Classification \& Information Theory Lecture \#5

Introduction to Natural Language Processing CMPSCI 585, Fall 2004
University of Massachusetts Amherst

Aron Culotta

Slides courtesy of Andrew McCallum

Recipe for Solving a NLP Task Statistically

1) Data: Notation, representation
2) Problem: Write down the problem in notation
3) Model: Make some assumptions, define a parametric model
4) Inference: How to search through possible answers to find the best one
5) Learning: How to estimate parameters
6) Implementation: Engineering considerations for an efficient implementation

(Engineering) Components of a

 Naïve Bayes Document Classifier- Split documents into training and testing
- Cycle through all documents in each class
- Tokenize the character stream into words
- Count occurrences of each word in each class
- Estimate $\mathrm{P}(\mathrm{w} \mid \mathrm{c})$ by a ratio of counts (+1 prior)
- For each test document, calculate $P(c \mid d)$ for each class
- Record predicted (and true) class, and keep accuracy statistics

A Probabilistic Approach to Classification:
 "Naïve Bayes"

Pick the most probable class, given the evidence:
$c^{*}=\arg \max _{c_{j}} \operatorname{Pr}\left(c_{j} \mid d\right)$

$$
\begin{aligned}
& c_{j} \text { - a class (like "Planning") } \\
& d \text { - a document (like "language intelligence proof...") }
\end{aligned}
$$

Bayes Rule:

"Naïve Bayes":
$\operatorname{Pr}\left(c_{j} \mid d\right)=\frac{\operatorname{Pr}\left(c_{j}\right) \operatorname{Pr}\left(d \mid c_{j}\right)}{\operatorname{Pr}(d)}$

$w_{d_{i}}$ - the i th word in d (like "proof")

Parameter Estimation in Naïve Bayes
Estimate of $\mathrm{P}(\mathrm{c})$

$$
P\left(c_{j}\right)=\frac{1+\operatorname{Count}\left(d \in c_{j}\right)}{|C|+\sum_{k} \operatorname{Count}\left(d \in c_{k}\right)}
$$

Estimate of $\mathrm{P}(\mathrm{w} \mid \mathrm{c})$

$$
\hat{P}\left(w_{i} \mid c_{j}\right)=\frac{1+\sum_{d_{k} \in c_{j}} \operatorname{Count}\left(w_{i}, d_{k}\right)}{|V|+\sum_{i=1}^{W \mid} \sum_{d_{k} \in c_{j}} \operatorname{Count}\left(w_{i}, d_{k}\right)}
$$

Programming Assignment 2 Help
Small number!
$\operatorname{Pr}\left(c_{j} \mid d\right) \propto \operatorname{Pr}\left(c_{j}\right) \prod_{i=1}^{m / 2} \operatorname{Pr}\left(w_{d_{i}} c_{j}\right)$
$\log \left(\operatorname{Pr}\left(c_{j} \mid d\right)\right) \propto \log \left(P\left(r\left(c_{j}\right)\right)+\sum_{i=1}^{|d|} \log \left(\operatorname{Pr}\left(w_{d_{i}} \mid c_{j}\right)\right)\right.$
-To get back to $\operatorname{Pr}\left(c_{j} \mid d\right)$

- Subtract a constant to make all positive - $\exp ()$

Common words in Tom Sawyer (71,370 words)		
Word	Freg	Use
the	3332	determiner (article)
and	2972	conjunction
a	1775	determiner
to	1725	preposition, verbal infinitive marker
of	1440	preposition
was	1161	auxiliary verb
it	1027	(personal/expletive) pronoun
in	906	preposition
that	877	complementizer, demonstrative
he	877	(personal) pronoun
1	783	(personal) pronoun
his	772	(possessive) pronoun
you	686	(personal) pronoun
Tom	679	proper noun
with	642	preposition

Frequencies of frequencies in Tom Sawyer

Ziph's law Tom Sawyer			
Word	$\underset{\text { (f) }}{\text { Freq. }}$	${ }_{\text {(r) }}^{\text {Rank }}$	${ }^{*} \times$
the	${ }^{3332}$	1	${ }_{5332}$
${ }_{a}^{\text {and }}$	2972 1775	${ }_{3}^{2}$	${ }_{52944}^{5935}$
he	877	10	8770
but	710 204	20	8400 8820
be	${ }_{222}^{294}$	30 40	8820 8880
one	172	50	8800
about	158	60	9480
more	${ }^{138}$	${ }^{60}$	9480
never Oh	124	80	9920
Oh	116 104	${ }_{100}^{90}$	10440 10400

Ziph's law Tom Sawyer			
Word	$\underset{\substack{\text { freq. } \\ \text { (f) }}}{ }$	$\begin{aligned} & \text { Rank } \\ & (\mathrm{r}) \end{aligned}$	${ }^{* *} \times$
turned	51	200	10200
youtl	30 21	300 400	9000 8400
comes	16	500	8000
group	13	600	7800
${ }_{\substack{\text { lead } \\ \text { friends }}}^{\text {lem }}$	11 10	700 800	7700 8000
begin	9	900	8100
${ }_{\text {famil }}$	${ }_{4}^{8}$	1000	8000 8000
brushed sins		2000 3000	8000 6000
Could	2	4000	8000
Applausive	1	8000	8000

Zipf's law
$f \propto \frac{1}{r}$
In other words, there is a constant, k , such that
$f \cdot r=k$

What is Information?

- "The sun will come up tomorrow."
- "Greenspan was shot and killed this morning."

Efficient Encoding

- I have a 8-sided die. How many bits do I need to tell you what face I just rolled?
- My 8-sided die is unfair $-P(1)=0.5, P(2)=0.125, P(3)=\ldots=P(8)=0.0625$

Entropy (of a Random Variable)

- Average length of message needed to transmit the outcome of the random variable.
- First used in:
- Data compression
- Transmission rates over noisy channel

"Coding" Interpretation of Entropy

- Given some distribution over events $\mathrm{P}(\mathrm{X}) \ldots$
- What is the average number of bits needed to encode a message (a event, string, sequence)
- = Entropy of $\mathrm{P}(\mathrm{X})$:

$$
H(p(X))=-\sum_{x \in X} p(x) \log _{2}(p(x))
$$

- Notation: $\mathrm{H}(\mathrm{X})=\mathrm{H}_{\mathrm{p}}(\mathrm{X})=\mathrm{H}(\mathrm{p})=\mathrm{H}_{\mathrm{X}}(\mathrm{p})=\mathrm{H}\left(\mathrm{p}_{\mathrm{X}}\right)$

What is the entropy of a fair coin? A fair 32-sided die?
What is the entropy of an unfair coin that always comes up heads?
What is the entropy of an unfair 6 -sided die that always $\{1,2\}$ Upper and lower bound? (Prove lower bound?)

Entropy, intuitively

- High entropy ~ "chaos", fuzziness, opposite of order
- Comes from physics:
- Entropy does not go down unless energy is used
- Measure of uncertainty
- High entropy: a lot of uncertainty about the outcome, uniform distribution over outcomes
- Low entropy: high certainty about the outcome

Claude Shannon

- Claude Shannon 1916-2001
Creator of Information Theory
- Lays the foundation for implementing logic in digital circuits as part of his Masters Thesis! (1939)
- "A Mathematical Theory of Communication" (1948)

Joint Entropy and Conditional Entropy

- Two random variables: X (space W), Y (Y)
- Joint entropy
- no big deal: (X, Y) considered a single event:
$H(X, Y)=-S_{x \in w} S_{y \in Y} p(x, y) \log _{2} p(x, y)$
- Conditional entropy
$H(X \mid Y)=-S_{x \in W} S_{y \in Y} p(x, y) \log _{2} p(x \mid y)$
- recall that $\mathrm{H}(\mathrm{X})=\mathrm{E}\left[-\log _{2}(\mathrm{p}(\mathrm{x}))\right]$
(weighted average, and weights are not conditional)
- How much extra information you need to supply to transmit X given that the other person knows Y.

Conditional Entropy (another way)
$H(Y \mid X)=\sum_{x} p(x) H(Y \mid X=x)$
$=\sum_{x} p(x)\left(-\sum_{y} p(y \mid x) \log _{2}(p(y \mid x))\right.$
$=-\sum_{x} \sum_{y} p(x) p(y \mid x) \log _{2}(p(y \mid x))$
$=-\sum_{x} \sum_{y} p(x, y) \log _{2}(p(y \mid x))$

Chain Rule for Entropy

- Since, like random variables, entropy is based on an expectation..
$H(X, Y)=H(X \mid Y)+H(X)$
$H(X, Y)=H(Y \mid X)+H(Y)$

Cross Entropy

- What happens when you use a code that is sub-optimal for your event distribution?
- I created my code to be efficient for a fair 8-sided die.
- But the coin is unfair and always gives 1 or 2 uniformly.
- How many bits on average for the optimal code? How many bits on average for the sub-optimal code?

$$
H(p, q)=-\sum_{x \in X} p(x) \log _{2}(q(x))
$$

KL Divergence

- What are the average number of bits that are wasted by encoding events from distribution p using distribution q ?

$$
\begin{aligned}
D(p & \| q)=H(p, q)-H(p) \\
& =-\sum_{x \in X} p(x) \log _{2}(q(x))+\sum_{x \in X} p(x) \log _{2}(p(x)) \\
& =\sum_{x \in X} p(x) \log _{2}\left(\frac{p(x)}{q(x)}\right)
\end{aligned}
$$

A sort of "distance" between distributions p and q, but It is not symmetric!
It does not satisfy the triangle inequality!

Mutual Information

- Recall: $H(X)=$ average \# bits for me to tell you which event occurred from distribution P(X)
- Now, first I tell you event $y \in Y, H(X \mid Y)=$ average \# bits necessary to tell you which event occurred from distribution $P(X)$?
- By how many bits does knowledge of Y lower the entropy of X ?
$I(X ; Y)=H(X)-H(X \mid Y)$
$=H(X)+H(Y)-H(X, Y)$
$=\sum_{x} p(x) \log _{2} \frac{1}{p(x)}+\sum_{y} p(y) \log _{2} \frac{1}{p(y)}-\sum_{x, y} p(x, y) \log _{2} p(x, y)$
$=\sum_{x, y} p(x, y) \log _{2} \frac{p(x, y)}{p(x) p(y)}$

Mutual Information

- Symmetric, non-negative.
- Measure of independence.
- $I(X ; Y)=0$ when X and Y are independent
$-I(X ; Y)$ grows both with degree of dependence and entropy of the variables
- Sometimes also called "information gain"
- Used often in NLP
- clustering words
- word sense disambiguation
- feature selection...

Pointwise Mutual Information

- Previously measuring mutual information between two random variables.
- Could also measure mutual information between two events

$$
I(x, y)=\log \frac{p(x, y)}{p(x) p(y)}
$$

