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Models:

» Graph Streams: Stream of edges E = {e1, e2,...,€em}
describe a graph G on n nodes. Estimate properties of G.

» Geometric Streams: Stream of points X = {p1,p2,..., Pm}
from some metric space (X, d). Estimate properties of X.

Notes:
» O is our friend: we'll hide dependence on polylog(m, n) terms.

» Assume that p; can be stored in (~)(1) space and d(pj, pj) can
be calculated if both p; and p; are stored in memory.

» Theory isn't as cohesive but we get to cherry-pick results. . .
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Q(n?) space required to determine if T3 # 0 when § = 1/3.

» Reduce from set-disjointness: Alice has n x n binary matrix A,
Bob has n x n binary matrix B. Is A;j = Bjj = 1 for some
(i,j)? Needs Q(n?) bits of communication [Razborov 1992].

» Consider graph G = (V, E) with
V=Avi,...,vpu1,...,up,w1,...,wptand E = {(v;,u;) : i € [n]}

> Alice runs algorithm on G and edges {(u;, wj) : Aj = 1}.
> Bob continues running algorithm on edges {(v;, w;) : Bjj = 1}.
» T3> 0iff Aj = Bjj =1 for some (/).
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Theorem (Sivakumar et al. 2002)
O(e=2(nm/ T3)? log 6~ 1) space is sufficient.
» Given stream of edges induce stream of node-triples:

edge (u, v) gives rise to {u,v,w} for w € V \ {u, v}

» Consider Fx = Y (freq. of {u,v,w}) and note

Fo 111 T
FR]=1123 Ty
F> 1 4 9 T3

where T; is the set of node-triples having exactly / edges in
the induced subgraph.

» T3 = Fo—3F1/2+ F,/2 so good approx. for Fy, Fy, F> suffice.



Second Algorithm

Theorem (Buriol et al. 2006)
O(e72(nm/ T3) log 6~1) space is sufficient.



Second Algorithm

Theorem (Buriol et al. 2006)
O(e72(nm/ T3) log 6~1) space is sufficient.

» Pick an edge e; = (u, v) uniformly at random from the stream.



Second Algorithm

Theorem (Buriol et al. 2006)
O(e=2(nm/ T3) log 6 1) space is sufficient.

» Pick an edge e; = (u, v) uniformly at random from the stream.

» Pick w uniformly at random from V '\ {u, v}



Second Algorithm

Theorem (Buriol et al. 2006)
O(e=2(nm/ T3) log 6 1) space is sufficient.

» Pick an edge e; = (u, v) uniformly at random from the stream.
» Pick w uniformly at random from V '\ {u, v}

> If e = (u,w), ex = (v, w) for j, k > i exist return 1; else 0.



Second Algorithm

Theorem (Buriol et al. 2006)
O(e=2(nm/ T3) log 6 1) space is sufficient.

» Pick an edge e; = (u, v) uniformly at random from the stream.
» Pick w uniformly at random from V '\ {u, v}

> If e = (u,w), ex = (v, w) for j, k > i exist return 1; else 0.

Lemma
Expected outcome of algorithm is %



Second Algorithm

Theorem (Buriol et al. 2006)
O(e=2(nm/ T3) log 6 1) space is sufficient.

» Pick an edge e; = (u, v) uniformly at random from the stream.
» Pick w uniformly at random from V \ {u, v}

> If e = (u,w), ex = (v, w) for j, k > i exist return 1; else 0.

Lemma
Expected outcome of algorithm is %

> Repeat O(¢~2(mn/t)log 1) times in parallel and scale
average up by 3m(n — 2).
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Maximum Weight Matching

Problem
Stream of weighted edges (e, we): Find M C E that maximizes
Y ecm We Such that no two edges in M share an endpoint.

Warm-Up

An easy 2 approx. for unweighted case in f)(n) space?
Theorem
3+2v2=5.83... approx. in O(n) space.

Improved to 5.59. .. [Mariano 07] and 5.24...[Sarma et al. 09].

Open Problem
Prove a lower bound or a much better algorithm!
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An Algorithm

» At all times maintain a matching M, initially M = ().
» On seeing e = (u, v), suppose e = (u,u1),€" = (v,up) € M
> If we > (1+79)(Wer + wer), M— MU {e}\ {€,€"}

For the analysis we use the following definitions to describe the
execution of the algorithm:

» An edge e kills an edge €’ if ¢’ was removed when e arrives.
» We say an edge is a survivor if it's in the final matching.

» For survivor e, the trail of the dead is T(e) = GU G U ...,
where Gy = {e} and

Ci = Uerec,_,{edges killed by €'}
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Analysis

Lemma
Let S be set of survivors and w(S) be weight of final matching.

L w(T(5)) < w(S)/~
2. oPT < (14 7) (w(T(S)) +2w(S))
Approximation factor is 1/~v + 3 + 2y and v = 1/+/2 gives result.

Proof.
1. Consider e € S:
(14+NW(T(e)) =Y _(1+n)w(C) <Y w(GC) = w(T(e))+w(e)
i>1 i>0

2. Can charge the weights of edges in OPT to the SU T(S) such
that each edge e € T(S) is charged at most (1 + )w(e) and
each edge e € S is charged at most 2(1 + v)w(e).

O
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k-center

Problem
Given a stream of distinct points X = {p1,...,pn} from a metric
space (X, d), find the set of k points Y C X that minimizes:

ind iy
max min d(pi, y)

Warm-Up
» Find 2-approx. if you're given OPT.

> Find (2 + €)-approx. if you're given that a < opT < b

Theorem (Khuller and McCutchen 2009, Guha 2009)

(2 + €) approx. for metric k-center in O(ke ' loge™') space.
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k-center: Algorithm and Analysis

v

Consider first k + 1 points: this gives a lower bound a on OPT.

» Instantiate basic algorithm with guesses
l1=a, b= (1+¢€)a, 3= (1+¢€)a,... l1,:=O0(e)a
» Say instantiation goes bad if it tries to open (k + 1)-th center

v

Suppose instantiation with guess ¢ goes bad when processing
(j + 1)-th point

» Let g1,..., gk be centers chosen so far.

» Then py,...,p; are all at most 2¢ from a g;.

» Optimum for {q1, ..., gk, Pj+1,--.,Pn} is at most OPT + 2¢.

v

Hence, for an instantiation with guess 2¢/€ only incurs a small
if we use {q1,...,qk, Pj+1,-..,pn} rather than {p1,...,pn}.
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Distance Estimation

Problem
Stream of unweighted edges E defines a shortest path graph
metric dg : V x V. — N. For u,v € V, estimate dg(u, v).

Definition
An a-spanner of a graph G = (V, E) is a subgraph H = (V, E’)
such that for all u, v,

dG(”v V) < CI’H(U, V) < Osz(U, V)

Warm-Up
2t — 1 spanner using O(n'*1/t) space.

Theorem (Elkin 2007)

2t — 1 stretch spanner using O(n*+1/t) space with constant
update time.
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Towards better results if you're allowed mulitple passes. . .

Problem
Can we get better approximation for dg(u, v) with multiple passes?

Warm-Up
Find d¢(u, v) exactly in O(n'*7) space and O(n'~7) passes.

Theorem 3
O(k) approx in O(n) space with O(n'/¥) passes.

Theorem (via Thorup, Zwick 2006)

(1+ €) approx in O(n) space with nOUoge )/ loglogn passes
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Ramsey Partition Approach

Definition (Mendel, Naor 2006)

Ramsey Partition Pp is a random partion of metric space. Each
cluster has diameter at most A and for t < A/8,

’BX(X, A/8)’ 16t/A - 1 16t/A

[Bx(x,4) n

Pr(Bx(x,t) € Pa) > ( n

Can construct in stream model in O(n) space and O(A) passes.

Algorithm

1. Sample “beacons” by, ..., b1k including s and t from V

2. Repeat O(n'/*log n) times:
2.1 Create RP with diameter A ~ kn/* and consider t ~ n'/¥.
2.2 For each beacon, add A-weighted edge to center of its cluster.



Summary: We looked at some nice problems, our curiousity is
piqued, and now we want to start finding more problems to solve.

Thanks!
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