"Robust" Lower Bounds for Communication and Stream Computation

Amit ChakrabartiDartmouth CollegeGraham CormodeAT&T LabsAndrew McGregorUC San Diego

• <u>Goal</u>: Evaluate $f(x_1, ..., x_n)$ when input is split among p players:

How much communication is required to evaluate f? Consider randomized, blackboard, one-way, multi-round, ...

• <u>Goal</u>: Evaluate $f(x_1, ..., x_n)$ when input is split among p players:

How much communication is required to evaluate f? Consider randomized, blackboard, one-way, multi-round, ...

• <u>Goal</u>: Evaluate $f(x_1, ..., x_n)$ when input is split among p players:

How much communication is required to evaluate f? Consider randomized, blackboard, one-way, multi-round, ...

• How important is the split?

Is f hard for many splits or only hard for a few bad splits? Previous work on worst and best partitions.

[Aho, Ullman, Yannakakis '83] [Papadimitriou, Sipser '84]

• <u>Goal</u>: Evaluate $f(x_1, ..., x_n)$ when input is split among p players:

How much communication is required to evaluate f? Consider randomized, blackboard, one-way, multi-round, ...

• How important is the split?

Is f hard for many splits or only hard for a few bad splits? Previous work on worst and best partitions.

[Aho, Ullman, Yannakakis '83] [Papadimitriou, Sipser '84]

Consider random partitions:

Define error probability over coin flips and random split.

[Morris '78] [Munro, Paterson '78] [Flajolet, Martin '85] [Alon, Matias, Szegedy '96] [Henzinger, Raghavan, Rajagopalan '98]

<u>Goal</u>: Evaluate f(x1, ..., xn) given sequential access:

X₁ **X**₂ **X**₃ **X**₄ **X**₅ ... **... X**_n

[Morris '78] [Munro, Paterson '78] [Flajolet, Martin '85] [Alon, Matias, Szegedy '96] [Henzinger, Raghavan, Rajagopalan '98]

<u>Goal</u>: Evaluate f(x1, ..., xn) given sequential access:

X1 X2 X3 X4 X5 Xn

[Morris '78] [Munro, Paterson '78] [Flajolet, Martin '85] [Alon, Matias, Szegedy '96] [Henzinger, Raghavan, Rajagopalan '98]

<u>Goal</u>: Evaluate f(x1, ..., xn) given sequential access:

X | X2 X3 X4 X5 Xn

How much working memory is required to evaluate f? Consider randomized, approximate, multi-pass, etc.

[Morris '78] [Munro, Paterson '78] [Flajolet, Martin '85] [Alon, Matias, Szegedy '96] [Henzinger, Raghavan, Rajagopalan '98]

<u>Goal</u>: Evaluate f(x₁, ..., x_n) given sequential access:

X1 X2 X3 X4 X5 Xn

How much working memory is required to evaluate f? Consider randomized, approximate, multi-pass, etc.

 <u>Random-order streams:</u> Assume f is order-invariant: Upper Bounds: e.g., stream of i.i.d. samples. Lower Bounds: is a "hard" problem hard in practice? [Munro, Paterson '78] [Demaine, López-Ortiz, Munro '02] [Guha, McGregor '06, '07a, '07b] [Chakrabarti, Jayram, Patrascu '08]

[Morris '78] [Munro, Paterson '78] [Flajolet, Martin '85] [Alon, Matias, Szegedy '96] [Henzinger, Raghavan, Rajagopalan '98]

<u>Goal</u>: Evaluate f(x1, ..., xn) given sequential access:

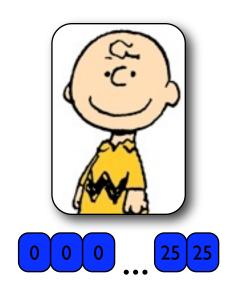
X1 X2 X3 X4 X5 Xn

How much working memory is required to evaluate f? Consider randomized, approximate, multi-pass, etc.

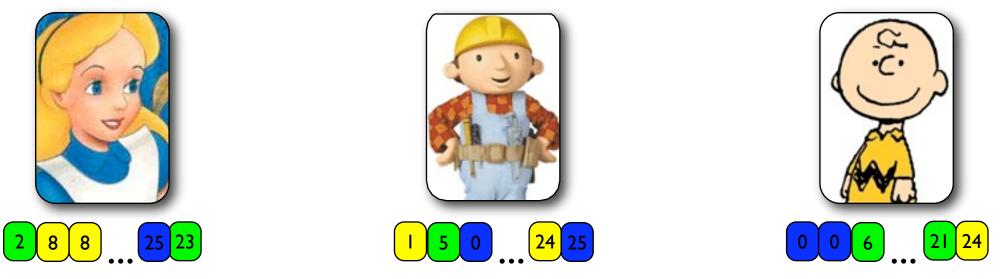
- <u>Random-order streams</u>: Assume f is order-invariant: Upper Bounds: e.g., stream of i.i.d. samples. Lower Bounds: is a "hard" problem hard in practice? [Munro, Paterson '78] [Demaine, López-Ortiz, Munro '02] [Guha, McGregor '06, '07a, '07b] [Chakrabarti, Jayram, Patrascu '08]
- Random-partition-CC bounds give random-order bounds

Results

- <u>t-party Set-Disjointess</u>: Any protocol for $\Omega(t^2)$ -player randompartition requires $\Omega(n/t)$ bits communication.
 - \therefore 2-approx. for k^{th} freq. moments requires $\Omega(n^{1-3/k})$ space.
- <u>Median</u>: Any *p*-round protocol for *p*-player randompartition requires $\Omega(m^{f(p)})$ where $f(p)=1/3^p$
 - \therefore Polylog(m)-space algorithm requires $\Omega(\log \log m)$ passes.
- <u>Gap-Hamming</u>: Any one-way protocol for 2-player randompartition requires $\Omega(n)$ bits communicated.
 - \therefore (I+ ϵ)-approx. for F₀ or entropy requires $\Omega(\epsilon^{-2})$ space.
- <u>Index</u>: Any one-way protocol for 2-player random-partition (with duplicates) requires $\Omega(n)$ bits communicated.
 - \therefore Connectivity of a graph G=(V, E) requires $\Omega(|V|)$ space.



- Naive reduction from fixed-partition-CC:
 - I. Players determine random partition, send necessary data.
 - 2. Simulate protocol on random partition.



- Naive reduction from fixed-partition-CC:
 - I. Players determine random partition, send necessary data.
 - 2. Simulate protocol on random partition.

- Naive reduction from fixed-partition-CC:
 - I. Players determine random partition, send necessary data.
 - 2. Simulate protocol on random partition.
- <u>Problem</u>: Seems to require too much communication.

- Naive reduction from fixed-partition-CC:
 - I. Players determine random partition, send necessary data.
 - 2. Simulate protocol on random partition.
- <u>*Problem:*</u> Seems to require too much communication.
- <u>Consider random input and public coins:</u>
 Issue #1: Need independence of input and partition.
 Issue #2: Generalize information statistics techniques.

a) Disjointnessb) Selection

a) Disjointnessb) Selection

<u>Instance</u>: t x n matrix,

and define, $DISJ_{n,t} = \bigvee_i AND_t(x_{1,i}, \dots, x_{t,i})$

<u>Instance</u>: t x n matrix,

and define, $DISJ_{n,t} = \bigvee_i AND_t(x_{1,i}, \dots, x_{t,i})$

 <u>Unique intersection</u>: Each column has weight 0, 1, or t and at most one column has weight t.

<u>Instance</u>: t x n matrix,

and define, $DISJ_{n,t} = \bigvee_i AND_t(x_{1,i}, \dots, x_{t,i})$

- <u>Unique intersection</u>: Each column has weight 0, 1, or t and at most one column has weight t.
- <u>Thm:</u> Ω(n/t) bound if t-players each get a row. [Kalyanasundaram, Schnitger '92] [Razborov '92]
 [Chakrabarti, Khot, Sun '03] [Bar-Yossef, Jayram, Kumar, Sivakumar '04]

<u>Instance</u>: t x n matrix,

and define, $DISJ_{n,t} = \bigvee_i AND_t(x_{1,i}, \dots, x_{t,i})$

- <u>Unique intersection</u>: Each column has weight 0, 1, or t and at most one column has weight t.
- <u>Thm:</u> Ω(n/t) bound if t-players each get a row. [Kalyanasundaram, Schnitger '92] [Razborov '92]
 [Chakrabarti, Khot, Sun '03] [Bar-Yossef, Jayram, Kumar, Sivakumar '04]
- <u>Thm</u>: $\Omega(n/t)$ bound for random partition for $\Omega(t^2)$ players.

[Chakrabarti, Shi, Wirth, Yao '01] [Chakrabarti, Khot, Sun '03] [Bar-Yossef, Jayram, Kumar, Sivakumar '04]

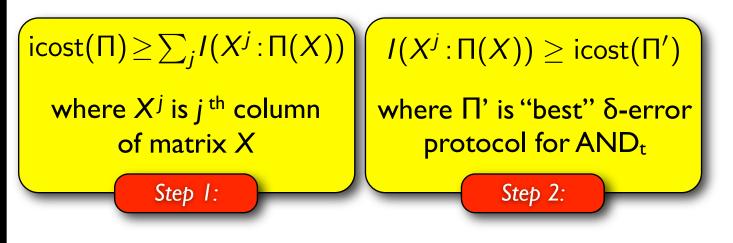
• $\Pi(X)$ is transcript of δ -error protocol Π on random input $X \sim \mu$.

- $\Pi(X)$ is transcript of δ -error protocol Π on *random input* $X \sim \mu$.
 - Information Cost: icost(Π) = I(X: Π(X))
 Lower bound on the length of the protocol
 Amenable to direct-sum results...

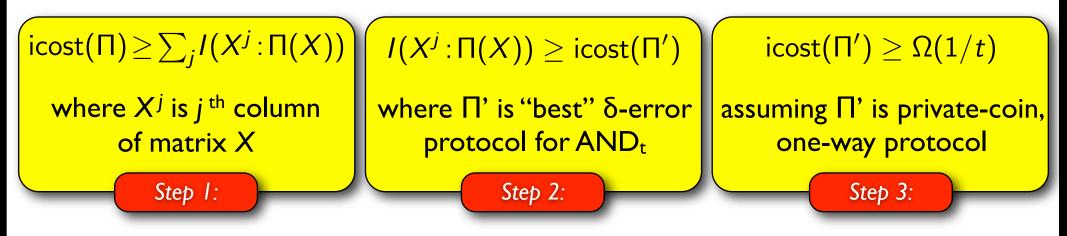
- $\Pi(X)$ is transcript of δ -error protocol Π on random input $X \sim \mu$.
 - <u>Information Cost</u>: icost(Π)= I(X: Π(X))
 Lower bound on the length of the protocol
 Amenable to direct-sum results...

```
icost(\Pi) \ge \sum_{j} I(X^{j}: \Pi(X))
where X^{j} is j^{th} column
of matrix X
Step 1:
```

- $\Pi(X)$ is transcript of δ -error protocol Π on random input $X \sim \mu$.
- <u>Information Cost</u>: icost(Π)= I(X: Π(X))
 Lower bound on the length of the protocol
 Amenable to direct-sum results...

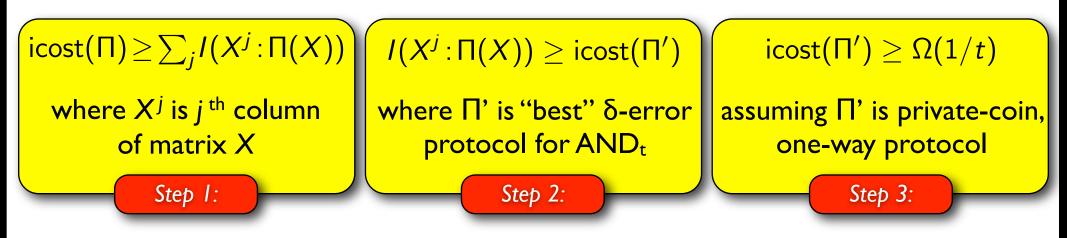


- $\Pi(X)$ is transcript of δ -error protocol Π on random input $X \sim \mu$.
 - Information Cost: icost(Π)= I(X: Π(X))
 Lower bound on the length of the protocol
 Amenable to direct-sum results...



[Chakrabarti, Shi, Wirth, Yao '01] [Chakrabarti, Khot, Sun '03] [Bar-Yossef, Jayram, Kumar, Sivakumar '04]

- $\Pi(X)$ is transcript of δ -error protocol Π on random input $X \sim \mu$.
- Information Cost: icost(Π)= I(X: Π(X))
 Lower bound on the length of the protocol
 Amenable to direct-sum results...



• <u>Necessary Generalization:</u>

Step 1: Condition "icost" on public coins. **Step 2**: Error of Π ' is best δ +Birthday(t,p) error protocol. **Step 3**: Generalize result for public-coin protocols.

• **Define:** $F_k(S) = \sum_i (\text{freq. of i})^k$

- **<u>Define</u>**: $F_k(S) = \sum_i (\text{freq. of i})^k$
- Reduction from set-disjointness:

[Alon, Matias, Szegedy '99]

$$egin{aligned} S &= \{i: x_{ij} = 1\} \ F_k(S) &\geq t^k ext{ if } \mathsf{DISJ}_{n,t}(X) = 1 \ F_k(S) &\leq n ext{ if } \mathsf{DISJ}_{n,t}(X) = 0 \end{aligned}$$

- **<u>Define</u>**: $F_k(S) = \sum_i (\text{freq. of i})^k$
- <u>Reduction from set-disjointness:</u> [Alon, Matias, Szegedy '99]

$$egin{aligned} S &= \{i: x_{ij} = 1\} \ F_k(S) &\geq t^k ext{ if } \mathsf{DISJ}_{n,t}(X) = 1 \ F_k(S) &\leq n ext{ if } \mathsf{DISJ}_{n,t}(X) = 0 \end{aligned}$$

- <u>Thm:</u> $\Omega(n^{1-3/k})$ space bound for random order streams.
- <u>Proof</u>: Set $t^{k}=2n$ to prove $\Omega(n^{1-1/k})$ total communication Per-message communication is $\Omega(n^{1-1/k}/p) = \Omega(n^{1-3/k})$

- **Define:** $F_k(S) = \sum_i (\text{freq. of i})^k$
- <u>Reduction from set-disjointness:</u> [Alon, Matias, Szegedy '99]

$$egin{aligned} S &= \{i: x_{ij} = 1\} \ F_k(S) &\geq t^k ext{ if } \mathsf{DISJ}_{n,t}(X) = 1 \ F_k(S) &\leq n ext{ if } \mathsf{DISJ}_{n,t}(X) = 0 \end{aligned}$$

- <u>Thm:</u> $\Omega(n^{1-3/k})$ space bound for random order streams.
- <u>Proof</u>: Set $t^{k}=2n$ to prove $\Omega(n^{1-1/k})$ total communication Per-message communication is $\Omega(n^{1-1/k}/p) = \Omega(n^{1-3/k})$
- <u>Open Problem</u>: $\Omega(n^{1-2/k})$ bound for random order?

a) Disjointnessb) Selection

• Find median of stream of m values in polylog(m) space.

- Find median of stream of m values in polylog(m) space.
- <u>Thm:</u> For adversarial-order stream, Θ(lg m / lg lg m) pass [Munro, Paterson '78] [Guha, McGregor '07a]

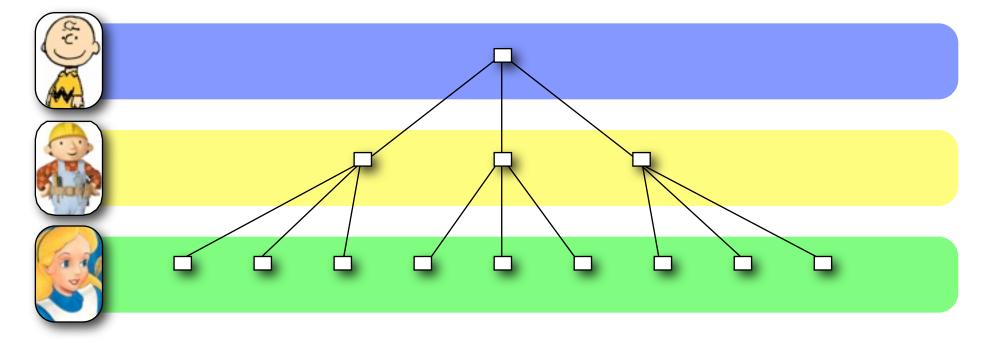
- Find median of stream of m values in polylog(m) space.
- <u>Thm:</u> For adversarial-order stream, Θ(lg m / lg lg m) pass [Munro, Paterson '78] [Guha, McGregor '07a]
- <u>Thm</u>: For random-order stream, Θ(lg lg m) pass

[Guha, McGregor '06] [Chakrabarti, Jayram, Patrascu '08]

- Find median of stream of m values in polylog(m) space.
- <u>Thm:</u> For adversarial-order stream, Θ(lg m / lg lg m) pass [Munro, Paterson '78] [Guha, McGregor '07a]
- <u>Thm:</u> For random-order stream, Θ(lg lg m) pass

[Guha, McGregor '06] [Chakrabarti, Jayram, Patrascu '08]

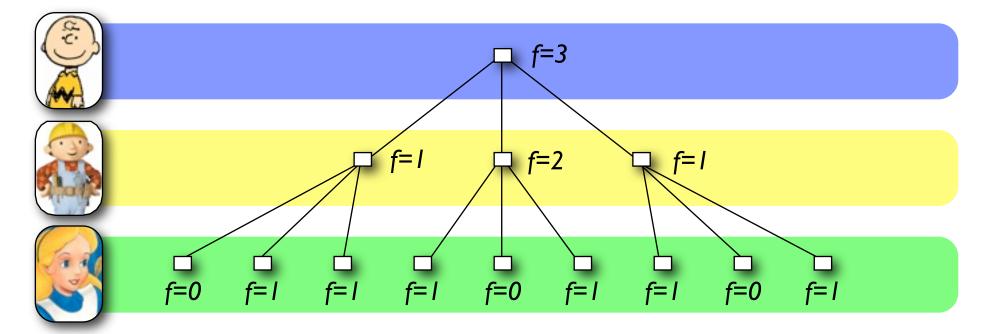
 <u>Our result</u>: Using random-partition-CC techniques we get simpler and tighter pass/space trade-offs...



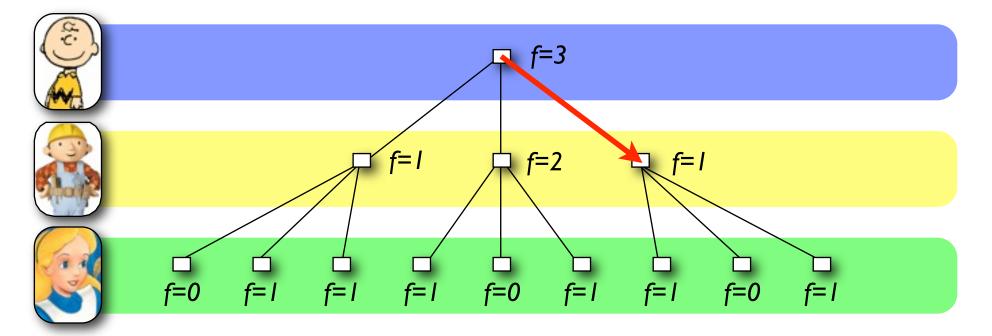
- Instance: Function on nodes of (p+1)-level, t-ary tree, if v is an internal node: f maps v to a child of v if v is a leaf: f maps v to {0,1}
- <u>Goal</u>: Compute $f(f(\dots f(v_{root})\dots))$.
- <u>Thm</u>: With p-players, if ith player knows f(v) when level(v)=i: Any p-round protocol requires Ω(t) communication.



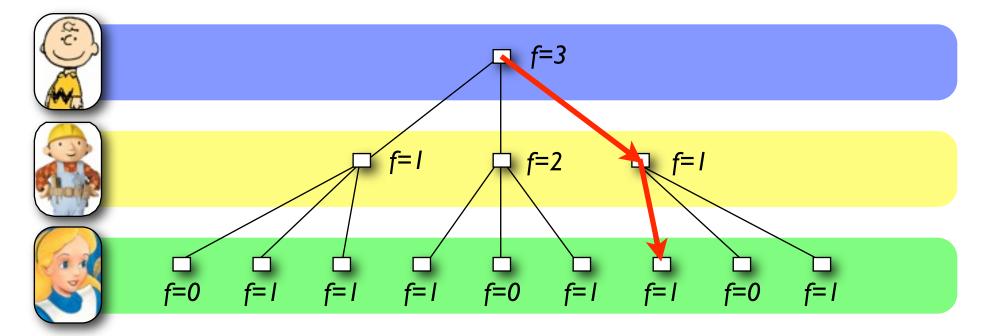
- Instance: Function on nodes of (p+1)-level, t-ary tree, if v is an internal node: f maps v to a child of v if v is a leaf: f maps v to {0,1}
- <u>Goal</u>: Compute $f(f(\dots f(v_{root})\dots))$.
- <u>Thm</u>: With p-players, if ith player knows f(v) when level(v)=i: Any p-round protocol requires Ω(t) communication.



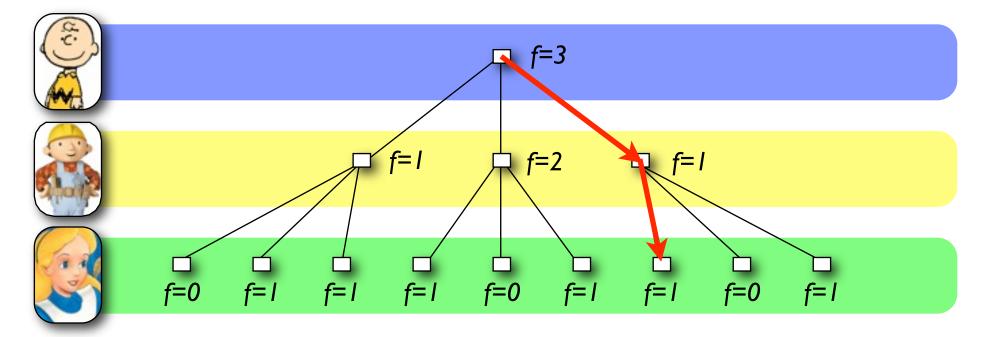
- Instance: Function on nodes of (p+1)-level, t-ary tree, if v is an internal node: f maps v to a child of v if v is a leaf: f maps v to {0,1}
- <u>Goal</u>: Compute $f(f(\dots f(v_{root})\dots))$.



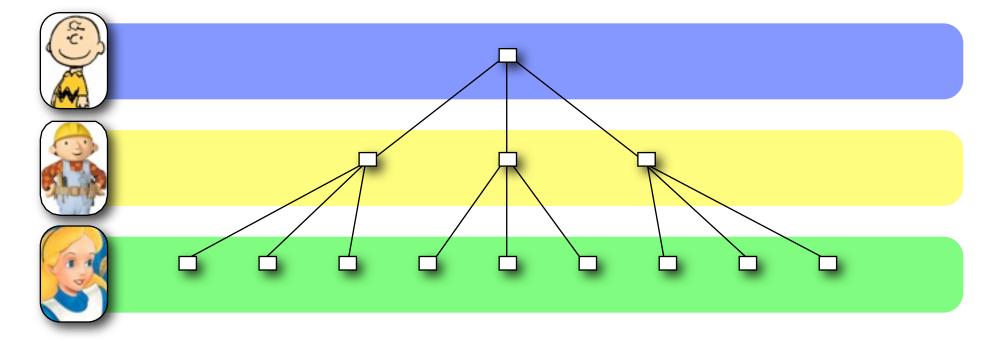
- Instance: Function on nodes of (p+1)-level, t-ary tree, if v is an internal node: f maps v to a child of v if v is a leaf: f maps v to {0,1}
- <u>Goal</u>: Compute $f(f(\dots f(v_{root})\dots))$.

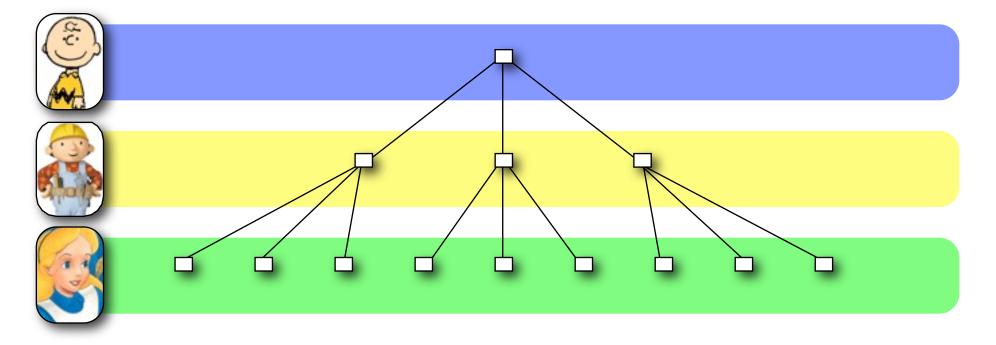


- Instance: Function on nodes of (p+1)-level, t-ary tree, if v is an internal node: f maps v to a child of v if v is a leaf: f maps v to {0,1}
- <u>Goal</u>: Compute $f(f(\dots f(v_{root})\dots))$.

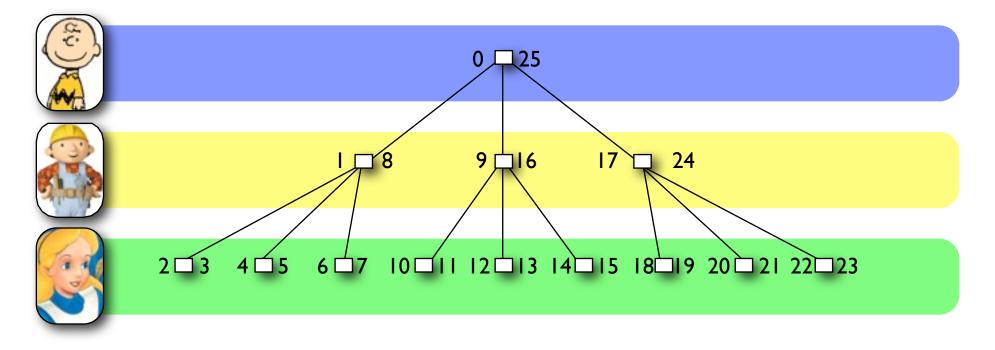


- Instance: Function on nodes of (p+1)-level, t-ary tree, if v is an internal node: f maps v to a child of v if v is a leaf: f maps v to {0,1}
- <u>Goal</u>: Compute $f(f(\dots f(v_{root})\dots))$.
- <u>Thm</u>: With p-players, if ith player knows f(v) when level(v)=i: Any p-round protocol requires Ω(t) communication.

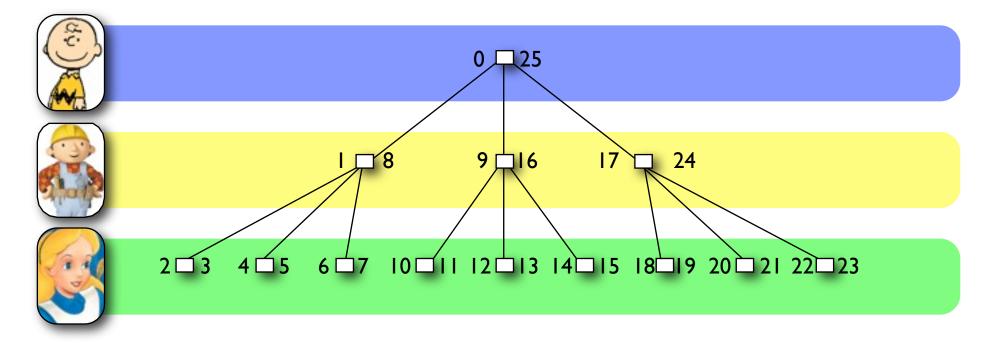




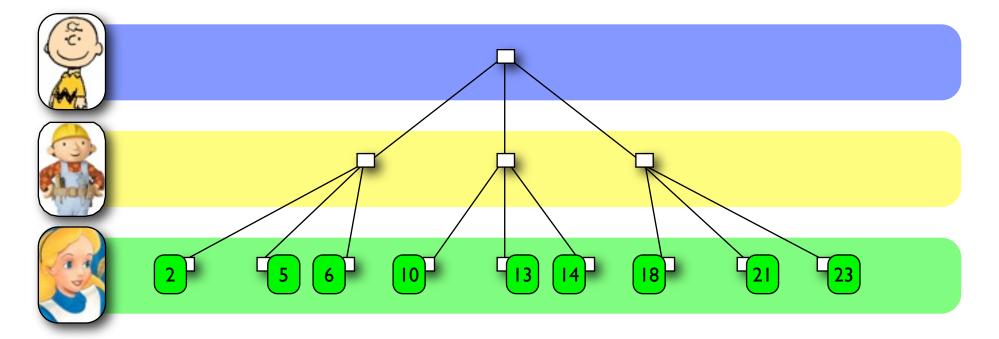
• With each node v associate two values $\alpha(v) < \beta(v)$ such that $\alpha(v) < \alpha(u) < \beta(u) < \beta(v)$ for any descendent u of v.



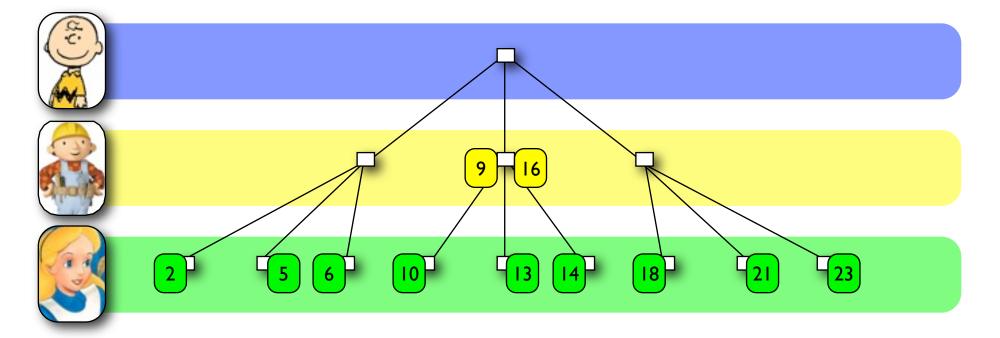
• With each node v associate two values $\alpha(v) < \beta(v)$ such that $\alpha(v) < \alpha(u) < \beta(u) < \beta(v)$ for any descendent u of v.



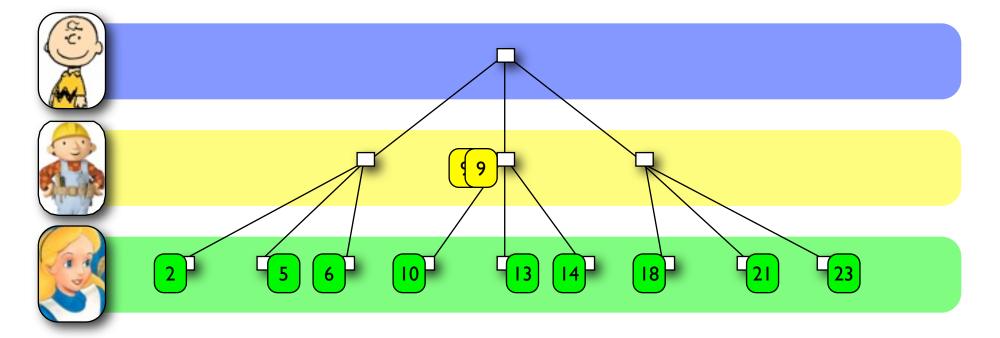
- With each node v associate two values $\alpha(v) < \beta(v)$ such that $\alpha(v) < \alpha(u) < \beta(u) < \beta(v)$ for any descendent u of v.
- For each node: Generate multiple copies of $\alpha(v)$ and $\beta(v)$ such that median of values corresponds to TPJ solution.



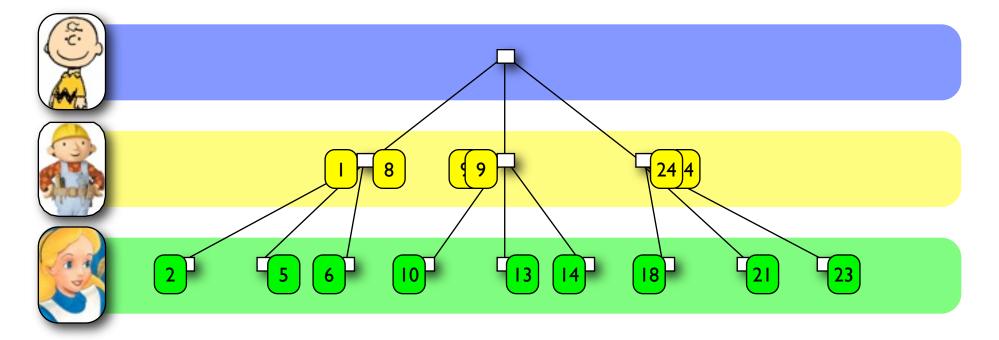
- With each node v associate two values $\alpha(v) < \beta(v)$ such that $\alpha(v) < \alpha(u) < \beta(u) < \beta(v)$ for any descendent u of v.
- For each node: Generate multiple copies of $\alpha(v)$ and $\beta(v)$ such that median of values corresponds to TPJ solution.



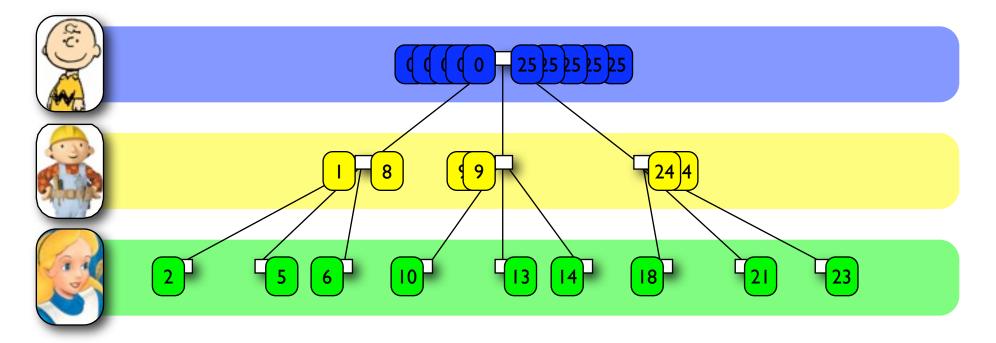
- With each node v associate two values $\alpha(v) < \beta(v)$ such that $\alpha(v) < \alpha(u) < \beta(u) < \beta(v)$ for any descendent u of v.
- For each node: Generate multiple copies of $\alpha(v)$ and $\beta(v)$ such that median of values corresponds to TPJ solution.



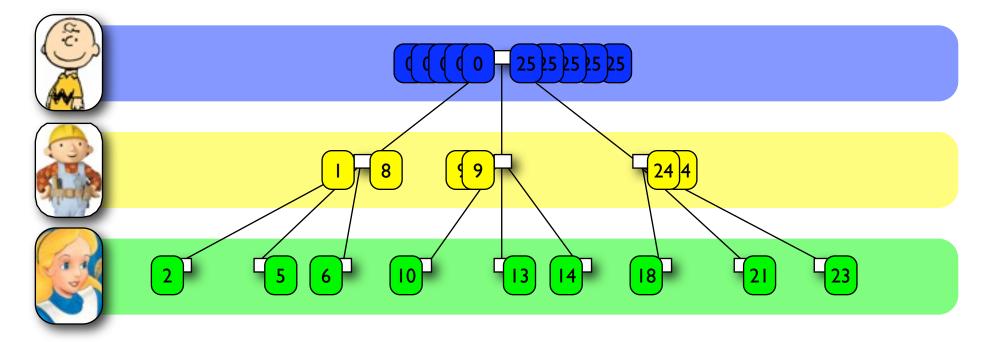
- With each node v associate two values $\alpha(v) < \beta(v)$ such that $\alpha(v) < \alpha(u) < \beta(u) < \beta(v)$ for any descendent u of v.
- For each node: Generate multiple copies of $\alpha(v)$ and $\beta(v)$ such that median of values corresponds to TPJ solution.



- With each node v associate two values $\alpha(v) < \beta(v)$ such that $\alpha(v) < \alpha(u) < \beta(u) < \beta(v)$ for any descendent u of v.
- For each node: Generate multiple copies of $\alpha(v)$ and $\beta(v)$ such that median of values corresponds to TPJ solution.

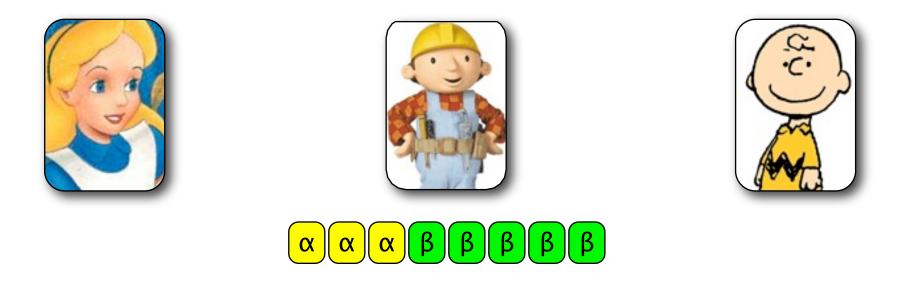


- With each node v associate two values $\alpha(v) < \beta(v)$ such that $\alpha(v) < \alpha(u) < \beta(u) < \beta(v)$ for any descendent u of v.
- For each node: Generate multiple copies of $\alpha(v)$ and $\beta(v)$ such that median of values corresponds to TPJ solution.

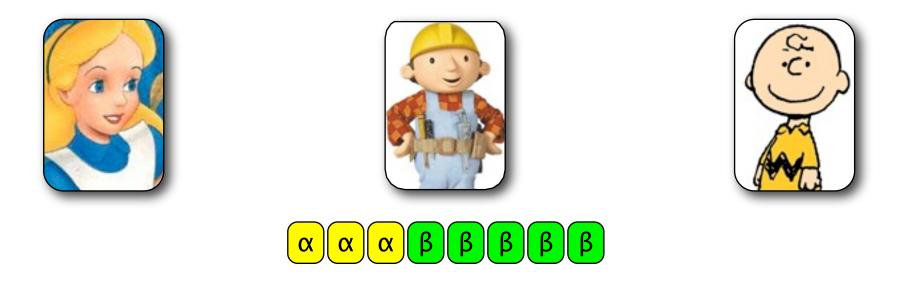


- With each node v associate two values $\alpha(v) < \beta(v)$ such that $\alpha(v) < \alpha(u) < \beta(u) < \beta(v)$ for any descendent u of v.
- For each node: Generate multiple copies of $\alpha(v)$ and $\beta(v)$ such that median of values corresponds to TPJ solution.
- Relationship between t and # copies determines bound.

• Consider node v where f(v) is known to Bob.



• Consider node v where f(v) is known to Bob.

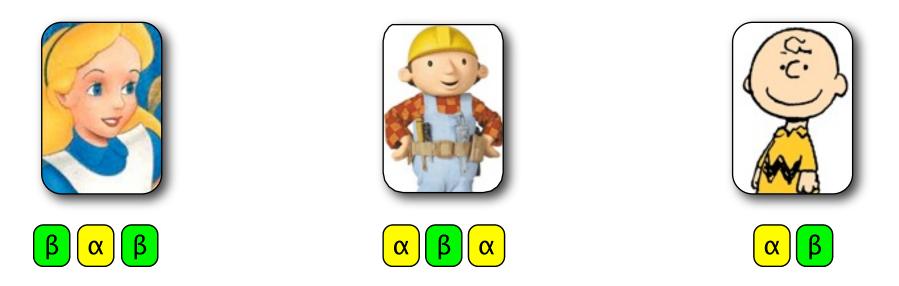


- Consider node v where f(v) is known to Bob.
- <u>Creating Instance of Random-Partition Median Finding</u>:

 Using public coin, players determine partition of tokens and set half to α and half to β.

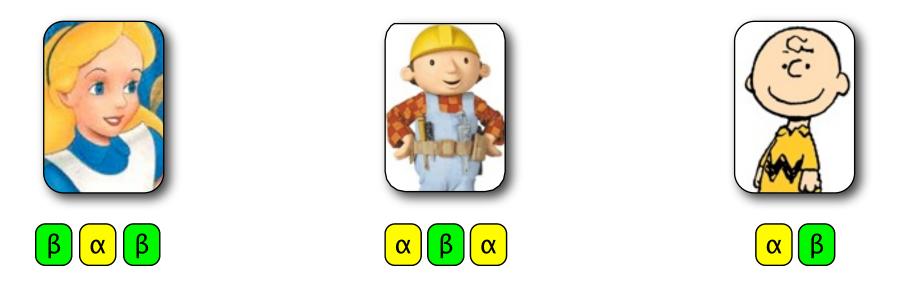
- Consider node v where f(v) is known to Bob.
- <u>Creating Instance of Random-Partition Median Finding</u>:

 Using public coin, players determine partition of tokens and set half to α and half to β.



- Consider node v where f(v) is known to Bob.
- <u>Creating Instance of Random-Partition Median Finding</u>:

 Using public coin, players determine partition of tokens and set half to α and half to β.



- Consider node v where f(v) is known to Bob.
- <u>Creating Instance of Random-Partition Median Finding</u>:

 Using public coin, players determine partition of tokens and set half to α and half to β.

2) Bob "fixes" balance of tokens under his control.

- Consider node v where f(v) is known to Bob.
- <u>Creating Instance of Random-Partition Median Finding</u>:

 Using public coin, players determine partition of tokens and set half to α and half to β.

2) Bob "fixes" balance of tokens under his control.

- Consider node v where f(v) is known to Bob.
- <u>Creating Instance of Random-Partition Median Finding</u>:

 Using public coin, players determine partition of tokens and set half to α and half to β.

2) Bob "fixes" balance of tokens under his control.

• <u>Thm</u>: Partition looks random if total number of tokens is greater than (max bias)². Hence, $m = \exp(2^{p} \lg t)$.

<u>Summary</u>

Introduced notion of Robust Lower Bounds

Tight communication bounds for disjointness, indexing, gap-hamming, and improved selection bound.

Data streams bounds including frequency moments, connectivity, entropy, F₀, quantile estimation, ...

Many open problems... Thanks!

