

Work out Naïve Bayes formulation interactively on the board

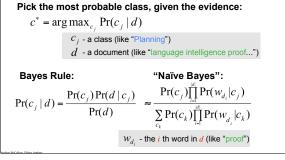
Recipe for Solving a NLP Task Statistically

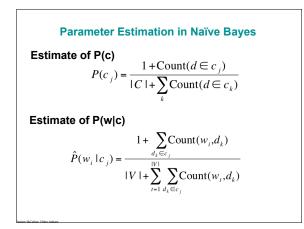
- 1) Data: Notation, representation
- 2) Problem: Write down the problem in notation
- 3) Model: Make some assumptions, define a parametric model
- 4) Inference: How to search through possible answers to find the best one
- 5) Learning: How to estimate parameters
- **6) Implementation**: Engineering considerations for an efficient implementation

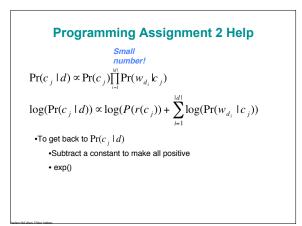
(Engineering) Components of a Naïve Bayes Document Classifier

- · Split documents into training and testing
- · Cycle through all documents in each class
- Tokenize the character stream into words
- · Count occurrences of each word in each class
- Estimate P(w|c) by a ratio of counts (+1 prior)
- For each test document, calculate P(c|d) for each class
- Record predicted (and true) class, and keep accuracy statistics

A Probabilistic Approach to Classification: "Naïve Bayes"







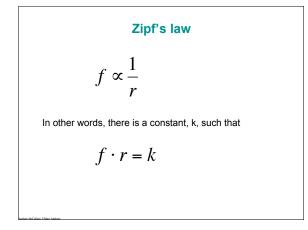
		words in Tom Sawyer (71,370 words)
Word	Freq	Use
the	3332	
		determiner (article)
and	2972	conjunction
а	1775	determiner
to	1725	preposition, verbal infinitive marker
of	1440	preposition
was	1161	auxiliary verb
it	1027	(personal/expletive) pronoun
in	906	preposition
that	877	complementizer, demonstrative
he	877	(personal) pronoun
I	783	(personal) pronoun
his	772	(possessive) pronoun
you	686	(personal) pronoun
Tom	679	proper noun
with	642	preposition

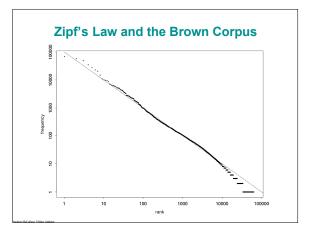
Frequencies of frequencies in *Tom Sawyer*

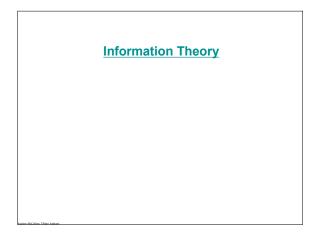
Frequency	Frequency	71,730 word tokens
1	3993	8,018 word types
2	1292	
3	664	
4	410	
5	243	
6	199	
7	172	
8	131	
9	82	
10	91	
11-50	540	
51-100	99	
>100	102	

Nord	Freq. (f)	Rank (r)	f*r		
ne	3332	1	3332		
nd	2972	2	5944		
	1775	3	5235		
е	877	10	8770		
ut	710	20	8400		
е	294	30	8820		
nere	222	40	8880		
ne	172	50	8600		
bout	158	60	9480		
nore	138	60	9480		
ever	124	80	9920		
)h	116	90	10440		
vo	104	100	10400		

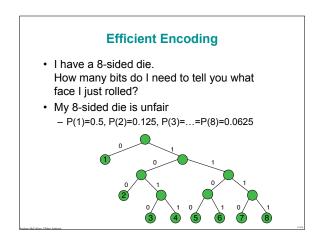
Ziph's law Tom Sawyer				
Word	Freq. (f)	Rank (r)	f*r	
turned	51	200	10200	
you'll	30	300	9000	
name	21	400	8400	
comes	16	500	8000	
group	13	600	7800	
lead	11	700	7700	
friends	10	800	8000	
begin	9	900	8100	
family	8	1000	8000	
brushed	4	2000	8000	
sins	2	3000	6000	
Could	2	4000	8000	
Applausive	1	8000	8000	





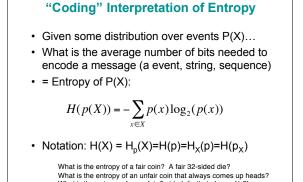


- "The sun will come up tomorrow."
- "Greenspan was shot and killed this morning."



Entropy (of a Random Variable)

- Average length of message needed to transmit the outcome of the random variable.
- First used in:
 Data compression
 - Data compression
 Transmission rates over noisy channel

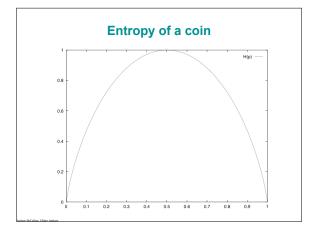


What is the entropy of an unfair coin that always comes up heads? What is the entropy of an unfair 6-sided die that always {1,2} Upper and lower bound? (Prove lower bound?)

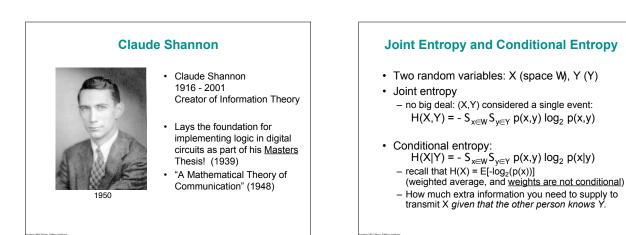
Recall
E[X] =
$$S_{x \in X(W)} x \cdot p(x)$$

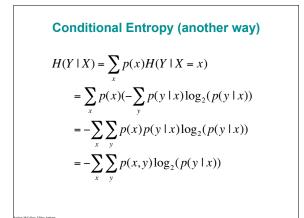
Then

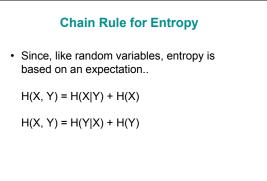
 $\mathsf{E}[\mathsf{-log}_2(p(x))] = \mathsf{S}_{x \, \in \, X(W)} \, \mathsf{-log}_2(p(x)) \, \cdot \, p(x)$ = H(X)



- High entropy ~ "chaos", fuzziness, opposite of order
- Comes from physics: - Entropy does not go down unless energy is used
- · Measure of uncertainty
 - High entropy: a lot of uncertainty about the
 - outcome, uniform distribution over outcomes
 - Low entropy: high certainty about the outcome







Cross Entropy

- What happens when you use a code that is sub-optimal for your event distribution?
 - I created my code to be efficient for a fair 8-sided die.
 - But the coin is unfair and always gives 1 or 2 uniformly.
 - How many bits on average for the optimal code?
 How many bits on average for the sub-optimal code?

$$H(p,q) = -\sum_{x \in X} p(x) \log_2(q(x))$$

KL Divergence

 What are the average number of bits that are wasted by encoding events from distribution p using distribution q?

$$D(p ||q) = H(p,q) - H(p)$$

= $-\sum_{x \in X} p(x) \log_2(q(x)) + \sum_{x \in X} p(x) \log_2(p(x))$

$$= \sum_{x \in X} p(x) \log_2(\frac{p(x)}{q(x)})$$

A sort of "distance" between distributions *p* and *q*, but It is not symmetric! It does not satisfy the triangle inequality!

Mutual Information

- Recall: H(X) = average # bits for me to tell you which event occurred from distribution P(X).
- Now, first I tell you event y ∈ Y, H(X|Y) = average # bits necessary to tell you which event occurred from distribution P(X)?
- By how many bits does knowledge of Y lower the entropy of X?

$$\begin{split} &I(X;Y) = H(X) - H(X \mid Y) \\ &= H(X) + H(Y) - H(X,Y) \\ &= \sum_{x} p(x) \log_2 \frac{1}{p(x)} + \sum_{y} p(y) \log_2 \frac{1}{p(y)} - \sum_{x,y} p(x,y) \log_2 p(x,y) \\ &= \sum_{x,y} p(x,y) \log_2 \frac{p(x,y)}{p(x)p(y)} \end{split}$$

Mutual Information

- · Symmetric, non-negative.
- Measure of independence.

 I(X;Y) = 0 when X and Y are independent
 I(X;Y) grows both with degree of dependence and entropy of the variables.
- Sometimes also called "information gain"
- · Used often in NLP
 - clustering words
 - word sense disambiguation
 - feature selection...

Pointwise Mutual Information

- Previously measuring mutual information between two random variables.
- Could also measure mutual information between two events

$$I(x,y) = \log \frac{p(x,y)}{p(x)p(y)}$$