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Multimedia GUI
Garbage
Collection

Prog. Lang.
Semantics

Machine
Learning Planning

“Temporal reasoning for
planning has long
been studied formally.
We discuss the semantics
of several planning...”
  

Training
  data:

Testing
Document:

Categories:

Document Classification
by Machine Learning

.

“Plannning 
with temporal
reasoning 
has been…”

“Neural networks
and other machine
learning methods 
of classification…”

“…based on
the semantics
of program
dependence”

“Garbage
collection for
strongly-typed
languages…” 

“Multimedia
streaming
video for…”

“User
studies
of GUI…”
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Work out Naïve Bayes formulation
interactively on the board
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Recipe for Solving a
NLP Task Statistically

1) Data: Notation, representation
2) Problem: Write down the problem in notation
3) Model: Make some assumptions, define a

parametric model
4) Inference: How to search through possible

answers to find the best one
5) Learning: How to estimate parameters
6) Implementation: Engineering considerations

for an efficient implementation
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(Engineering) Components of a
Naïve Bayes Document Classifier

• Split documents into training and testing
• Cycle through all documents in each class
• Tokenize the character stream into words
• Count occurrences of each word in each class
• Estimate P(w|c) by a ratio of counts (+1 prior)
• For each test document, calculate P(c|d) for

each class
• Record predicted (and true) class, and keep

accuracy statistics
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A Probabilistic Approach to Classification:
“Naïve Bayes”

Pick the most probable class, given the evidence:

- a class (like “Planning”)
- a document (like “language intelligence proof...”)

Bayes Rule: “Naïve Bayes”:

- the i th word in d (like “proof”)
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Parameter Estimation in Naïve Bayes

Estimate of P(w|c)

Estimate of P(c)
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Programming Assignment 2 Help

•To get back to
•Subtract a constant to make all positive
• exp()

Small
number!
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Common words in Tom Sawyer
(71,370 words)

Word Freq Use
the 3332 determiner (article)
and 2972 conjunction
a 1775 determiner
to 1725 preposition, verbal infinitive marker
of 1440 preposition
was 1161 auxiliary verb
it 1027 (personal/expletive) pronoun
in 906 preposition
that 877 complementizer, demonstrative
he 877 (personal) pronoun
I 783 (personal) pronoun
his 772 (possessive) pronoun
you 686 (personal) pronoun
Tom 679 proper noun
with 642 preposition
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Frequencies of frequencies in Tom Sawyer

Word Frequency of
Frequency Frequency 71,730 word tokens
1 3993 8,018 word types
2 1292
3 664
4 410
5 243
6 199
7 172
8 131
9 82
10 91
11-50 540
51-100 99
>100 102
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Ziph’s law Tom Sawyer

Word Freq. Rank f * r
(f) (r)

the 3332 1 3332
and 2972 2 5944
a 1775 3 5235
he 877 10 8770
but 710 20 8400
be 294 30 8820
there 222 40 8880
one 172 50 8600
about 158 60 9480
more 138 60 9480
never 124 80 9920
Oh 116 90 10440
two 104 100 10400
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Ziph’s law Tom Sawyer

Word Freq. Rank f * r
(f) (r)

turned 51 200 10200
you’ll 30 300 9000
name 21 400 8400
comes 16 500 8000
group 13 600 7800
lead 11 700 7700
friends 10 800 8000
begin 9 900 8100
family 8 1000 8000
brushed 4 2000 8000
sins 2 3000 6000
Could 2 4000 8000
Applausive 1 8000 8000
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Zipf’s law

In other words, there is a constant, k, such that

! 

f "
1

r

! 

f " r = k
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Zipf’s Law and the Brown Corpus
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Information Theory
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What is Information?

• “The sun will come up tomorrow.”

• “Greenspan was shot and killed this morning.”
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Efficient Encoding

• I have a 8-sided die.
How many bits do I need to tell you what
face I just rolled?

• My 8-sided die is unfair
– P(1)=0.5, P(2)=0.125, P(3)=…=P(8)=0.0625

3 4

2

1

7 865

0 1

0 1

0 1 0 1

0 10 10 1
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Entropy (of a Random Variable)

• Average length of message needed to transmit the
outcome of the random variable.

• First used in:
– Data compression
– Transmission rates over noisy channel
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“Coding” Interpretation of Entropy

• Given some distribution over events P(X)…
• What is the average number of bits needed to

encode a message (a event, string, sequence)
• = Entropy of P(X):

• Notation: H(X) = Hp(X)=H(p)=HX(p)=H(pX)

! 

H(p(X)) = " p
x#X

$ (x)log2(p(x))

What is the entropy of a fair coin?  A fair 32-sided die?
What is the entropy of an unfair coin that always comes up heads?
What is the entropy of an unfair 6-sided die that always {1,2}
Upper and lower bound?  (Prove lower bound?)
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Entropy and Expectation

• Recall
E[X] = Sx ∈ X(W) x · p(x)

• Then
E[-log2(p(x))] = Sx ∈ X(W) -log2(p(x)) · p(x)
= H(X)
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Entropy of a coin
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Entropy, intuitively

• High entropy ~ “chaos”, fuzziness,
opposite of order

• Comes from physics:
– Entropy does not go down unless energy is used

• Measure of uncertainty
– High entropy: a lot of uncertainty about the

outcome, uniform distribution over outcomes
– Low entropy: high certainty about the outcome
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Claude Shannon

• Claude Shannon
1916 - 2001
Creator of Information Theory

• Lays the foundation for
implementing logic in digital
circuits as part of his Masters
Thesis!  (1939)

• “A Mathematical Theory of
Communication” (1948)

1950
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Joint Entropy and Conditional Entropy

• Two random variables: X (space W), Y (Y)
• Joint entropy

– no big deal: (X,Y) considered a single event:
H(X,Y) = - Sx∈W Sy∈Y p(x,y) log2 p(x,y)

• Conditional entropy:
H(X|Y) = - Sx∈W Sy∈Y p(x,y) log2 p(x|y)

– recall that H(X) = E[-log2(p(x))]
(weighted average, and weights are not conditional)

– How much extra information you need to supply to
transmit X given that the other person knows Y.
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Conditional Entropy (another way)

! 

H(Y | X) = p(x)H(Y | X = x)
x

"

= p(x)(# p(y | x)log2(p(y | x))
y

"
x

"

= # p(x)p(y | x)log2(p(y | x))
y

"
x

"

= # p(x,y)log2(p(y | x))
y

"
x

"
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Chain Rule for Entropy

• Since, like random variables, entropy is
based on an expectation..

H(X, Y) = H(X|Y) + H(X)

H(X, Y) = H(Y|X) + H(Y)
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Cross Entropy

• What happens when you use a code that is
sub-optimal for your event distribution?
– I created my code to be efficient for a fair 8-sided die.
– But the coin is unfair and always gives 1 or 2 uniformly.
– How many bits on average for the optimal code?

How many bits on average for the sub-optimal code?

! 

H(p,q) = " p
x#X

$ (x)log2(q(x))
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KL Divergence

• What are the average number of bits that are
wasted by encoding events from distribution
p using distribution q?

! 

D(p ||q) = H(p,q) "H(p)

= " p
x#X

$ (x)log2(q(x))+ p
x#X

$ (x)log2(p(x))

= p
x#X

$ (x)log2(
p(x)

q(x)
)

A sort of “distance” between distributions p and q, but
It is not symmetric!
It does not satisfy the triangle inequality!
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Mutual Information
• Recall: H(X) = average #  bits for me to tell you which event

occurred from distribution P(X).
• Now, first I tell you event y ∈ Y, H(X|Y) = average # bits

necessary to tell you which event occurred from distribution
P(X)?

• By how many bits does knowledge of Y lower the entropy of X?

! 

I(X;Y ) = H(X) "H(X |Y )

= H(X) + H(Y ) "H(X,Y )

= p
x

# (x)log2
1

p(x)
+ p

y

# (y)log2
1

p(y)
" p

x,y

# (x,y)log2 p(x,y)

= p
x,y

# (x,y)log2
p(x,y)

p(x)p(y)
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Mutual Information

• Symmetric, non-negative.
• Measure of independence.

– I(X;Y) = 0 when X and Y are independent
– I(X;Y) grows both with degree of dependence and entropy

of the variables.
• Sometimes also called “information gain”

• Used often in NLP
– clustering words
– word sense disambiguation
– feature selection…
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Pointwise Mutual Information

• Previously measuring mutual information
between two random variables.

• Could also measure mutual information
between two events

! 

I(x,y) = log
p(x,y)

p(x)p(y)


