

Experiments and Sample Spaces

- Experiment (or trial)
 - repeatable process by which observations are made - e.g. tossing 3 coins
- Observe *basic outcome* from
- sample space, Ω , (set of all possible basic outcomes), e.g. - one coin toss, sample space $\Omega = \{ H, T \};$
- basic outcome = H or T - three coin tosses, $\Omega = \{ HHH, HHT, HTH, \dots, TTT \}$
- Part-of-speech of a word, Ω = { CC₁, CD₂, CT₃, ..., WRB₃₆}
- lottery tickets, $|\Omega| = 10^7$
- next word in Shakespeare play, |Ω| = size of vocabulary
- number of words in your Ph.D. thesis $\Omega = \{0, 1, ..., \infty\}$ discrete, countably infinite
- number of words in your FILD, arosis at the contrably in countably in contrably incontinuous, uncountably infinite

- An event, A, is a set of basic outcomes, i.e., a subset of the sample space, Ω .
 - Intuitively, a question you could ask about an outcome.
 - $-\Omega = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}$
 - e.g. basic outcome = THH
 - e.g. event = "has exactly 2 H's", A={THH, HHT, HTH}
 - A= Ω is the certain event, A= \emptyset is the impossible event.
 - For "not A", we write \overline{A}
- A common event space, F, is the power set of the sample space, Ω . (power set is written 2^{Ω})

- Intuitively: all possible questions you could ask about a basic outcome.

Probability

- A probability is a number between 0 and 1. - 0 indicates impossibility 1 indicates certainty
- A probability function, P, (or probability distribution) assigns probability mass to events in the event space, F
 - P : F \rightarrow [0,1]
 - $P(\Omega) = 1$
 - Countable additivity: For disjoint events A_j in F $P(\cup_j A_j) = \Sigma_j \ P(A_j)$
- · We call P(A) "the probability of event A".
- Well-defined probability space consists of
 - sample space Ω
 - event space F
 - probability function P

Probability (more intuitively)

- · Repeat an experiment many, many times. (Let T = number of times.)
- · Count the number of basic outcomes that are a member of event A. (Let C =this count.)
- The ratio C/T will approach (some unknown) but constant value.
- · Call this constant "the probability of event A"; write it P(A).

Why is the probability this ratio of counts? Stay tuned! Maximum likelihood estimation at end.

Example: Counting

- · "A coin is tossed 3 times. What is the likelihood of 2 heads?" - Experiment: Toss a coin three times, $\Omega = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}$ - Event: basic outcome has exactly 2 H's
 - $A = \{THH, HTH, HHT\}$
- Run experiment 1000 times (3000 coin tosses)
- · Counted 373 outcomes with exactly 2 H's
- Estimated P(A) = 373/1000 = 0.373

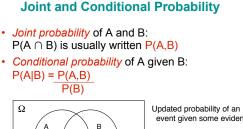
Example: Uniform Distribution

- "A fair coin is tossed 3 times. What is the likelihood of 2 heads?"
 - Experiment: Toss a coin three times,
 - $\Omega = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}$
 - Event: basic outcome has exactly 2 H's A = {THH, HTH, HHT}
- Assume a uniform distribution over outcomes - Each basic outcome is equally likely
 - $P({HHH}) = P({HHT}) = ... = P({TTT})$
- P(A) = |A| / |Ω| = 3 / 8 = 0.375

 $A \cap B$

Probability (again)

- A probability is a number between 0 and 1. - 0 indicates impossibility
 - 1 indicates certainty
- A probability function, P, (or probability distribution) distributes probability mass of 1 throughout the event space, F.
 - $P : F \rightarrow [0,1]$
 - P(Ω) = 1
 - Countable additivity: For disjoint events A_j in F $P(\cup_j A_j) = \Sigma_j P(A_j)$
- The above are axioms of probability theory
- Immediate consequences:
 - $P(\emptyset) = 0, \overline{P(A)} = 1 P(A), A \subseteq B \rightarrow P(A) \le P(B),$ $\Sigma_{a \in \Omega} P(a) = 1$, for a = basic outcome.

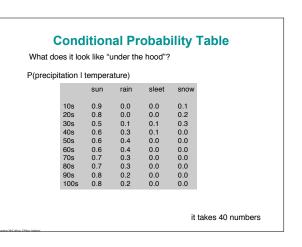


event given some evidence

P(A) = prior probability of A

P(AIB) = posterior probability of A given evidence B

Joint Probability Table What does it look like "under the hood"?						
P(precipi	tation, t	emperat	ture)			
		sun	rain	sleet	snow	
	10s 20s 30s	0.09 0.08 0.05	0.00 0.00 0.01	0.00 0.00 0.01	0.01 0.02 0.03	
	40s 50s	0.05 0.06 0.06	0.01 0.03 0.04	0.01 0.00	0.00 0.00	
	60s 70s 80s	0.06 0.07 0.07	0.04 0.03 0.03	0.00 0.00 0.00	0.00 0.00 0.00	
	90s 100s	0.08 0.08	0.02	0.00	0.00 0.00	
an MCallen 1Mes Johns					it	takes 40 numbers



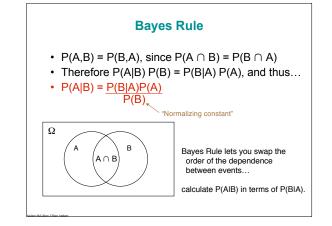
Two Useful Rules

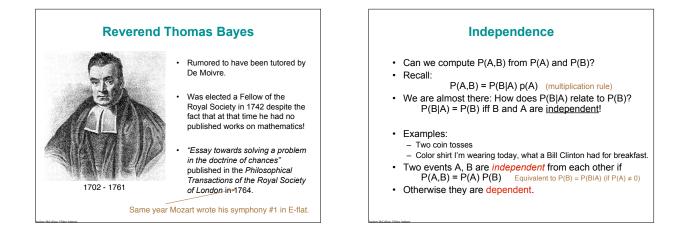
• *Multiplication Rule* P(A,B) = P(A|B) P(B)

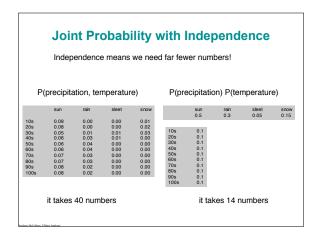
(equivalent to conditional probability definition from previous slide)

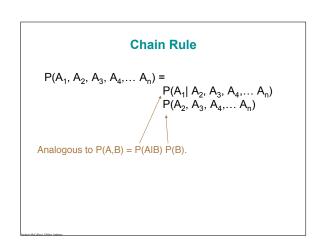
 Total Probability Rule (Sum Rule) P(A) = P(A,B) + P(A,B) or more generally, if B can take on n values P(A) = S_{i=1..n} P(A,B_i)

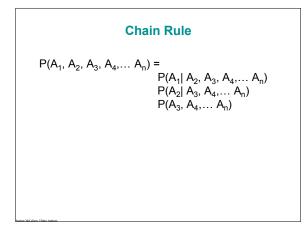
(from additivity axiom)

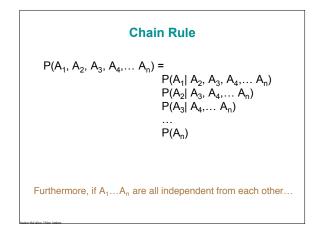


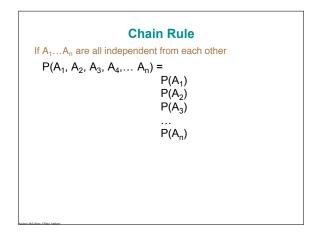


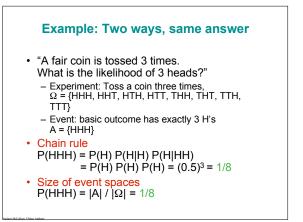


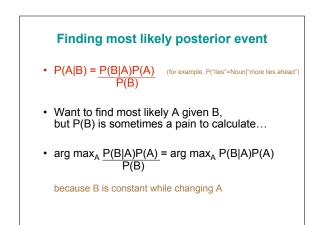


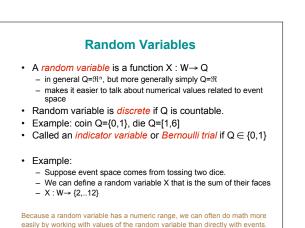












Probability Mass Function

- $p(X=x) = P(A_x)$ where $A_x = \{a \in W: X(a)=x\}$
- Often written just p(x), when X is clear from context. Write X ~ p(x) for "X is distributed according to p(x)". • In English:
 - Probability mass function, p...
 - maps some value x (of random variable X) to...
 - the probability random variable X taking value x
 - equal to the probability of the event A_x
 - this event is the set of all basic outcomes, a, for which the random variable X(a) is equal to x.
- Example, again:
 - Event space = roll of two dice; e.g. a=<2,5>, |W|=36
 - Random variable X is the sum of the two faces
 - $p(X=4) = P(A_4), A_4 = \{<1,3>, <2,2>, <3,1>\}, P(A_4) = 3/36$

Random variables will be used throughout the Introduction to Information Theory, coming next class.

Expected Value

... is a weighted average, or mean, of a random variable $\mathsf{E}[X]$ = $S_{x \in X(W)} x \cdot p(x)$

• Example:

- X = value of one roll of a fair six-sided die: E[X] = (1+2+3+4+5+6)/6 = 3.5
- X = sum of two rolls...
- E[X] = 7
- If Y ~ p(Y=y) is a random variable, then any function g(Y) defines a new random variable, with expected value $\mathsf{E}[\mathsf{g}(\mathsf{Y})] = \mathsf{S}_{\mathsf{y} \in \mathsf{Y}(\mathsf{W})} \mathsf{g}(\mathsf{y}) \cdot \mathsf{p}(\mathsf{y})$
- · For example,
 - let g(Y) = aY+b, then E[g(Y)] = a E[Y] + b
 - E[X+Y] = E[X] + E[Y]
- if X and Y are independent, E[XY] = E[X] E[Y]

Variance

- Variance, written s²
- · Measures how consistent the value is over multiple trials
 - "How much on average the variable's value differs from the its mean."
- Var[X] = E[(X-E[X])²]
- Standard deviation = $\sqrt{Var[X]}$ = s

Joint and Conditional Probabilities with Random Variables

- · Joint and Conditional Probability Rules Analogous to probability of events!
- Joint probability
- p(x,y) = P(X=x, Y=y)*Marginal distribution* p(x) obtained from the joint p(x,y)
- $p(x) = S_v p(x,y)$ (by the total probability rule) Bayes Rule
- p(x|y) = p(y|x) p(x) / p(y)
- · Chain Rule p(w,x,y,z) = p(z) p(y|z) p(x|y,z) p(w|x,y,z)

Parameterized Distributions

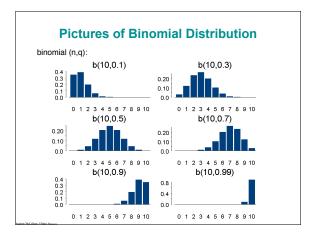
- Common probability mass functions with same mathematical form...
- · ...just with different constants employed.
- A family of functions, called a *distribution*.
- · Different numbers that result in different members of the distribution, called parameters.
- p(a;b)

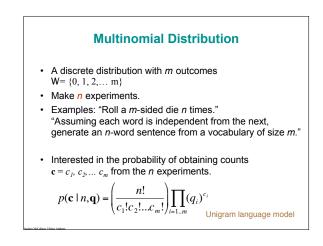
Binomial Distribution

- · A discrete distribution with two outcomes W= {0, 1} (hence bi-nomial)
- Make *n* experiments.
- "Toss a coin n times."
- Interested in the probability that r of the n experiments yield 1.
- Careful! It's not a uniform distribution. $\langle n \rangle$

•
$$p(R = r \mid n, q) = \binom{n}{r} q^r (1 - q)^{n - r}$$

where
$$\binom{n}{r} = \frac{n!}{(n-r)!r!}$$





Parameter Estimation

- We have been assuming that P is given, but most of the time it is unknown.
- So we <u>assume</u> a parametric family of distributions and <u>estimate</u> its parameters...
- ...by finding parameter values most likely to have generated the observed data (evidence).
- ...treating the parameter value as a random variable!

Not the only way of doing parameter estimation. This is *maximum likelihood* parameter estimation.

Maximum Likelihood Parameter Estimation Example: Binomial

- Toss a coin 100 times, observe r heads
- · Assume a binomial distribution
 - Order doesn't matter, successive flips are independent
 - One parameter is q (probability of flipping a head)
 - Binomial gives p(r|n,q). We know r and n.
 - Find arg $max_q p(r|n, q)$

Maximum Likelihood Parameter Estimation Example: Binomial

- Toss a coin 100 times, observe r heads
- · Assume a binomial distribution
 - Order doesn't matter, successive flips are independent
 - One parameter is q (probability of flipping a head)
 - Binomial gives p(r|n,q). We know r and n.
 - Find arg max_a p(r|n, q)

(Notes for board) likelihood = $p(R = r \mid n, q) = {n \choose r} q^r (1-q)^{n-r}$

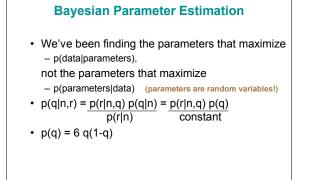
 $\log - \text{likelihood} = L = \log(p(r \mid n, q)) \propto \log(q'(1-q)^{n-r}) = r \log(q) + (n-r)\log(1-q)$

 $\frac{\partial L}{\partial q} = \frac{r}{q} - \frac{n-r}{1-q} \Rightarrow r(1-q) = (n-r)q \Rightarrow q = \frac{r}{n}$ Our familiar ratio-of-counts

is the maximum likelihood estimate

Binomial Parameter Estimation Examples

- Make 1000 coin flips, observe 300 Heads
 P(Heads) = 300/1000
- Make 3 coin flips, observe 2 Heads
 P(Heads) = 2/3 ??
- Make 1 coin flips, observe 1 Tail
 P(Heads) = 0 ???
- Make 0 coin flips
- P(Heads) = ???
- We have some "prior" belief about P(Heads) before we see any data.
- After seeing some data, we have a "posterior" belief.



Maximum A Posteriori Parameter Estimation Example: Binomial

 $\begin{aligned} \text{posterior} &= p(r \mid n, q) p(q) = \binom{n}{r} q^{r} (1 - q)^{n - r} (6q(1 - q)) \\ \text{log} &= \text{posterior} = L \propto \log(q^{r+1}(1 - q)^{n - r+1}) = (r + 1)\log(q) + (n - r + 1)\log(1 - q) \\ \frac{\partial L}{\partial q} &= \frac{(r + 1)}{q} - \frac{(n - r + 1)}{1 - q} \Rightarrow (r + 1)(1 - q) = (n - r + 1)q \Rightarrow q = \frac{r + 1}{n + 2} \end{aligned}$

