
 ! Amit Chakrabarti! Dartmouth College

 ! Graham Cormode! AT&T Labs
 ! Andrew McGregor! UC San Diego

“Robust” Lower Bounds
for Communication and Stream Computation

Communication Complexity

• Goal: Evaluate f(x1, ... , xn) when input is split among p players:

• How much communication is required to evaluate f?

• Consider randomized, blackboard, one-way, multi-round, ...

x1 ... x10 x11 ... x20 x21 ... x30

Communication Complexity

• Goal: Evaluate f(x1, ... , xn) when input is split among p players:

• How much communication is required to evaluate f?

• Consider randomized, blackboard, one-way, multi-round, ...

x1 ... x10 x11 ... x20 x21 ... x30

Communication Complexity

• Goal: Evaluate f(x1, ... , xn) when input is split among p players:

• How much communication is required to evaluate f?

• Consider randomized, blackboard, one-way, multi-round, ...

• How important is the split?

• Is f hard for many splits or only hard for a few bad splits?

• Previous work on worst and best partitions.
• [Aho, Ullman, Yannakakis ’83] [Papadimitriou, Sipser ’84]

x1 ... x10 x11 ... x20 x21 ... x30

Communication Complexity

• Goal: Evaluate f(x1, ... , xn) when input is split among p players:

• How much communication is required to evaluate f?

• Consider randomized, blackboard, one-way, multi-round, ...

• How important is the split?

• Is f hard for many splits or only hard for a few bad splits?

• Previous work on worst and best partitions.
• [Aho, Ullman, Yannakakis ’83] [Papadimitriou, Sipser ’84]

• Consider random partitions:

• Define error probability over coin flips and random split.

x1 ... x10 x11 ... x20 x21 ... x30

Communication Complexity

• Goal: Evaluate f(x1, ... , xn) given sequential access:

x1 x2 x3 x4 x5 xn

[Morris ’78] [Munro, Paterson ’78] [Flajolet, Martin ’85]
[Alon, Matias, Szegedy ’96] [Henzinger, Raghavan, Rajagopalan ’98]

Stream Computation

• Goal: Evaluate f(x1, ... , xn) given sequential access:

x1 x2 x3 x4 x5 xn

[Morris ’78] [Munro, Paterson ’78] [Flajolet, Martin ’85]
[Alon, Matias, Szegedy ’96] [Henzinger, Raghavan, Rajagopalan ’98]

Stream Computation

• Goal: Evaluate f(x1, ... , xn) given sequential access:

• How much working memory is required to evaluate f?

• Consider randomized, approximate, multi-pass, etc.

x1 x2 x3 x4 x5 xn

[Morris ’78] [Munro, Paterson ’78] [Flajolet, Martin ’85]
[Alon, Matias, Szegedy ’96] [Henzinger, Raghavan, Rajagopalan ’98]

Stream Computation

• Goal: Evaluate f(x1, ... , xn) given sequential access:

• How much working memory is required to evaluate f?

• Consider randomized, approximate, multi-pass, etc.

• Random-order streams: Assume f is order-invariant:

• Upper Bounds: e.g., stream of i.i.d. samples.

• Lower Bounds: is a “hard” problem hard in practice?

• [Munro, Paterson ’78] [Demaine, López-Ortiz, Munro ’02]
[Guha, McGregor ’06, ’07a, ’07b] [Chakrabarti, Jayram, Patrascu ’08]

x1 x2 x3 x4 x5 xn

[Morris ’78] [Munro, Paterson ’78] [Flajolet, Martin ’85]
[Alon, Matias, Szegedy ’96] [Henzinger, Raghavan, Rajagopalan ’98]

Stream Computation

• Goal: Evaluate f(x1, ... , xn) given sequential access:

• How much working memory is required to evaluate f?

• Consider randomized, approximate, multi-pass, etc.

• Random-order streams: Assume f is order-invariant:

• Upper Bounds: e.g., stream of i.i.d. samples.

• Lower Bounds: is a “hard” problem hard in practice?

• [Munro, Paterson ’78] [Demaine, López-Ortiz, Munro ’02]
[Guha, McGregor ’06, ’07a, ’07b] [Chakrabarti, Jayram, Patrascu ’08]

• Random-partition-CC bounds give random-order bounds

x1 x2 x3 x4 x5 xn

[Morris ’78] [Munro, Paterson ’78] [Flajolet, Martin ’85]
[Alon, Matias, Szegedy ’96] [Henzinger, Raghavan, Rajagopalan ’98]

Stream Computation

Results

• t-party Set-Disjointess: Any protocol for !(t2)-player random-
partition requires !(n/t) bits communication.

∴ 2-approx. for kth freq. moments requires !(n1-3/k) space.

• Median: Any p-round protocol for p-player random-
partition requires !(mf(p)) where f(p)=1/3p

∴ Polylog(m)-space algorithm requires !(log log m) passes.

• Gap-Hamming: Any one-way protocol for 2-player random-
partition requires !(n) bits communicated.

∴ (1+")-approx. for F0 or entropy requires !("-2) space.

• Index: Any one-way protocol for 2-player random-partition
(with duplicates) requires !(n) bits communicated.

∴ Connectivity of a graph G=(V, E) requires !(|V|) space.

5 212 6 23... 8 24241 8 ... 25250 0 0 ...

The Challenge...

• Naive reduction from fixed-partition-CC:

1. Players determine random partition, send necessary data.

2. Simulate protocol on random partition.

5 212 6 23... 8 24241 8 ... 25250 0 0 ...

The Challenge...

• Naive reduction from fixed-partition-CC:

1. Players determine random partition, send necessary data.

2. Simulate protocol on random partition.

5 212 623...8 242418 ... 2525 0 00 ...

The Challenge...

• Naive reduction from fixed-partition-CC:

1. Players determine random partition, send necessary data.

2. Simulate protocol on random partition.

• Problem: Seems to require too much communication.

5 212 623...8 242418 ... 2525 0 00 ...

The Challenge...

• Naive reduction from fixed-partition-CC:

1. Players determine random partition, send necessary data.

2. Simulate protocol on random partition.

• Problem: Seems to require too much communication.

• Consider random input and public coins:

• Issue #1: Need independence of input and partition.

• Issue #2: Generalize information statistics techniques.

5 212 623...8 242418 ... 2525 0 00 ...

The Challenge...

a) Disjointness
b) Selection
a) Disjointness
b) Selection

a) Disjointness
b) Selection

Multi-Party Set-Disjointness

• Instance: t x n matrix,

• and define,

X =

0 0 0 0 1 1 0 1
0 1 0 0 0 1 0 0
0 0 1 0 0 1 0 0
1 0 0 0 0 1 0 0
0 0 0 1 0 1 0 0

DISJn,t =
∨

i ANDt(x1,i , ... , xt,i)

Multi-Party Set-Disjointness

• Instance: t x n matrix,

• and define,

• Unique intersection: Each column has weight 0, 1, or t and at
most one column has weight t.

X =

0 0 0 0 1 1 0 1
0 1 0 0 0 1 0 0
0 0 1 0 0 1 0 0
1 0 0 0 0 1 0 0
0 0 0 1 0 1 0 0

DISJn,t =
∨

i ANDt(x1,i , ... , xt,i)

Multi-Party Set-Disjointness

• Instance: t x n matrix,

• and define,

• Unique intersection: Each column has weight 0, 1, or t and at
most one column has weight t.

• Thm: !(n/t) bound if t-players each get a row.
• [Kalyanasundaram, Schnitger ’92] [Razborov ’92]

• [Chakrabarti, Khot, Sun ’03] [Bar-Yossef, Jayram, Kumar, Sivakumar ’04]

X =

0 0 0 0 1 1 0 1
0 1 0 0 0 1 0 0
0 0 1 0 0 1 0 0
1 0 0 0 0 1 0 0
0 0 0 1 0 1 0 0

DISJn,t =
∨

i ANDt(x1,i , ... , xt,i)

Multi-Party Set-Disjointness

• Instance: t x n matrix,

• and define,

• Unique intersection: Each column has weight 0, 1, or t and at
most one column has weight t.

• Thm: !(n/t) bound if t-players each get a row.
• [Kalyanasundaram, Schnitger ’92] [Razborov ’92]

• [Chakrabarti, Khot, Sun ’03] [Bar-Yossef, Jayram, Kumar, Sivakumar ’04]

• Thm: !(n/t) bound for random partition for !(t2) players.

X =

0 0 0 0 1 1 0 1
0 1 0 0 0 1 0 0
0 0 1 0 0 1 0 0
1 0 0 0 0 1 0 0
0 0 0 1 0 1 0 0

DISJn,t =
∨

i ANDt(x1,i , ... , xt,i)

Generalize Information Statistics Approach...
•[Chakrabarti, Shi, Wirth, Yao ’01] [Chakrabarti, Khot, Sun ’03] [Bar-Yossef, Jayram, Kumar, Sivakumar ’04]

• #(X) is transcript of $-error protocol # on random input X~µ.

Generalize Information Statistics Approach...
•[Chakrabarti, Shi, Wirth, Yao ’01] [Chakrabarti, Khot, Sun ’03] [Bar-Yossef, Jayram, Kumar, Sivakumar ’04]

• #(X) is transcript of $-error protocol # on random input X~µ.

• Information Cost: icost(#)= I(X: #(X))

• Lower bound on the length of the protocol

• Amenable to direct-sum results...

Generalize Information Statistics Approach...
•[Chakrabarti, Shi, Wirth, Yao ’01] [Chakrabarti, Khot, Sun ’03] [Bar-Yossef, Jayram, Kumar, Sivakumar ’04]

• #(X) is transcript of $-error protocol # on random input X~µ.

• Information Cost: icost(#)= I(X: #(X))

• Lower bound on the length of the protocol

• Amenable to direct-sum results...

Step 1:

icost(Π)≥
∑

j I (X
j :Π(X))

where X
j is j th column

of matrix X

Generalize Information Statistics Approach...
•[Chakrabarti, Shi, Wirth, Yao ’01] [Chakrabarti, Khot, Sun ’03] [Bar-Yossef, Jayram, Kumar, Sivakumar ’04]

• #(X) is transcript of $-error protocol # on random input X~µ.

• Information Cost: icost(#)= I(X: #(X))

• Lower bound on the length of the protocol

• Amenable to direct-sum results...

Step 1:

icost(Π)≥
∑

j I (X
j :Π(X))

where X
j is j th column

of matrix X

Step 2:

I (X j :Π(X)) ≥ icost(Π′)

where #’ is “best” $-error
protocol for ANDt

Generalize Information Statistics Approach...
•[Chakrabarti, Shi, Wirth, Yao ’01] [Chakrabarti, Khot, Sun ’03] [Bar-Yossef, Jayram, Kumar, Sivakumar ’04]

• #(X) is transcript of $-error protocol # on random input X~µ.

• Information Cost: icost(#)= I(X: #(X))

• Lower bound on the length of the protocol

• Amenable to direct-sum results...

Step 1:

icost(Π)≥
∑

j I (X
j :Π(X))

where X
j is j th column

of matrix X

Step 2:

I (X j :Π(X)) ≥ icost(Π′)

where #’ is “best” $-error
protocol for ANDt

Step 3:

icost(Π′) ≥ Ω(1/t)

assuming #’ is private-coin,
one-way protocol

Generalize Information Statistics Approach...
•[Chakrabarti, Shi, Wirth, Yao ’01] [Chakrabarti, Khot, Sun ’03] [Bar-Yossef, Jayram, Kumar, Sivakumar ’04]

• #(X) is transcript of $-error protocol # on random input X~µ.

• Information Cost: icost(#)= I(X: #(X))

• Lower bound on the length of the protocol

• Amenable to direct-sum results...

• Necessary Generalization:

• Step 1: Condition “icost” on public coins.

• Step 2: Error of #’ is best $+Birthday(t,p) error protocol.
Step 3: Generalize result for public-coin protocols.

Step 1:

icost(Π)≥
∑

j I (X
j :Π(X))

where X
j is j th column

of matrix X

Step 2:

I (X j :Π(X)) ≥ icost(Π′)

where #’ is “best” $-error
protocol for ANDt

Step 3:

icost(Π′) ≥ Ω(1/t)

assuming #’ is private-coin,
one-way protocol

Generalize Information Statistics Approach...
•[Chakrabarti, Shi, Wirth, Yao ’01] [Chakrabarti, Khot, Sun ’03] [Bar-Yossef, Jayram, Kumar, Sivakumar ’04]

Frequency Moments

• Define: Fk(S) =
∑

i (freq. of i)k

Frequency Moments

• Define:

• Reduction from set-disjointness: ! [Alon, Matias, Szegedy ’99]

S = {i : xij = 1}
Fk(S) ≥ tk if DISJn,t(X) = 1

Fk(S) ≤ n if DISJn,t(X) = 0

Fk(S) =
∑

i (freq. of i)k

Frequency Moments

• Define:

• Reduction from set-disjointness: ! [Alon, Matias, Szegedy ’99]

• Thm: !(n1-3/k) space bound for random order streams.

• Proof: Set tk=2n to prove !(n1-1/k) total communication

• Per-message communication is !(n1-1/k/p)= !(n1-3/k)

S = {i : xij = 1}
Fk(S) ≥ tk if DISJn,t(X) = 1

Fk(S) ≤ n if DISJn,t(X) = 0

Fk(S) =
∑

i (freq. of i)k

Frequency Moments

• Define:

• Reduction from set-disjointness: ! [Alon, Matias, Szegedy ’99]

• Thm: !(n1-3/k) space bound for random order streams.

• Proof: Set tk=2n to prove !(n1-1/k) total communication

• Per-message communication is !(n1-1/k/p)= !(n1-3/k)

• Open Problem: !(n1-2/k) bound for random order?

S = {i : xij = 1}
Fk(S) ≥ tk if DISJn,t(X) = 1

Fk(S) ≤ n if DISJn,t(X) = 0

Fk(S) =
∑

i (freq. of i)k

Frequency Moments

a) Disjointness
b) Selection

Selection in Streams

• Find median of stream of m values in polylog(m) space.

Selection in Streams

• Find median of stream of m values in polylog(m) space.

• Thm: For adversarial-order stream, %(lg m / lg lg m) pass

• [Munro, Paterson ’78] [Guha, McGregor ’07a]

Selection in Streams

• Find median of stream of m values in polylog(m) space.

• Thm: For adversarial-order stream, %(lg m / lg lg m) pass

• [Munro, Paterson ’78] [Guha, McGregor ’07a]

• Thm: For random-order stream, %(lg lg m) pass

• [Guha, McGregor ’06] [Chakrabarti, Jayram, Patrascu ’08]

Selection in Streams

• Find median of stream of m values in polylog(m) space.

• Thm: For adversarial-order stream, %(lg m / lg lg m) pass

• [Munro, Paterson ’78] [Guha, McGregor ’07a]

• Thm: For random-order stream, %(lg lg m) pass

• [Guha, McGregor ’06] [Chakrabarti, Jayram, Patrascu ’08]

• Our result: Using random-partition-CC techniques we get
simpler and tighter pass/space trade-offs...

Selection in Streams

• Instance: Function on nodes of (p+1)-level, t-ary tree,

if v is an internal node: f maps v to a child of v !

if v is a leaf: f maps v to {0,1}

• Goal: Compute f(f(... f(vroot)....)).

• Thm: With p-players, if ith player knows f(v) when level(v)=i:

Any p-round protocol requires !(t) communication.

!

Tree Pointer Jumping (TPJ)...

• Instance: Function on nodes of (p+1)-level, t-ary tree,

if v is an internal node: f maps v to a child of v !

if v is a leaf: f maps v to {0,1}

• Goal: Compute f(f(... f(vroot)....)).

• Thm: With p-players, if ith player knows f(v) when level(v)=i:

Any p-round protocol requires !(t) communication.

f=0 f=1 f=1 f=1 f=0 f=1 f=1 f=0 f=1

f=1 f=2 f=1

f=3

!

Tree Pointer Jumping (TPJ)...

• Instance: Function on nodes of (p+1)-level, t-ary tree,

if v is an internal node: f maps v to a child of v !

if v is a leaf: f maps v to {0,1}

• Goal: Compute f(f(... f(vroot)....)).

f=0 f=1 f=1 f=1 f=0 f=1 f=1 f=0 f=1

f=1 f=2 f=1

f=3

!

Tree Pointer Jumping (TPJ)...

• Instance: Function on nodes of (p+1)-level, t-ary tree,

if v is an internal node: f maps v to a child of v !

if v is a leaf: f maps v to {0,1}

• Goal: Compute f(f(... f(vroot)....)).

f=0 f=1 f=1 f=1 f=0 f=1 f=1 f=0 f=1

f=1 f=2 f=1

f=3

!

Tree Pointer Jumping (TPJ)...

• Instance: Function on nodes of (p+1)-level, t-ary tree,

if v is an internal node: f maps v to a child of v !

if v is a leaf: f maps v to {0,1}

• Goal: Compute f(f(... f(vroot)....)).

f=0 f=1 f=1 f=1 f=0 f=1 f=1 f=0 f=1

f=1 f=2 f=1

f=3

!

Tree Pointer Jumping (TPJ)...

• Instance: Function on nodes of (p+1)-level, t-ary tree,

if v is an internal node: f maps v to a child of v !

if v is a leaf: f maps v to {0,1}

• Goal: Compute f(f(... f(vroot)....)).

• Thm: With p-players, if ith player knows f(v) when level(v)=i:

Any p-round protocol requires !(t) communication.

f=0 f=1 f=1 f=1 f=0 f=1 f=1 f=0 f=1

f=1 f=2 f=1

f=3

!

Tree Pointer Jumping (TPJ)...

Reduction from TPJ to Median...

• With each node v associate two values &(v) < '(v) such
that &(v) < &(u) < '(u) < '(v) for any descendent u of v.

Reduction from TPJ to Median...

• With each node v associate two values &(v) < '(v) such
that &(v) < &(u) < '(u) < '(v) for any descendent u of v.

2 5 7 11 13 15 19 21 223 4 6 10 12 14 18 20 23

0 25

Reduction from TPJ to Median...

1 8 9 16 17 24

• With each node v associate two values &(v) < '(v) such
that &(v) < &(u) < '(u) < '(v) for any descendent u of v.

• For each node: Generate multiple copies of &(v) and '(v)
such that median of values corresponds to TPJ solution.

2 5 7 11 13 15 19 21 223 4 6 10 12 14 18 20 23

0 25

Reduction from TPJ to Median...

1 8 9 16 17 24

• With each node v associate two values &(v) < '(v) such
that &(v) < &(u) < '(u) < '(v) for any descendent u of v.

• For each node: Generate multiple copies of &(v) and '(v)
such that median of values corresponds to TPJ solution.

Reduction from TPJ to Median...

5 10 13 212 6 1814 23

• With each node v associate two values &(v) < '(v) such
that &(v) < &(u) < '(u) < '(v) for any descendent u of v.

• For each node: Generate multiple copies of &(v) and '(v)
such that median of values corresponds to TPJ solution.

Reduction from TPJ to Median...

5 10 13 212 6 1814 23

9 16

• With each node v associate two values &(v) < '(v) such
that &(v) < &(u) < '(u) < '(v) for any descendent u of v.

• For each node: Generate multiple copies of &(v) and '(v)
such that median of values corresponds to TPJ solution.

Reduction from TPJ to Median...

5 10 13 212 6 1814 23

9 9

• With each node v associate two values &(v) < '(v) such
that &(v) < &(u) < '(u) < '(v) for any descendent u of v.

• For each node: Generate multiple copies of &(v) and '(v)
such that median of values corresponds to TPJ solution.

Reduction from TPJ to Median...

5 10 13 212 6 1814 23

24241 8 9 9

• With each node v associate two values &(v) < '(v) such
that &(v) < &(u) < '(u) < '(v) for any descendent u of v.

• For each node: Generate multiple copies of &(v) and '(v)
such that median of values corresponds to TPJ solution.

Reduction from TPJ to Median...

5 10 13 212 6 1814 23

24241 8 9 9

250 25 252525250 0 0 0 0

• With each node v associate two values &(v) < '(v) such
that &(v) < &(u) < '(u) < '(v) for any descendent u of v.

• For each node: Generate multiple copies of &(v) and '(v)
such that median of values corresponds to TPJ solution.

• Relationship between t and # copies determines bound.

Reduction from TPJ to Median...

5 10 13 212 6 1814 23

24241 8 9 9

250 25 252525250 0 0 0 0

Simulating Random-Partition Protocol...

• Consider node v where f(v) is known to Bob.

Simulating Random-Partition Protocol...

• Consider node v where f(v) is known to Bob.

Simulating Random-Partition Protocol...

& & & ' ' ' ' '

• Consider node v where f(v) is known to Bob.

• Creating Instance of Random-Partition Median Finding: !

• 1) Using public coin, players determine partition of tokens
and set half to & and half to '.

Simulating Random-Partition Protocol...

& & & ' ' ' ' '

& & &' ' ' '&

• Consider node v where f(v) is known to Bob.

• Creating Instance of Random-Partition Median Finding: !

• 1) Using public coin, players determine partition of tokens
and set half to & and half to '.

Simulating Random-Partition Protocol...

& & &' ' ' '&

• Consider node v where f(v) is known to Bob.

• Creating Instance of Random-Partition Median Finding: !

• 1) Using public coin, players determine partition of tokens
and set half to & and half to '.

Simulating Random-Partition Protocol...

& & &' ' ' '&

& & &' ' ' '&

• Consider node v where f(v) is known to Bob.

• Creating Instance of Random-Partition Median Finding: !

• 1) Using public coin, players determine partition of tokens
and set half to & and half to '.

• 2) Bob “fixes” balance of tokens under his control.

Simulating Random-Partition Protocol...

& & &' ' ' '&

& & &' ' ' '&

• Consider node v where f(v) is known to Bob.

• Creating Instance of Random-Partition Median Finding: !

• 1) Using public coin, players determine partition of tokens
and set half to & and half to '.

• 2) Bob “fixes” balance of tokens under his control.

Simulating Random-Partition Protocol...

& & &' ' ' '& '

& & &' ' ' '&

• Consider node v where f(v) is known to Bob.

• Creating Instance of Random-Partition Median Finding: !

• 1) Using public coin, players determine partition of tokens
and set half to & and half to '.

• 2) Bob “fixes” balance of tokens under his control.

• Thm: Partition looks random if total number of tokens is
greater than (max bias)2. Hence, .

Simulating Random-Partition Protocol...

& & &' ' ' '& '

m = exp(2p lg t)

Summary

Introduced notion of Robust Lower Bounds

Tight communication bounds for disjointness, indexing,
gap-hamming, and improved selection bound.

Data streams bounds including frequency moments,
connectivity, entropy, F0, quantile estimation, ...

Many open problems... Thanks!

