## Probabilistic Context Free Grammars

Lecture #14

Introduction to Natural Language Processing CMPSCI 585, Fall 2004



Andrew McCallum

(including slides from Jason Eisner)

#### **Ambiguity in Parsing**

- Time flies like an arrow.
- Fruit flies like a banana.
- I saw the man with the telescope.

Andrew McCallum, UM

## How to solve this combinatorial explosion of ambiguity?

- 1. First try parsing without any weird rules, throwing them in only if needed.
- Better: every rule has a weight.
   A tree's weight is total weight of all its rules.
   Pick the overall "lightest" parse of
- 3. Can we pick the weights automatically? We'll get to this later ...

w McCallum, UMass

#### **CYK Parser**

Input: A string of words, grammar in CNF

Output: yes/no

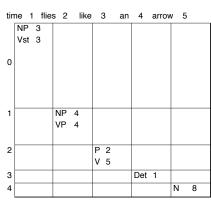
Data structure: n x n table

rows labeled 0 to n-1, columns 1 to n cell (i,j) lists constituents spanning i,j

For each i from 1 to n

Add to (i-1,i) all Nonterminals that could produce the word at (i-1,i)

kndrew McCallum, Ull



sentence.

#### **CYK Parser**

For width from 2 to n

For start from 0 to n-width

Define end to be start+width

For mid from start+1 to end-1

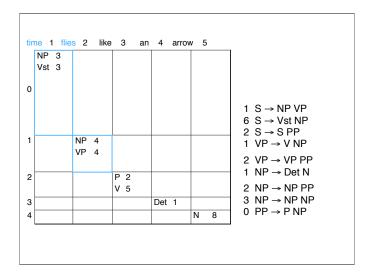
For every constituent in (start, mid)

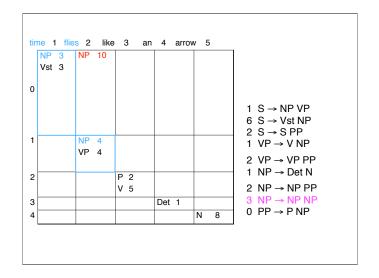
For every constituent in (mid,end)

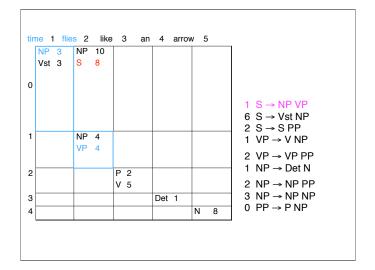
For all ways of combining them (if any)

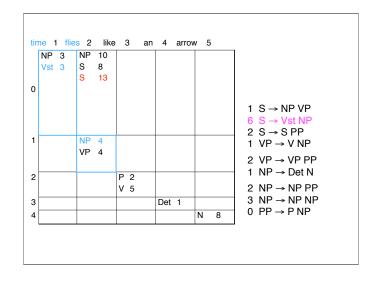
Add the resulting constituent to (start,end).

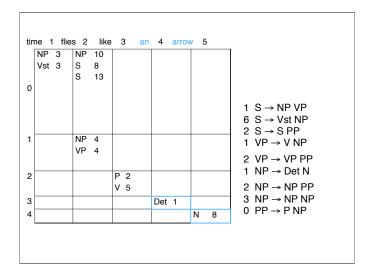
ndrew McCallum, UMa

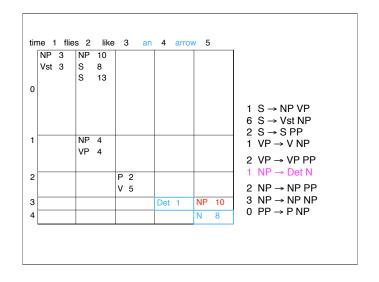


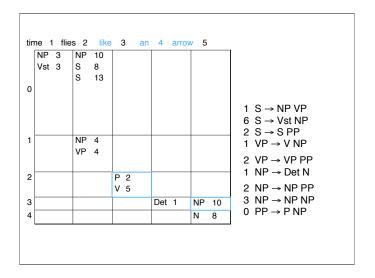


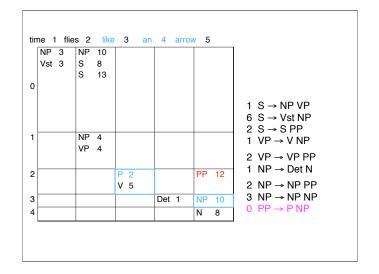


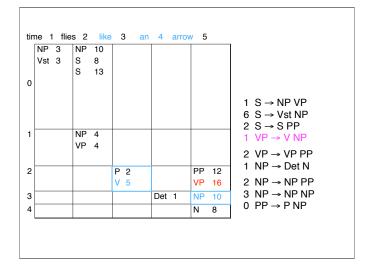


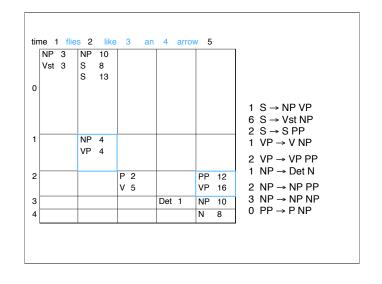


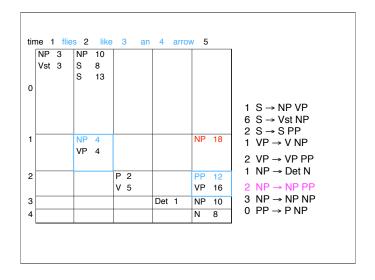


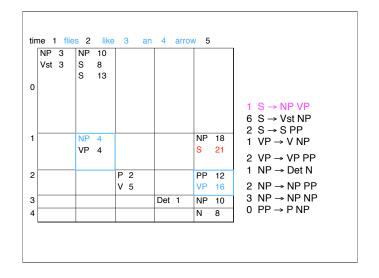


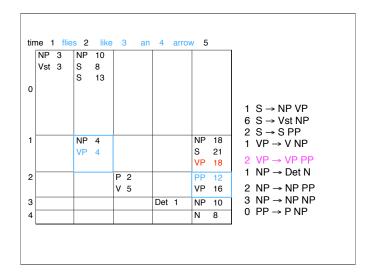


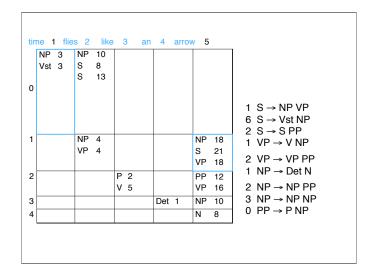


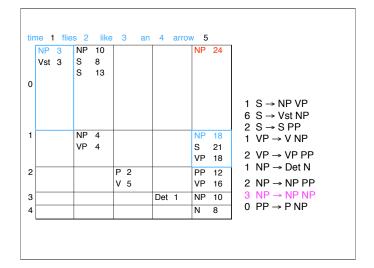


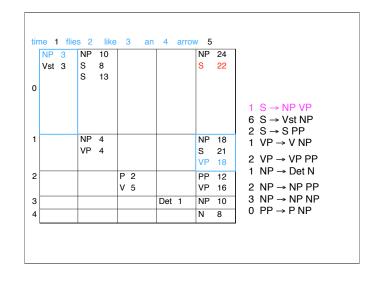


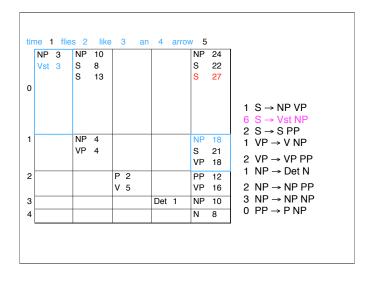


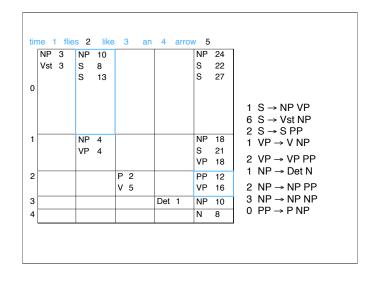


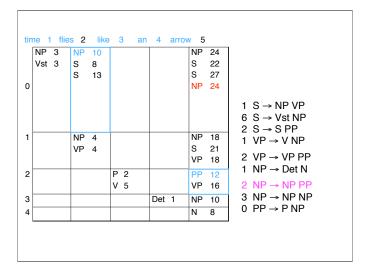




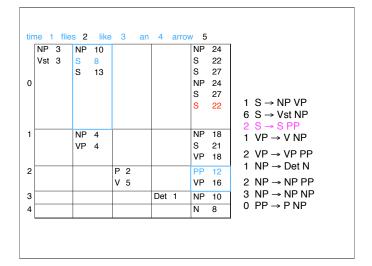


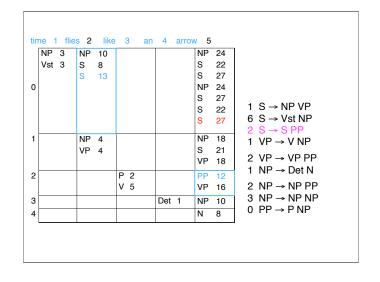


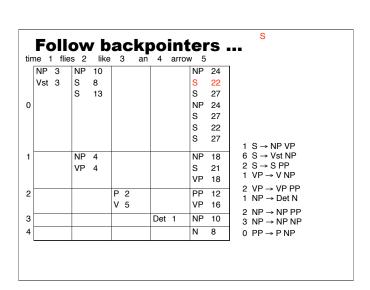


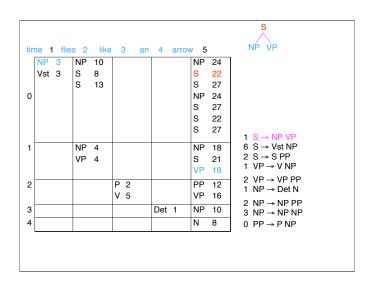


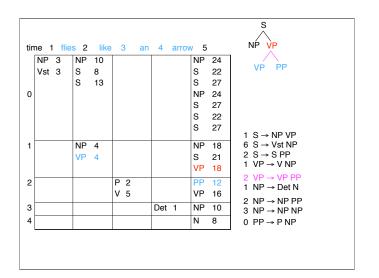
|   | NP  | 3 | NP | 10 |     |     |   | NP | 24 |                                           |
|---|-----|---|----|----|-----|-----|---|----|----|-------------------------------------------|
|   | Vst | 3 | S  | 8  |     |     |   | s  | 22 |                                           |
|   |     |   | S  | 13 |     |     |   | s  | 27 |                                           |
| 0 |     |   |    |    |     |     |   | NP | 24 |                                           |
|   |     |   |    |    |     |     |   | S  | 27 | 1 S → NP VP<br>6 S → Vst NP<br>2 S → S PP |
| 1 |     |   | NP | 4  |     |     |   | NP | 18 | 1 VP → V NP                               |
|   |     |   | VP | 4  |     |     |   | S  | 21 | ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '     |
|   |     |   |    |    |     |     |   | VP | 18 | 2 VP → VP PP                              |
| 2 |     |   |    |    | P 2 |     |   | PP | 12 | 1 NP → Det N                              |
|   |     |   |    |    | V 5 |     |   | VP | 16 | 2 NP → NP PP                              |
| 3 |     |   |    |    |     | Det | 1 | NP | 10 | 3 NP → NP NP                              |
| 4 |     |   |    |    |     |     |   | N  | 8  | $0 \text{ PP} \rightarrow \text{P NP}$    |

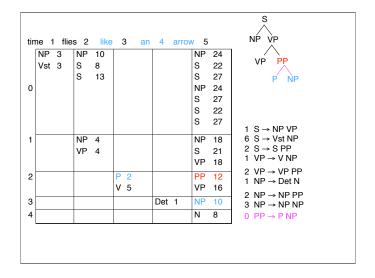


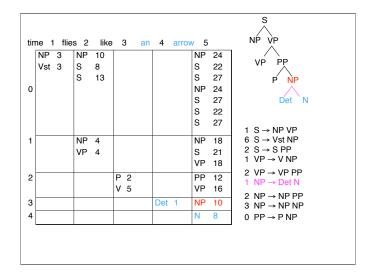


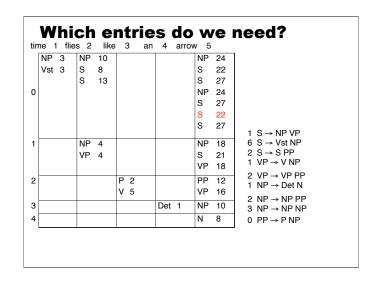


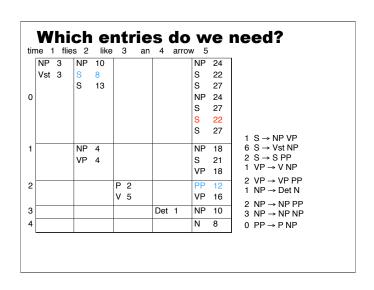


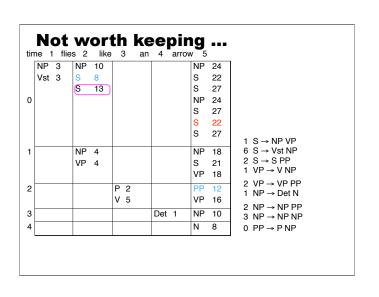




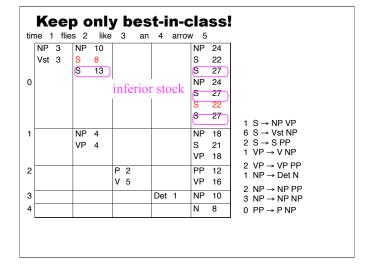








#### ... since it just breeds worse options time 1 flies 2 like 3 an 4 arrow 5 NP 3 NP 10 NP 24 Vst 3 S 22 s 13 27 0 NP 24 s 27 S 22 S 27 $S \rightarrow NP VP$ NP 4 NP 6 S → Vst NP $2\ S \to S\ PP$ VP 4 S 21 1 VP → V NP ۷P 18 2 VP → VP PP P 2 1 NP → Det N V 5 VP 16 2 NP $\rightarrow$ NP PP NP Det 1 10 3 NP → NP NP N 8 $0 PP \rightarrow PNP$



#### **Keep only best-in-class!**

(and backpointers so you can recover parse)

| tin | ne 1 | flie | s 2 | like | ; | 3 | an | 4   | arrov | v 5 |    |
|-----|------|------|-----|------|---|---|----|-----|-------|-----|----|
|     | NP   | 3    | NP  | 10   |   |   |    |     |       | NP  | 24 |
|     | Vst  | 3    | S   | 8    |   |   |    |     |       | s   | 22 |
| 1   |      |      | NP  | 4    |   |   |    |     |       | NP  | 18 |
|     |      |      | VP  | 4    |   |   |    |     |       | S   | 21 |
|     |      |      |     |      |   |   |    |     |       | VP  | 18 |
| 2   |      |      |     |      | Р | 2 |    |     |       | PP  | 12 |
|     |      |      |     |      | ٧ | 5 |    |     |       | VP  | 16 |
| 3   |      |      |     |      |   |   |    | Det | 1     | NP  | 10 |
| 4   |      |      |     |      |   |   |    |     |       | N   | 8  |

1 S → NP VP 6 S → Vst NP 2 S → S PP 1 VP → V NP

 $\begin{array}{ccc}
1 & VP \rightarrow VNP \\
2 & VP \rightarrow VP & PP \\
1 & NP \rightarrow Det & N
\end{array}$ 

2 NP  $\rightarrow$  NP PP 3 NP  $\rightarrow$  NP NP 0 PP  $\rightarrow$  P NP

#### **Probabilistic Trees**

- Instead of lightest weight tree, take highest probability tree
- Given any tree, your assignment generator would have some probability of producing it!
- Just like using n-grams to choose among strings ...
- What is the probability of this tree?



#### **Probabilistic Trees**

- Instead of lightest weight tree, take highest probability tree
- Given any tree, your assignment generator would have some probability of producing it!
- Just like using n-grams to choose among strings ...
- What is the probability of this tree? s
- •

 You rolled a lot of independent dice...



#### Chain rule: One word at a time

p(time flies like an arrow)

- = p(time)
  - \* p(flies | time)
  - \* p(like | time flies)
  - \* p(an | time flies like)
  - \* p(arrow | time flies like an)

kndrew McCallum, UN

nw McCallum I Ma

### Chain rule + backoff (to get trigram model)

p(time flies like an arrow)

- = p(time)
  - \* p(flies | time)
  - \* p(like | time flies)
  - \* p(an | time flies like)
  - \* p(arrow | time flies like an)

drow McCallism TIMa

#### Chain rule - written differently

p(time flies like an arrow)

- = p(time)
  - \* p(time flies | time)
  - \* p(time flies like | time flies)
  - \* p(time flies like an | time flies like)
  - \* p(time flies like an arrow | time flies like an)

*Proof*: 
$$p(x,y | x) = p(x | x) * p(y | x, x) = I * p(y | x)$$

ndraw McCallium I Mar

#### Chain rule + backoff

p(time flies like an arrow)

- = p(time)
  - \* p(time flies I time)
  - \* p(time flies like I time flies)
  - \* p(time flies like an I time flies like)
  - \* p(time flies like an arrow I time flies like an)

Proof:  $p(x,y \mid x) = p(x \mid x) * p(y \mid x, x) = 1 * p(y \mid x)$ 

45

#### Chain rule: One node at a time

#### Chain rule + backoff

#### Simplified notation

#### Already have a CKY alg for weights ...

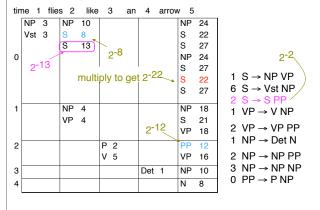
$$W(\begin{array}{c|c} S \\ NP & VP \\ time & I s) = W(s \rightarrow NP & VP) \\ VP & PP \\ flies & P & NP \\ like & P & VP & NP \\ & Det & N \\ & an & arrow \\ \end{array} + W(VP \rightarrow VP & NP)$$

Just let  $w(x \rightarrow YZ) = -log p(x \rightarrow YZ \mid X)$ Then lightest tree has highest prob 49

+ W(VP → flies) + ...

|   | NP  | 3 | NP | 10    |        |     |       | NP | 24 |              |
|---|-----|---|----|-------|--------|-----|-------|----|----|--------------|
|   | Vst | 3 | S  | 8     |        |     |       | S  | 22 |              |
|   |     |   | s  | 13    | \      |     |       | s  | 27 |              |
| 0 |     |   |    |       | 2-8    |     |       | NP | 24 | 2-2          |
|   |     |   |    |       | l      |     | l     | s  | 27 | _            |
|   |     |   |    | multi | ply to | get | 2-22  | S  | 22 | 1 S → NP VP  |
|   |     |   |    |       |        | •   |       | S  | 27 | 6 S → Vst NP |
|   |     |   |    |       |        |     |       |    |    | 2 S → S PP / |
| 1 |     |   | NP | 4     |        |     |       | NP | 18 | 1 VP → V NP  |
|   |     |   | VP | 4     |        |     | 40    | S  | 21 | 0.1/01/0.00  |
|   |     |   |    |       |        |     | 2-12  | VP | 18 | 2 VP → VP PP |
| 2 |     |   |    |       | P 2    |     |       | PP | 12 | 1 NP → Det N |
| _ |     |   |    |       | V 5    |     |       | VP | 16 | 2 NP → NP PP |
| _ |     |   | +  |       | -      |     | D-4 4 |    |    | 3 NP → NP NP |
| 3 |     |   | _  |       |        |     | Det 1 | NP | 10 | 0 PP → P NP  |
| 4 |     |   |    |       |        |     |       | N  | 8  | 011 -1111    |

#### Need only best-in-class to get best parse



#### Why probabilities not weights?

- We just saw probabilities are really just a special case of weights ...
- ... but we can estimate them from training data by counting and smoothing! Use all of our lovely probability theory machinery!

52

# Probabilistic Context Free Grammars (PCFGs)

A PCFG  ${\it G}$  consists of the usual parts of a CFG

- A set of terminals,  $\{w^k\}$ , k = 1, ..., V
- A set of nonterminals,  $\{N^i\}$ , i = 1, ..., n
- $\blacksquare$  A designated start symbol,  $N^1$
- A set of rules,  $\{N^i \to \zeta^j\}$ , (where  $\zeta^j$  is a sequence of terminals and nonterminals)

and

■ A corresponding set of probabilities on rules such that:

$$\forall i \quad \sum_{j} P(N^i \to \zeta^j) = 1$$

pw McCallum I Mass

#### **PCFG** notation

Sentence: sequence of words  $w_1 \cdot \cdot \cdot w_m$ 

 $w_{ab}$ : the subsequence  $w_a \cdots w_b$ 

 $N_{ab}^{i}$ : nonterminal  $N^{i}$  dominates  $w_{a} \cdots w_{b}$ 

$$N^j$$
 $w_a \cdots w_h$ 

 $N^i \stackrel{*}{\Rightarrow} \zeta$ : Repeated derivation from  $N^i$  gives  $\zeta$ .

orkew McCallum I Mas

#### PCFG probability of a string

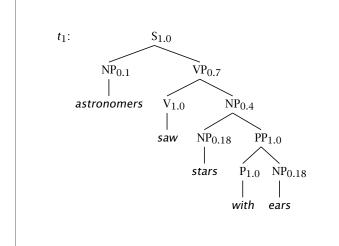
$$P(w_{1n}) = \sum_{t} P(w_{1n}, t) \quad t \text{ a parse of } w_{1n}$$
$$= \sum_{\{t: \text{yield}(t) = w_{1n}\}} P(t)$$

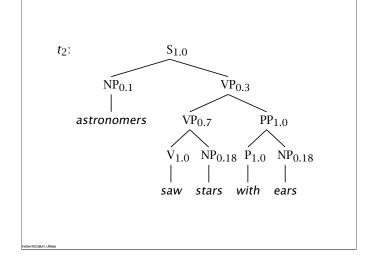
drew McCallum, UMass

#### A simple PCFG (in CNF)

| $S \rightarrow NP VP$  | 1.0 | $NP \rightarrow NP PP$ | 0.4  |
|------------------------|-----|------------------------|------|
| $PP \rightarrow P NP$  | 1.0 | NP → astronomers       | 0.1  |
| $VP \rightarrow V NP$  | 0.7 | NP → ears              | 0.18 |
| $VP \rightarrow VP PP$ | 0.3 | NP → saw               | 0.04 |
| $P \rightarrow with$   | 1.0 | NP → stars             | 0.18 |
| V → saw                | 1.0 | NP → telescopes        | 0.1  |

Indow McCallum LIM





## The two parse trees' probabilities and the sentence probability

$$\begin{array}{rcl} P(t_1) & = & 1.0 \times 0.1 \times 0.7 \times 1.0 \times 0.4 \\ & \times 0.18 \times 1.0 \times 1.0 \times 0.18 \end{array}$$

= 0.0009072

$$P(t_2) = 1.0 \times 0.1 \times 0.3 \times 0.7 \times 1.0$$
  
  $\times 0.18 \times 1.0 \times 1.0 \times 0.18$ 

= 0.0006804

$$P(w_{15}) \ = \ P(t_1) + P(t_2) = 0.0015876$$

### **Assumptions of PCFGs**

1. Place invariance (like time invariance in HMM):

$$\forall k \ P(N_{k(k+c)}^j \to \zeta)$$
 is the same

2. Context-free:

$$P(N_{kl}^j \to \zeta | \text{words outside } w_k \dots w_l) = P(N_{kl}^j \to \zeta)$$

3. Ancestor-free:

$$P(N_{kl}^j \to \zeta | \text{ancestor nodes of } N_{kl}^j) = P(N_{kl}^j \to \zeta)$$

The sufficient statistics of a PCFG are thus simply counts of how often different local tree configurations occurred (= counts of which grammar rules were applied).

Indrew McCallum, Ul

w McCallum, UMas

#### Some features of PCFGs

Reasons to use a PCFG, and some idea of their limitations:

- Partial solution for grammar ambiguity: a PCFG gives some idea of the plausibility of a sentence.
- But, in the simple case, not a very good idea, as independence assumptions are two strong (e.g., not lexicalized).
- Gives a probabilistic language model for English.
- In the simple case, a PCFG is a worse language model for English than a trigram model.
- Better for grammar induction (Gold 1967 vs. Horning 1969)
- Robustness. (Admit everything with low probability.)

frew McCallum, UMa

#### Some features of PCFGs

- A PCFG encodes certain biases, e.g., that smaller trees are normally more probable.
- One can hope to combine the strengths of a PCFG and a trigram model.

We'll look at simple PCFGs first. They have certain inadequacies, but we'll see that most of the state-of-the-art probabilistic parsers are fundamentally PCFG models, just with various enrichments to the grammar

Indrew McCallum, UM

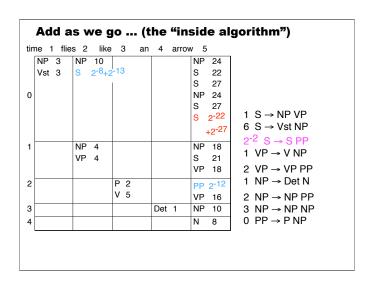
#### A slightly different task

- Been asking: What is probability of generating a given tree?
  - To pick tree with highest prob: useful in parsing.
- But could also ask: What is probability of generating a given *string* with the generator?
  - To pick string with highest prob: useful in speech recognition, as substitute for an n-gram model.
    - ("Put the file in the folder" vs. "Put the file and the folder")
  - To get prob of generating string, must add up probabilities of all trees for the string ...

63

#### Could just add up the parse probabilities time 1 flies 2 like 3 an 4 arrow 5 NP 10 24 oops, back to finding s Vst 3 S 22 8 exponentially many s 13 S 27 parses 2-22 0 NP 24 2-27 S 27 1 S $\rightarrow$ NP VP s 22 2-27 6 S → Vst NP S 27 2-22 $2 S \rightarrow S PP$ NP 18 NP 4 2-27 1 $VP \rightarrow V NP$ VP 4 S 21 2 VP → VP PP VP 18 1 NP → Det N P 2 PP 12 2 VΡ 16 2 NP → NP PP 3 NP $\rightarrow$ NP NP Det 1 NP 10 $0 PP \rightarrow PNP$ N 8

#### Any more efficient way? time 1 flies 2 like 3 NP 3 NP 24 NP 10 Vst 3 2-8 s 22 s 27 S 2-13 0 NP 24 s 27 2-22 1 S $\rightarrow$ NP VP S 2-27 6 S → Vst NP S NP 4 NΡ 18 1 $VP \rightarrow V NP$ VP 4 S 21 2 VP → VP PP ۷P 18 1 NP $\rightarrow$ Det N 2 P 2 V 5 2 NP $\rightarrow$ NP PP VΡ 16 Det 1 3 NP $\rightarrow$ NP NP NP 10 $0 PP \rightarrow PNP$ N 8



#### Add as we go ... (the "inside algorithm") time 1 flies 2 like 3 an 4 arrow 5 NP 10 S 2<sup>-8</sup>+2<sup>-13</sup> NP 3 NP <sub>2</sub>-22 Vst 3 +2-27 2-22 0 +2-27 +2-27 1 S $\rightarrow$ NP VP +2-22 6 S → Vst NP $2^{-2}$ S $\rightarrow$ S PP NP 4 NP 18 1 $VP \rightarrow V NP$ VP 4 S 21 VP 18 2 VP → VP PP 1 NP → Det N P 2 2 PP 2-12 V 5 2 NP $\rightarrow$ NP PP VP 16 Det 1 NP 10 3 NP $\rightarrow$ NP NP $0 PP \rightarrow PNP$

#### Inside and Outside Probabilities

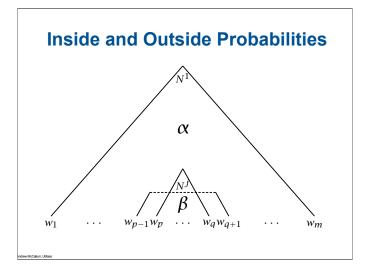
Probability of all possible rule re-writes for generating words inside position p to q, given that non-terminal j exactly spans p to q.

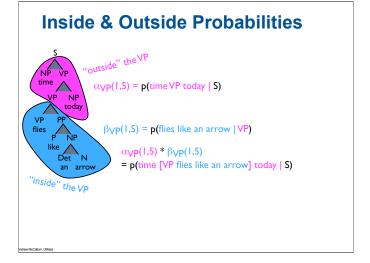
Inside = 
$$\beta_j(p,q) = P(w_{pq}|N_{pq}^j,G)$$

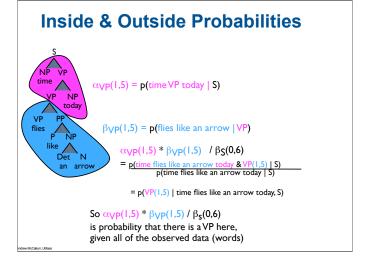
Probability of all possible rule re-writes for generating words *outside* position p to q, *and* that non-terminal j exactly spans p to q.

Outside = 
$$\alpha_j(p,q) = P(w_{1(p-1)}, N_{pq}^j, w_{(q+1)m}|G)$$

orlow McCallum I Mas







### Probability of a string

Inside probability

$$\begin{split} P(w_{1m}|G) &= P(N^1 \Rightarrow w_{1m}|G) \\ &= P(w_{1m}, N^1_{1m}, G) &= \beta_1(1, m) \end{split}$$

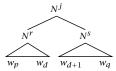
**Base case:** We want to find  $\beta_j(k,k)$  (the probability of a rule  $N^j \to w_k$ ):

$$\beta_j(k,k) = P(w_k|N_{kk}^j,G)$$
$$= P(N^j \to w_k|G)$$

Indrew McCallum, Ul

#### Probability of a string

**Induction:** We want to find  $\beta_j(p,q)$ , for p < q. As this is the inductive step using a Chomsky Normal Form grammar, the first rule must be of the form  $N^j \to N^r - N^s$ , so we can proceed by induction, dividing the string in two in various places and summing the result:



These inside probabilities can be calculated bottom up.

frew McCallum, UMa

For all j,

$$\begin{split} \beta_{j}(p,q) &= P(w_{pq}|N_{pq}^{j},G) \\ &= \sum_{r,s} \sum_{d=p}^{q-1} P(w_{pd},N_{pd}^{r},w_{(d+1)q},N_{(d+1)q}^{s}|N_{pq}^{j},G) \\ &= \sum_{r,s} \sum_{d=p}^{q-1} P(N_{pd}^{r},N_{(d+1)q}^{s}|N_{pq}^{j},G) \\ &= P(w_{pd}|N_{pq}^{j},N_{pd}^{r},N_{(d+1)q}^{s},G) \\ &= P(w_{(d+1)q}|N_{pq}^{j},N_{pd}^{r},N_{(d+1)q}^{s},w_{pd},G) \\ &= \sum_{r,s} \sum_{d=p}^{q-1} P(N_{pd}^{r},N_{(d+1)q}^{s}|N_{pq}^{j},G) \\ &= P(w_{pd}|N_{pd}^{r},G)P(w_{(d+1)q}|N_{(d+1)q}^{s},G) \\ &= \sum_{r,s} \sum_{d=p}^{q-1} P(N^{j} \rightarrow N^{r}N^{s})\beta_{r}(p,d)\beta_{s}(d+1,q) \end{split}$$

Andrew McCollege 1 By

#### Inside probabilities as CYK

|   | 1                  | 2                   | 3                    | 4                     | 5                       |
|---|--------------------|---------------------|----------------------|-----------------------|-------------------------|
| 1 | $\beta_{NP} = 0.1$ |                     | $\beta_{S} = 0.0126$ |                       | $\beta_{S} = 0.0015876$ |
| 2 |                    | $\beta_{NP} = 0.04$ | $\beta_{VP} = 0.126$ |                       | $\beta_{VP} = 0.015876$ |
|   |                    | $\beta_{V} = 1.0$   |                      |                       |                         |
| 3 |                    |                     | $\beta_{NP} = 0.18$  |                       | $\beta_{NP} = 0.01296$  |
| 4 |                    |                     |                      | $\beta_{\rm P} = 1.0$ | $\beta_{PP} = 0.18$     |
| 5 |                    |                     |                      |                       | $\beta_{NP} = 0.18$     |
|   | astronomers        | saw                 | stars                | with                  | ears                    |

frew McCallum, UMas

#### **Outside probabilities**

Probability of a string: For any k,  $1 \le k \le m$ ,

$$\begin{split} P(w_{1m}|G) &=& \sum_{j} P(w_{1(k-1)}, w_k, w_{(k+1)m}, N_{kk}^{j}|G) \\ &=& \sum_{j} P(w_{1(k-1)}, N_{kk}^{j}, w_{(k+1)m}|G) \\ &&\times P(w_k|w_{1(k-1)}, N_{kk}^{j}, w_{(k+1)n}, G) \\ &=& \sum_{j} \alpha_j(k, k) P(N^j \to w_k) \end{split}$$

Inductive (DP) calculation: One calculates the outside probabilities top down (after determining the inside probabilities).

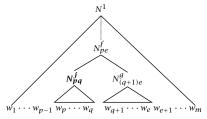
Andrew McCallum, UM

### **Outside probabilities**

Base Case:

$$\alpha_1(1,m) = 1$$
  
 $\alpha_j(1,m) = 0$ , for  $j \neq 1$ 

**Inductive Case:** it's either a left or right branch – we will some over both possibilities and calculate using outside *and* inside probabilities



w McCallum, UMass

## Outside probabilities, Inductive case

$$\begin{split} \alpha_{J}(p,q) &= & \left[ \sum_{f,g} \sum_{e=q+1}^{m} P(w_{1(p-1)}, w_{(q+1)m}, N_{pe}^{f}, N_{pq}^{j}, N_{(q+1)e}^{g}) \right] \\ &+ \left[ \sum_{f,g} \sum_{e=1}^{p-1} P(w_{1(p-1)}, w_{(q+1)m}, N_{eq}^{f}, N_{e(p-1)}^{g}, N_{pq}^{j}) \right] \\ &= & \left[ \sum_{f,g} \sum_{e=q+1}^{p-1} P(w_{1(p-1)}, w_{(e+1)m}, N_{pe}^{f}) P(N_{pq}^{j}, N_{(q+1)e}^{g}| N_{pe}^{f}) \right] \\ &\times P(w_{(q+1)e}|N_{(q+1)e}^{g}) \right] + \left[ \sum_{f,g} \sum_{e=1}^{p-1} P(w_{1(e-1)}, w_{(q+1)m}, N_{eq}^{f}) \right] \\ &\times P(N_{e(p-1)}^{g}, N_{pq}^{j}|N_{eq}^{f}) P(w_{e(p-1)}|N_{e(p-1)}^{g}) \right] \\ &= & \left[ \sum_{f,g} \sum_{e=q+1}^{m} \alpha_{f}(p, e) P(N_{e}^{f} - N_{e}^{J}, N_{e}^{J}) \beta_{g}(q, 1, e) \right] \\ &+ \left[ \sum_{f,g} \sum_{e=1}^{p-1} \alpha_{f}(e, q) P(N_{e}^{f} - N_{e}^{J}, N_{e}^{J}) \beta_{g}(e, p - 1) \right] \end{split}$$

ndrew McCallum, UMas

#### Probability that a rule is used

As with a HMM, we can form a product of the inside and outside probabilities. This time:

$$\begin{split} &\alpha_{j}(p,q)\beta_{j}(p,q)\\ &=P(w_{1(p-1)},N_{pq}^{j},w_{(q+1)m}|G)P(w_{pq}|N_{pq}^{j},G)\\ &=P(w_{1m},N_{pq}^{j}|G) \end{split}$$

$$P(N_{pq}^{j}|w_{1m},G) = \frac{P(N_{pq}^{j}|w_{1m},G)}{P(w_{1m}|G)} = \frac{\alpha_{j}(p,q)\beta_{j}(p,q)}{\beta_{1}(1,m)}$$

This is an "expected count" for the number of times this rule occurred.

frew McCallum, UMa

#### Overall probability of a node existing

As with a HMM, we can form a product of the inside and outside probabilities. This time:

$$\begin{split} &\alpha_{j}(p,q)\beta_{j}(p,q)\\ &=P(w_{1(p-1)},N_{pq}^{j},w_{(q+1)m}|G)P(w_{pq}|N_{pq}^{j},G)\\ &=P(w_{1m},N_{pq}^{j}|G) \end{split}$$

Therefore,

$$p(w_{1m},N_{pq}|G) = \sum_j \alpha_j(p,q)\beta_j(p,q)$$

Just in the cases of the root node and the preterminals, we know there will always be some such constituent.

orlow McCallism | IMar

### **Learning PCFGs (1)**

■ We would like to calculate how often each rule is used:

$$\hat{P}(N^j \to \zeta) = \frac{C(N^j \to \zeta)}{\sum_{\gamma} C(N^j \to \gamma)}$$

- If we have labeled data, we count and find out
- Relative frequency again gives maximum likelihood probability estimates
- This is the motivation for building *Treebanks* of hand-parsed sentences

Learning PCFGs (2) Inside-Outside

- Otherwise we work iteratively from expectations of current model.
- We construct an EM training algorithm, as for HMMs
- For each sentence, at each iteration, we work out expectation of how often each rule is used using inside and outside probabilities
- We assume sentences are independent and sum expectations over parses of each
- We re-estimate rules based on these 'counts'

indrew McCallum, UMas

rew McCallum, UMa