify risk
 - e.g., how sure are we that this is the correct parse?
- Our results can be meaningfully combined ⇒ modularity!
 - Multiply indep. conditional probs normalized, unlike scores
 - p(English text) * p(English phonemes | English text) * p(Jap. phonemes | English phonemes) * p(Jap. text | Jap. phonemes)
 - p(semantics) * p(syntax | semantics) * p(morphology | syntax) * p(phonology | morphology) * p(sounds | phonology)

Probabilists Regret Being Bound by Principle

- Ad-hoc approach does have one advantage
- Consider e.g. Naïve Bayes for text categorization:
 - Buy this supercalifragilistic Ginsu knife set for only \$39 today ...
- Some useful features:
 - Contains Buy
- Contains supercalifragilistic
- .5 02 Contains a dollar amount under \$100
 - · Contains an imperative sentence
 - Reading level = 8th grade
- .9 | 1 Mentions money (use word classes and/or regexp to detect this)
 - Naïve Bayes: pick C maximizing p(C) * p(feat 1 | C) * ...
 - What assumption does Naïve Bayes make? True here?

Probabilists Regret Being Bound by Principle

- · Ad-hoc approach does have one advantage
- Consider e.g. Naïve Bayes for text categorization:
 - Buy this supercalifragilistic Ginsu knife set for only \$39 today ...
- · Some useful features:

watt 50% of spam has this – 25x more likely than in ham

Spart han 50% of spain has5 .02 • Contains a dollar amount under \$100 90% of spam has this – 9x more likely than in ham

claims .5*.9=45% of spam has both features – 25*9=225x more

.9 .1 • Mentions money

- Naïve Bayes: pick C maximizing p(C) * p(feat 1 | C) * ...
- What assumption does Naïve Bayes make? True here?

Probabilists Regret Being Bound by Principle

- But ad-hoc approach does have one advantage
 - Can adjust scores to compensate for feature overlap ..
- Some useful features of this message:

- Naïve Bayes: pick C maximizing p(C) * p(feat 1 | C) * ...
- What assumption does Naïve Bayes make? True here?

Revolution Corrupted by Bourgeois Values

- Naïve Bayes needs overlapping but independent features
- But not clear how to restructure these features like that:
 - · Contains Buy
 - Contains supercalifragilistic
 - Contains a dollar amount under \$100
 - Contains an imperative sentence
 - Reading level = 7th grade
 - Mentions money (use word classes and/or regexp to detect this)
- Boy, we'd like to be able to throw all that useful stuff in without worrying about feature overlap/independence.
- Well, maybe we can add up scores and <u>pretend</u> like we got a log probability:

Revolution Corrupted by Bourgeois Values

- Naïve Bayes needs overlapping but independent features
- But not clear how to restructure these features like that:
- +4 Contains Buy
- +0.2 Contains supercalifragilistic
- +1 Contains a dollar amount under \$100
- +2 Contains an imperative sentence
- -3 Reading level = 7th grade
- +5 Mentions money (use word classes and/or regexp to detect this)
- Boy, we'd like to be able to throw all that useful stuff in without worrying about feature overlap/independence.
- Well, maybe we can add up scores and pretend like we got a log probability: log p(feats | spam) = 5.77
- Oops, then p(feats | spam) = $\exp 5.77 = 320.5$

Renormalize by 1/Z to get a

Log-Linear Model

- p(feats | spam) = exp 5.77 = 320.5 and sums to 1!
 p(m | spam) = (1/7/2)
- p(m | spam) = $(1/Z(\lambda))$ exp $\sum_i \lambda_i f_i(m)$ where

 - λ_i is weight of feature i
 - $f_i(m) \in \{0,1\}$ according to whether m has feature i
 - More generally, allow $f_i(m) = count$ or strength of feature.
 - $1/Z(\lambda)$ is a normalizing factor making $\sum_{m} p(m \mid spam)=1$ (summed over all possible messages m! hard to find!)
- The weights we add up are basically arbitrary.
- They don't have to mean anything, so long as they give us a good probability.
- Why is it called "log-linear"?

Why Bother?

- Gives us probs, not just scores.
 - Can use them to bet, or combine w/ other probs.
- We can now learn weights from data!
 - Choose weights $\boldsymbol{\lambda}_j$ that maximize logprob of labeled training data = $\log \prod_i p(c_i) p(m_i | c_i)$
 - where c_i∈{ham,spam} is classification of message m_i
 - and $p(m_i \mid c_i)$ is log-linear model from previous slide
 - Convex function easy to maximize! (why?)
- But: p(m_i | c_i) for a given λ requires Z(λ): hard!

Attempt to Cancel out Z

- Set weights to maximize $\prod_i p(c_i) p(m_i \mid c_i)$
 - where p(m | spam) = $(1/Z(\lambda))$ exp $\sum_i \lambda_i f_i(m)$
 - But normalizer $Z(\lambda)$ is awful sum over all possible emails
- So instead: Maximize $\prod_j p(c_j \mid m_j)$ Doesn't model the emails m_j , only their classifications c_j Makes more sense anyway given our feature set
- p(spam | m) = p(spam)p(m|spam) / (p(spam)p(m|spam)+p(ham)p(m|ham)
- Z appears in both numerator and denominator
- Alas, doesn't cancel out because Z differs for the spam and ham models
- But we can fix this

So: Modify Setup a Bit

- · Instead of having separate models p(m|spam)*p(spam) vs. p(m|ham)*p(ham)
- Have just one joint model p(m,c) gives us both p(m,spam) and p(m,ham)
- Equivalent to changing feature set to:
 - this feature is log p(spam) + a constant
 - spam and Contains Buy ←old spam model's weight for "contains Buy"
 - spam and Contains supercalifragilistic
 - \leftarrow weight of this feature is log p(ling) + a constant
 - ham and Contains Buy ←old ling model's weight for "contains Buy" • ham and Contains supercalifragilistic
- No <u>real</u> change, but 2 categories now share single feature set and single value of $Z(\lambda)$

Now we can cancel out Z

Now $p(m,c) = (1/Z(\lambda)) \exp \sum_i \lambda_i f_i(m,c)$ where $c \in \{\text{ham, spam}\}$

- Old: choose weights λ_i that maximize prob of labeled training data = $\prod_i p(m_i, c_i)$
- New: choose weights λ_i that maximize prob of labels given messages $= \prod_i p(c_i \mid m_i)$
- Now Z cancels out of conditional probability!
 - $p(spam \mid m) = p(m,spam) / (p(m,spam) + p(m,ham))$ = exp $\sum_i \lambda_i f_i(m,spam) / (exp \sum_i \lambda_i f_i(m,spam) + exp \sum_i \lambda_i f_i(m,ham))$
 - · Easy to compute now ...
 - $\prod_i p(c_i \mid m_i)$ is still convex, so easy to maximize too

Maximum Entropy

- Suppose there are 10 classes, A through J.
- I don't give you any other information.
- Question: Given message m: what is your guess for p(C | m)?
- Suppose I tell you that 55% of all messages are in class A.
- Question: Now what is your guess for p(C | m)?
- Suppose I <u>also</u> tell you that 10% of all messages contain <code>Buy</code> and 80% of these are in class A or C.
- Question: Now what is your guess for p(C | m), if m contains Buy?
- OUCH!

19

Maximum Entropy

		Α	В	С	D	Е	F	G	Н	I	J
ı	Buy	.051		.029							
	Other	.499	.0446	.0446	.0446	.0446	.0446	.0446	.0446	.0446	.0446

• Column A sums to 0.55 ("55% of all messages are in class A")

20

Maximum Entropy

	Α	В	С	D	Е	F	G	Н	I	J
Buy	.051	.0025	.029	.0025	.0025	.0025	.0025	.0025	.0025	.0025
Other	.499	.0446	.0446	.0446	.0446	.0446	.0446	.0446	.0446	.0446

- Column A sums to 0.55
- Row Buy sums to 0.1 ("10% of all messages contain Buy")

21

Maximum Entropy

	Α	В	С	D	Е	F	G	Н	I	J
٦۵,										.0025
Other	.499	.0446	.0446	.0446	.0446	.0446	.0446	.0446	.0446	.0446

- Column A sums to 0.55
- Row Buy sums to 0.1
- (Buy, A) and (Buy, C) cells sum to 0.08 ("80% of the 10%")
- Given these constraints, fill in cells "as equally as possible": maximize the entropy (related to cross-entropy, perplexity)

Entropy = -.051 log .051 - .0025 log .0025 - .029 log .029 - ... Largest if probabilities are evenly distributed

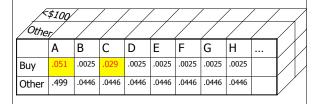
22

Maximum Entropy

	Α	В	С	D	Е	F	G	Н	I	J
Buy	.051	.0025	.029	.0025	.0025	.0025	.0025	.0025	.0025	.0025
Other	.499	.0446	.0446	.0446	.0446	.0446	.0446	.0446	.0446	.0446

- Column A sums to 0.55
- Row Buy sums to 0.1
- (Buy, A) and (Buy, C) cells sum to 0.08 ("80% of the 10%")
- Given these constraints, fill in cells "as equally as possible": maximize the entropy
- Now p(Buy, C) = .029 and p(C | Buy) = .29
- We got a compromise: $p(C \mid Buy) < p(A \mid Buy) < .55$

Generalizing to More Features



24

What we just did

- For each feature ("contains Buy"), see what fraction of training data has it
- Many distributions p(c,m) would predict these fractions (including the unsmoothed one where all mass goes to feature combos we've actually seen)
- Of these, pick distribution that has max entropy
- Amazing Theorem: This distribution has the form $p(m,c) = (1/Z(\lambda)) \exp \sum_i \lambda_i f_i(m,c)$
 - · So it is log-linear. In fact it is the same log-linear distribution that maximizes $\prod_j p(m_j, c_j)$ as before!
- Gives another motivation for our log-linear approach.

Log-linear form derivation

Say we are given some *constraints* in the form of feature expectations:

$$\sum_{x} p(x) f_i(x) = \alpha_i$$

- In general, there may be many distributions p(x) that satisfy the constraints. Which one to pick?
- The one with maximum entropy (making fewest possible additional assumptions---Occum's Razor)
- This yields an optimization problem

$$\max H(p(x)) = -\sum_x p(x) \log p(x)$$

Subject to
$$\sum_{x} p(x) f_i(x) = \alpha_i, \forall i \text{ and } \sum_{x} p(x) = 1$$

Log-linear form derivation

• To solve the maxent problem, we use Lagrange multipliers:

$$\begin{split} L &= -\sum_{\mathbf{x}} p(\mathbf{x}) \log p(\mathbf{x}) - \sum_{i} \theta_{i} \left(\sum_{\mathbf{x}} p(\mathbf{x}) f_{i}(\mathbf{x}) - \alpha_{i} \right) - \mu \left(\sum_{\mathbf{x}} p(\mathbf{x}) - 1 \right) \\ \frac{\partial L}{\partial p(\mathbf{x})} &= 1 + \log p(\mathbf{x}) - \sum_{i} \theta_{i} f_{i}(\mathbf{x}) - \mu \\ p^{*}(\mathbf{x}) &= e^{\mu - 1} \exp \left\{ \sum_{i} \theta_{i} f_{i}(\mathbf{x}) \right\} \\ Z(\theta) &= e^{1 - \mu} = \sum_{\mathbf{x}} \exp \left\{ \sum_{i} \theta_{i} f_{i}(\mathbf{x}) \right\} \\ p(\mathbf{x}|\theta) &= \frac{1}{Z(\theta)} \exp \left\{ \sum_{i} \theta_{i} f_{i}(\mathbf{x}) \right\} \end{split}$$

- So feature constraints + maxent implies exponential family.
- Problem is convex, so solution is unique.

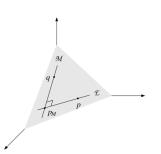
MaxEnt = Max Likelihood

Define two submanifolds on the probability simplex $p(\mathbf{x})$.

The first is \mathcal{E} , the set of all exponential family distributions based on a particular set of features $f_i(\mathbf{x})$.

The second is \mathcal{M} , the set of all distributions that satisfy the feature expectation constraints

They intersect at a single distribution p_M , the maxent, maximum likelihood



$= \sum_{\mathbf{x}} n(\mathbf{x}) \left(\sum_{i} \theta_{i} f_{i}(\mathbf{x}) - \log Z(\theta) \right)$ $= \sum_{\mathbf{x}} n(\mathbf{x}) \sum_{i} \theta_{i} f_{i}(\mathbf{x}) - N \log Z(\theta)$ $\frac{\partial \ell}{\partial \theta_{i}} = \sum_{\mathbf{x}} n(\mathbf{x}) f_{i}(\mathbf{x}) - N \frac{\partial}{\partial \theta_{i}} \log Z(\theta)$ $= \sum_{\mathbf{x}} n(\mathbf{x}) f_{i}(\mathbf{x}) - N \sum_{\mathbf{x}} p(\mathbf{x}|\theta) f_{i}(\mathbf{x})$ $\Rightarrow \quad \sum_{\mathbf{x}} p(\mathbf{x}|\theta) f_i(\mathbf{x}) = \sum_{\mathbf{y}} \frac{\hat{n}(\mathbf{x})}{N} f_i(\mathbf{x}) = \sum_{\mathbf{x}} \bar{p}(\mathbf{x}) f_i(\mathbf{x})$

Derivative of log partition function is the expectation of the feature. At ML estimate, model expectations match empirical feature counts.

Recipe for a Conditional MaxEnt Classifier

Gather constraints from training data:

$$\alpha_{iy} = \tilde{E}[f_{iy}] = \sum_{\substack{x_j, y_j \in D}} f_{iy}(x_j, y_j)$$

- 2. Initialize all parameters to zero.
- Classify training data with current parameters. Calculate expectations. $E_{\Theta}[f_{iy}] = \sum_{x_j \in D} \sum_{y'} p_{\Theta}(y'|x_j) f_{iy}(x_j, y')$
- Gradient is $\tilde{E}[f_{iy}]-E_{\Theta}[f_{iy}]$ Take a step in the direction of the gradient
- Until convergence, return to step 3.

Overfitting

- If we have too many features, we can choose weights to model the training data perfectly.
- If we have a feature that only appears in spam training, not ling training, it will get weight ∞ to maximize p(spam | feature) at 1.
- These behaviors overfit the training data.
- Will probably do poorly on test data.

24

Solutions to Overfitting

- Throw out rare features.
 - Require every feature to occur > 4 times, and > 0 times with ling, and > 0 times with spam.
- Only keep 1000 features.
 - Add one at a time, always greedily picking the one that most improves performance on held-out data.
- Smooth the observed feature counts.
- Smooth the weights by using a prior.
 - $\max p(\lambda | \text{data}) = \max p(\lambda, \text{data}) = p(\lambda)p(\text{data}|\lambda)$
 - decree $p(\lambda)$ to be high when most weights close to 0

32