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• Consider random partitions:

• Define error probability over coin flips and random split. 

x1 ... x10 x11 ... x20 x21 ... x30 

Communication Complexity



• Goal: Evaluate f(x1, ... , xn) given sequential access:

x1 x2 x3 x4 x5 ...      ... xn

[Morris ’78] [Munro, Paterson ’78] [Flajolet, Martin ’85]
[Alon, Matias, Szegedy ’96] [Henzinger, Raghavan, Rajagopalan ’98]

Stream Computation



• Goal: Evaluate f(x1, ... , xn) given sequential access:

x1 x2 x3 x4 x5 ...      ... xn

[Morris ’78] [Munro, Paterson ’78] [Flajolet, Martin ’85]
[Alon, Matias, Szegedy ’96] [Henzinger, Raghavan, Rajagopalan ’98]

Stream Computation



• Goal: Evaluate f(x1, ... , xn) given sequential access:

• How much working memory is required to evaluate f?

• Consider randomized, approximate, multi-pass, etc.

x1 x2 x3 x4 x5 ...      ... xn

[Morris ’78] [Munro, Paterson ’78] [Flajolet, Martin ’85]
[Alon, Matias, Szegedy ’96] [Henzinger, Raghavan, Rajagopalan ’98]

Stream Computation



• Goal: Evaluate f(x1, ... , xn) given sequential access:

• How much working memory is required to evaluate f?

• Consider randomized, approximate, multi-pass, etc.

• Random-order streams: Assume f is order-invariant:

• Upper Bounds: e.g., stream of i.i.d. samples.

• Lower Bounds: is a “hard” problem hard in practice?

• [Munro, Paterson ’78] [Demaine, López-Ortiz, Munro ’02]                           
[Guha, McGregor ’06, ’07a, ’07b] [Chakrabarti, Jayram, Patrascu ’08] 

x1 x2 x3 x4 x5 ...      ... xn

[Morris ’78] [Munro, Paterson ’78] [Flajolet, Martin ’85]
[Alon, Matias, Szegedy ’96] [Henzinger, Raghavan, Rajagopalan ’98]

Stream Computation



• Goal: Evaluate f(x1, ... , xn) given sequential access:

• How much working memory is required to evaluate f?

• Consider randomized, approximate, multi-pass, etc.

• Random-order streams: Assume f is order-invariant:

• Upper Bounds: e.g., stream of i.i.d. samples.

• Lower Bounds: is a “hard” problem hard in practice?

• [Munro, Paterson ’78] [Demaine, López-Ortiz, Munro ’02]                           
[Guha, McGregor ’06, ’07a, ’07b] [Chakrabarti, Jayram, Patrascu ’08] 

• Random-partition-CC bounds give random-order bounds
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Results

• t-party Set-Disjointess: Any protocol for !(t2)-player random-
partition requires !(n/t) bits communication.

∴ 2-approx. for kth freq. moments requires !(n1-3/k) space.

• Median: Any p-round protocol for p-player random-
partition requires !(mf(p)) where f(p)=1/3p

∴ Polylog(m)-space algorithm requires !(log log m) passes.

• Gap-Hamming: Any one-way protocol for 2-player random-
partition requires !(n) bits communicated.

∴ (1+")-approx. for F0 or entropy requires !("-2) space. 

• Index: Any one-way protocol for 2-player random-partition 
(with duplicates) requires !(n) bits communicated.

∴ Connectivity of a graph G=(V, E) requires !(|V|) space. 
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• Naive reduction from fixed-partition-CC:

1. Players determine random partition, send necessary data.

2. Simulate protocol on random partition.

• Problem: Seems to require too much communication.

• Consider random input and public coins:

• Issue #1: Need independence of input and partition.

• Issue #2: Generalize information statistics techniques. 
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Multi-Party Set-Disjointness

• Instance: t x n matrix,
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• Thm: !(n/t) bound for random partition for !(t2) players. 

X =





0 0 0 0 1 1 0 1
0 1 0 0 0 1 0 0
0 0 1 0 0 1 0 0
1 0 0 0 0 1 0 0
0 0 0 1 0 1 0 0
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• #(X) is transcript of $-error protocol # on random input X~µ. 

• Information Cost: icost(#)= I(X: #(X))

• Lower bound on the length of the protocol

• Amenable to direct-sum results... 

• Necessary Generalization:

• Step 1: Condition “icost” on public coins.

• Step 2: Error of #’ is best $+Birthday(t,p) error protocol. 
Step 3: Generalize result for public-coin protocols.
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• Define:

• Reduction from set-disjointness: ! [Alon, Matias, Szegedy ’99]

• Thm: !(n1-3/k) space bound for random order streams.

• Proof: Set tk=2n to prove !(n1-1/k) total communication

• Per-message communication is !(n1-1/k/p)= !(n1-3/k)

• Open Problem: !(n1-2/k) bound for random order?
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• Find median of stream of m values in polylog(m) space.

• Thm: For adversarial-order stream, %(lg m / lg lg m) pass

• [Munro, Paterson ’78] [Guha, McGregor ’07a]

• Thm: For random-order stream, %(lg lg m) pass

• [Guha, McGregor ’06] [Chakrabarti, Jayram, Patrascu ’08] 

• Our result: Using random-partition-CC techniques we get 
simpler and tighter pass/space trade-offs...
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• With each node v associate two values &(v) < '(v) such 
that &(v) < &(u) < '(u) < '(v) for any descendent u of v.

• For each node: Generate multiple copies of &(v) and '(v) 
such that median of values corresponds to TPJ solution.

• Relationship between t and # copies determines bound.

Reduction from TPJ to Median...
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• Consider node v where f(v) is known to Bob.

• Creating Instance of Random-Partition Median Finding: !

• 1) Using public coin, players determine partition of tokens 
and set half to & and half to '.

• 2) Bob “fixes” balance of tokens under his control.

• Thm: Partition looks random if total number of tokens is 
greater than (max bias)2. Hence,                          .

Simulating Random-Partition Protocol... 
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m = exp(2p lg t)



Summary

Introduced notion of Robust Lower Bounds

Tight communication bounds for disjointness, indexing, 
gap-hamming, and improved selection bound.

Data streams bounds including frequency moments, 
connectivity, entropy, F0, quantile estimation, ...

Many open problems... Thanks!


