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Today’s Main Points

• Automatically categorizing text
– Parameter estimation and smoothing
– a general recipe for a statistical CompLing model
– Building a Spam Filter

• Information Theory
– What is information?  How can you measure it?
– Entropy, Cross Entropy, Information gain
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Maximum Likelihood Parameter Estimation
Example: Binomial

• Toss a coin 100 times, observe r  heads
• Assume a binomial distribution

– Order doesn’t matter, successive flips are independent
– One parameter is q  (probability of flipping a head)
– Binomial gives p(r|n,q).  We know r and n.
– Find arg maxq p(r|n, q)



Andrew McCallum, UMass Amherst

Maximum Likelihood Parameter Estimation
Example: Binomial

• Toss a coin 100 times, observe r  heads
• Assume a binomial distribution

– Order doesn’t matter, successive flips are independent
– One parameter is q  (probability of flipping a head)
– Binomial gives p(r|n,q).  We know r and n.
– Find arg maxq p(r|n, q)

! 

likelihood = p(R = r | n,q) =
n

r

" 

# 
$ 
% 

& 
' q

r(1( q)n(r

log( likelihood = L = log(p(r | n,q))) log(qr (1( q)n(r) = r log(q) + (n ( r)log(1( q)

*L

*q
=
r

q
(
n ( r

1( q
+ r(1( q) = (n ( r)q+ q =

r

n Our familiar ratio-of-counts
is the maximum likelihood estimate!

(Notes for board)



Andrew McCallum, UMass Amherst

Binomial Parameter Estimation Examples

• Make 1000 coin flips, observe 300 Heads
– P(Heads) = 300/1000

• Make 3 coin flips, observe 2 Heads
– P(Heads) = 2/3 ??

• Make 1 coin flips, observe 1 Tail
– P(Heads) = 0 ???

• Make 0 coin flips
– P(Heads) = ???

• We have some “prior” belief about P(Heads) before we see any
data.

• After seeing some data, we have a “posterior” belief.
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Maximum A Posteriori
 Parameter Estimation

• We’ve been finding the parameters that maximize
– p(data|parameters),

not the parameters that maximize
– p(parameters|data)    (parameters are random variables!)

• p(q|n,r) = p(r|n,q) p(q|n) = p(r|n,q) p(q)
      p(r|n)               constant

• And let p(q) = 2 q(1-q)
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Maximum A Posteriori Parameter Estimation
Example: Binomial
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Bayesian Decision Theory

• We can use such techniques for choosing
among models:
– Which among several models best explains the data?

• Likelihood Ratio
P(model1 | data)  =   P(data|model1) P(model1)
P(model2 | data)       P(data|model2) P(model2)
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...back to our example: French vs English

• p(French | glacier, melange) versus
p(English | glacier, melange) ?

• We have real data for
– Jane Austin
– William Shakespeare

• p(Austin | “stars”, “thou”)
p(Shakespeare | “stars”, “thou”)
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Spam
Email

Real
Email

“Are you free to meet
with Dan Jurafsky
today at 3pm?  He wants
to talk about
computational methods
for noun coreference.”

Training
  data:

Testing
Document:

Categories:

Statistical Spam Filtering

.

“Speaking at awards ceremony...”
“Coming home for dinner...”
“Free for a research meeting at 6pm...” 
“Computational Linguistics office hours...” 

“Nigerian minister awards…”
“Earn money at home today!...”
“FREE CASH”
“Just hours per day...” 
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Multimedia GUI
Garbage
Collection

Prog. Lang.
Semantics

Machine
Learning Planning

“Temporal reasoning for
planning has long
been studied formally.
We discuss the semantics
of several planning...”
  

Training
  data:

Testing
Document:

Categories:

Document Classification
by Machine Learning

.

“Plannning 
with temporal
reasoning 
has been…”

“Neural networks
and other machine
learning methods 
of classification…”

“…based on
the semantics
of program
dependence”

“Garbage
collection for
strongly-typed
languages…” 

“Multimedia
streaming
video for…”

“User
studies
of GUI…”
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Work out Naïve Bayes formulation
interactively on the board
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Recipe for Solving a
NLP Task Statistically

1) Data: Notation, representation
2) Problem: Write down the problem in notation
3) Model: Make some assumptions, define a

parametric model
4) Inference: How to search through possible

answers to find the best one
5) Learning: How to estimate parameters
6) Implementation: Engineering considerations

for an efficient implementation
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(Engineering) Components of a
Naïve Bayes Document Classifier

• Split documents into training and testing
• Cycle through all documents in each class
• Tokenize the character stream into words
• Count occurrences of each word in each class
• Estimate P(w|c) by a ratio of counts (+1 prior)
• For each test document, calculate P(c|d) for

each class
• Record predicted (and true) class, and keep

accuracy statistics
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A Probabilistic Approach to Classification:
“Naïve Bayes”

Pick the most probable class, given the evidence:

- a class (like “Planning”)
- a document (like “language intelligence proof...”)

Bayes Rule: “Naïve Bayes”:

- the i th word in d (like “proof”)
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Parameter Estimation in Naïve Bayes

Estimate of P(w|c)

Estimate of P(c)

! 
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1+Count(d " c j )
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Information Theory
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What is Information?

• “The sun will come up tomorrow.”

• “Condi Rice was shot and killed this morning.”
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Efficient Encoding

• I have a 8-sided die.
How many bits do I need to tell you what face
I just rolled?

• My 8-sided die is unfair
– P(1)=1/2, P(2)=1/8, P(3)=…=P(8)=1/16
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0 1

0 1

0 1 0 1

0 10 10 1

2.375
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Entropy (of a Random Variable)

• Average length of message needed to
transmit the outcome of the random
variable.

• First used in:
– Data compression
– Transmission rates over noisy channel
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“Coding” Interpretation of Entropy

• Given some distribution over events P(X)…
• What is the average number of bits needed to

encode a message (a event, string, sequence)
• = Entropy of P(X):

• Notation: H(X) = Hp(X)=H(p)=HX(p)=H(pX)

! 

H(p(X)) = " p
x#X

$ (x)log2(p(x))

What is the entropy of a fair coin?  A fair 32-sided die?
What is the entropy of an unfair coin that always comes up heads?
What is the entropy of an unfair 6-sided die that always {1,2}
Upper and lower bound?  (Prove lower bound?)
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Entropy and Expectation

• Recall
E[X] = Σx ∈ X(Ω) x · p(x)

• Then
E[-log2(p(x))] = Σx ∈ X(Ω) -log2(p(x)) · p(x)
= H(X)
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Entropy of a coin
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Entropy, intuitively

• High entropy ~ “chaos”, fuzziness,
opposite of order

• Comes from physics:
– Entropy does not go down unless energy is used

• Measure of uncertainty
– High entropy: a lot of uncertainty about the

outcome, uniform distribution over outcomes
– Low entropy: high certainty about the outcome



Andrew McCallum, UMass Amherst

Claude Shannon

• Claude Shannon
1916 - 2001
Creator of Information Theory

• Lays the foundation for
implementing logic in digital
circuits as part of his Masters
Thesis!  (1939)

• “A Mathematical Theory of
Communication” (1948)

1950
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Joint Entropy and Conditional Entropy

• Two random variables: X (space Ω), Y (Ψ)
• Joint entropy

– no big deal: (X,Y) considered a single event:
H(X,Y) = - Σx∈Ω Σy∈Ψ p(x,y) log2 p(x,y)

• Conditional entropy:
H(X|Y) = - Σx∈Ω Σy∈Ψ p(x,y) log2 p(x|y)

– recall that H(X) = E[-log2(p(x))]
(weighted average, and weights are not conditional)

– How much extra information you need to supply to
transmit X given that the other person knows Y.
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Conditional Entropy (another way)

! 

H(Y | X) = p(x)H(Y | X = x)
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Chain Rule for Entropy

• Since, like random variables, entropy is
based on an expectation..

H(X, Y) = H(Y|X) + H(X)

H(X, Y) = H(X|Y) + H(Y)
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Cross Entropy

• What happens when you use a code that is
sub-optimal for your event distribution?
– I created my code to be efficient for a fair 8-sided die.
– But the coin is unfair and always gives 1 or 2 uniformly.
– How many bits on average for the optimal code?

How many bits on average for the sub-optimal code?

! 

H(p,q) = " p
x#X

$ (x)log2(q(x))
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KL Divergence

• What are the average number of bits that are
wasted by encoding events from distribution p
using distribution q?

! 

D(p ||q) = H(p,q) "H(p)

= " p
x#X

$ (x)log2(q(x))+ p
x#X

$ (x)log2(p(x))

= p
x#X

$ (x)log2(
p(x)

q(x)
)

A sort of “distance” between distributions p and q, but
It is not symmetric!
It does not satisfy the triangle inequality!
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Mutual Information

• Recall: H(X) = average #  bits for me to tell you which event
occurred from distribution P(X).

• Now, first I tell you event y ∈ Y, H(X|Y) = average # bits
necessary to tell you which event occurred from distribution
P(X)?

• By how many bits does knowledge of Y lower the entropy of X?

! 

I(X;Y ) = H(X) "H(X |Y )

= H(X) + H(Y ) "H(X,Y )
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Mutual Information

• Symmetric, non-negative.
• Measure of independence.

– I(X;Y) = 0 when X and Y are independent
– I(X;Y) grows both with degree of dependence and entropy of

the variables.

• Sometimes also called “information gain”

• Used often in NLP
– clustering words
– word sense disambiguation
– feature selection…
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Pointwise Mutual Information

• Previously measuring mutual information
between two random variables.

• Could also measure mutual information
between two events

! 

I(x,y) = log
p(x,y)

p(x)p(y)


