Graph & Geometry Problems in Data Streams 2009 Barbados Workshop on Computational Complexity

Andrew McGregor

Introduction

Models:

- ► Graph Streams: Stream of edges E = {e₁, e₂,..., e_m} describe a graph G on n nodes. Estimate properties of G.
- ► Geometric Streams: Stream of points X = {p₁, p₂,..., p_m} from some metric space (X, d). Estimate properties of X.

Introduction

Models:

- ► Graph Streams: Stream of edges E = {e₁, e₂,..., e_m} describe a graph G on n nodes. Estimate properties of G.
- ► Geometric Streams: Stream of points X = {p₁, p₂,..., p_m} from some metric space (X, d). Estimate properties of X.

Notes:

- \tilde{O} is our friend: we'll hide dependence on polylog(m, n) terms.
- ► Assume that p_i can be stored in Õ(1) space and d(p_i, p_j) can be calculated if both p_i and p_j are stored in memory.
- Theory isn't as cohesive but we get to cherry-pick results...

Counting Triangles

Matching

Clustering

Graph Distances

Counting Triangles

Matching

Clustering

Graph Distances

Problem

Given a stream of edges, estimate the number of triangles T_3 up to a factor $(1 + \epsilon)$ with probability $1 - \delta$ given promise that $T_3 > t$.

Problem

Given a stream of edges, estimate the number of triangles T_3 up to a factor $(1 + \epsilon)$ with probability $1 - \delta$ given promise that $T_3 > t$.

Warm-Up

What's an algorithm using $O(\epsilon^{-2}(n^3/t)\log \delta^{-1})$ space?

Problem

Given a stream of edges, estimate the number of triangles T_3 up to a factor $(1 + \epsilon)$ with probability $1 - \delta$ given promise that $T_3 > t$.

Warm-Up

What's an algorithm using $O(\epsilon^{-2}(n^3/t)\log \delta^{-1})$ space?

Theorem

 $\Omega(n^2)$ space required to determine if t = 0 (with $\delta = 1/3$).

Problem

Given a stream of edges, estimate the number of triangles T_3 up to a factor $(1 + \epsilon)$ with probability $1 - \delta$ given promise that $T_3 > t$.

Warm-Up

What's an algorithm using $O(\epsilon^{-2}(n^3/t)\log \delta^{-1})$ space?

Theorem

 $\Omega(n^2)$ space required to determine if t = 0 (with $\delta = 1/3$).

Theorem (Sivakumar et al. 2002) $\tilde{O}(\epsilon^{-2}(nm/t)^2 \log \delta^{-1})$ space is sufficient.

Problem

Given a stream of edges, estimate the number of triangles T_3 up to a factor $(1 + \epsilon)$ with probability $1 - \delta$ given promise that $T_3 > t$.

Warm-Up

What's an algorithm using $O(\epsilon^{-2}(n^3/t)\log \delta^{-1})$ space?

Theorem

 $\Omega(n^2)$ space required to determine if t = 0 (with $\delta = 1/3$).

Theorem (Sivakumar et al. 2002) $\tilde{O}(\epsilon^{-2}(nm/t)^2 \log \delta^{-1})$ space is sufficient.

Theorem (Buriol et al. 2006) $\tilde{O}(\epsilon^{-2}(nm/t)\log \delta^{-1})$ space is sufficient.

Theorem $\Omega(n^2)$ space required to determine if $T_3 \neq 0$ when $\delta = 1/3$.

Theorem $\Omega(n^2)$ space required to determine if $T_3 \neq 0$ when $\delta = 1/3$.

 Reduce from set-disjointness: Alice has n × n binary matrix A, Bob has n × n binary matrix B. Is A_{ij} = B_{ij} = 1 for some (i, j)? Needs Ω(n²) bits of communication [Razborov 1992].

Theorem

 $\Omega(n^2)$ space required to determine if $T_3 \neq 0$ when $\delta = 1/3$.

- Reduce from set-disjointness: Alice has n × n binary matrix A, Bob has n × n binary matrix B. Is A_{ij} = B_{ij} = 1 for some (i, j)? Needs Ω(n²) bits of communication [Razborov 1992].
- Consider graph G = (V, E) with

$$V = \{v_1, \dots, v_n, u_1, \dots, u_n, w_1, \dots, w_n\}$$
 and $E = \{(v_i, u_i) : i \in [n]\}$

Theorem

 $\Omega(n^2)$ space required to determine if $T_3 \neq 0$ when $\delta = 1/3$.

- Reduce from set-disjointness: Alice has n × n binary matrix A, Bob has n × n binary matrix B. Is A_{ij} = B_{ij} = 1 for some (i, j)? Needs Ω(n²) bits of communication [Razborov 1992].
- Consider graph G = (V, E) with

$$V = \{v_1, \dots, v_n, u_1, \dots, u_n, w_1, \dots, w_n\}$$
 and $E = \{(v_i, u_i) : i \in [n]\}$

Alice runs algorithm on G and edges $\{(u_i, w_j) : A_{ij} = 1\}$.

Theorem

 $\Omega(n^2)$ space required to determine if $T_3 \neq 0$ when $\delta = 1/3$.

- Reduce from set-disjointness: Alice has n × n binary matrix A, Bob has n × n binary matrix B. Is A_{ij} = B_{ij} = 1 for some (i, j)? Needs Ω(n²) bits of communication [Razborov 1992].
- Consider graph G = (V, E) with

$$V = \{v_1, \dots, v_n, u_1, \dots, u_n, w_1, \dots, w_n\}$$
 and $E = \{(v_i, u_i) : i \in [n]\}$

- Alice runs algorithm on G and edges $\{(u_i, w_j) : A_{ij} = 1\}$.
- ▶ Bob continues running algorithm on edges {(v_i, w_j) : B_{ij} = 1}.

Theorem

 $\Omega(n^2)$ space required to determine if $T_3 \neq 0$ when $\delta = 1/3$.

- Reduce from set-disjointness: Alice has n × n binary matrix A, Bob has n × n binary matrix B. Is A_{ij} = B_{ij} = 1 for some (i, j)? Needs Ω(n²) bits of communication [Razborov 1992].
- Consider graph G = (V, E) with

$$V = \{v_1, \dots, v_n, u_1, \dots, u_n, w_1, \dots, w_n\}$$
 and $E = \{(v_i, u_i) : i \in [n]\}$

- Alice runs algorithm on G and edges $\{(u_i, w_j) : A_{ij} = 1\}$.
- ▶ Bob continues running algorithm on edges {(*v_i*, *w_j*) : *B_{ij}* = 1}.
- $T_3 > 0$ iff $A_{ij} = B_{ij} = 1$ for some (i, j).

Theorem (Sivakumar et al. 2002) $\tilde{O}(\epsilon^{-2}(nm/T_3)^2 \log \delta^{-1})$ space is sufficient.

Theorem (Sivakumar et al. 2002) $\tilde{O}(\epsilon^{-2}(nm/T_3)^2 \log \delta^{-1})$ space is sufficient.

Given stream of edges induce stream of node-triples:

edge (u, v) gives rise to $\{u, v, w\}$ for $w \in V \setminus \{u, v\}$

Theorem (Sivakumar et al. 2002) $\tilde{O}(\epsilon^{-2}(nm/T_3)^2 \log \delta^{-1})$ space is sufficient.

Given stream of edges induce stream of node-triples:

edge (u, v) gives rise to $\{u, v, w\}$ for $w \in V \setminus \{u, v\}$

• Consider $F_k = \sum (\text{freq. of } \{u,v,w\})^k$ and note

$$\left(\begin{array}{c}F_0\\F_1\\F_2\end{array}\right) = \left(\begin{array}{ccc}1&1&1\\1&2&3\\1&4&9\end{array}\right) \left(\begin{array}{c}T_1\\T_2\\T_3\end{array}\right)$$

where T_i is the set of node-triples having exactly *i* edges in the induced subgraph.

Theorem (Sivakumar et al. 2002) $\tilde{O}(\epsilon^{-2}(nm/T_3)^2 \log \delta^{-1})$ space is sufficient.

Given stream of edges induce stream of node-triples:

edge (u, v) gives rise to $\{u, v, w\}$ for $w \in V \setminus \{u, v\}$

• Consider $F_k = \sum (\text{freq. of } \{u,v,w\})^k$ and note

$$\left(\begin{array}{c}F_0\\F_1\\F_2\end{array}\right) = \left(\begin{array}{ccc}1&1&1\\1&2&3\\1&4&9\end{array}\right) \left(\begin{array}{c}T_1\\T_2\\T_3\end{array}\right)$$

where T_i is the set of node-triples having exactly *i* edges in the induced subgraph.

•
$$T_3 = F_0 - 3F_1/2 + F_2/2$$
 so good approx. for F_0, F_1, F_2 suffice.

Theorem (Buriol et al. 2006) $\tilde{O}(\epsilon^{-2}(nm/T_3)\log \delta^{-1})$ space is sufficient.

Theorem (Buriol et al. 2006) $\tilde{O}(\epsilon^{-2}(nm/T_3)\log \delta^{-1})$ space is sufficient.

• Pick an edge $e_i = (u, v)$ uniformly at random from the stream.

Theorem (Buriol et al. 2006) $\tilde{O}(\epsilon^{-2}(nm/T_3)\log \delta^{-1})$ space is sufficient.

- Pick an edge $e_i = (u, v)$ uniformly at random from the stream.
- Pick w uniformly at random from $V \setminus \{u, v\}$

Theorem (Buriol et al. 2006)

 $ilde{O}(\epsilon^{-2}(\mathit{nm}/\mathit{T}_3)\log\delta^{-1})$ space is sufficient.

- Pick an edge $e_i = (u, v)$ uniformly at random from the stream.
- Pick *w* uniformly at random from $V \setminus \{u, v\}$

• If
$$e_j = (u, w)$$
, $e_k = (v, w)$ for $j, k > i$ exist return 1; else 0.

Theorem (Buriol et al. 2006) $\tilde{O}(\epsilon^{-2}(nm/T_3)\log \delta^{-1})$ space is sufficient.

- Pick an edge $e_i = (u, v)$ uniformly at random from the stream.
- Pick *w* uniformly at random from $V \setminus \{u, v\}$

• If
$$e_j = (u, w)$$
, $e_k = (v, w)$ for $j, k > i$ exist return 1; else 0.

Lemma

Expected outcome of algorithm is $\frac{T_3}{3m(n-2)}$.

Theorem (Buriol et al. 2006)

 $ilde{O}(\epsilon^{-2}(\textit{nm}/\textit{T}_3)\log\delta^{-1})$ space is sufficient.

- Pick an edge $e_i = (u, v)$ uniformly at random from the stream.
- Pick *w* uniformly at random from $V \setminus \{u, v\}$

• If
$$e_j = (u, w)$$
, $e_k = (v, w)$ for $j, k > i$ exist return 1; else 0.

Lemma

Expected outcome of algorithm is $\frac{T_3}{3m(n-2)}$.

► Repeat O(e⁻²(mn/t) log δ⁻¹) times in parallel and scale average up by 3m(n-2).

Counting Triangles

Matching

Clustering

Graph Distances

Problem

Stream of weighted edges (e, w_e) : Find $M \subset E$ that maximizes $\sum_{e \in M} w_e$ such that no two edges in M share an endpoint.

Problem

Stream of weighted edges (e, w_e) : Find $M \subset E$ that maximizes $\sum_{e \in M} w_e$ such that no two edges in M share an endpoint.

Warm-Up

An easy 2 approx. for unweighted case in $\tilde{O}(n)$ space?

Problem

Stream of weighted edges (e, w_e): Find $M \subset E$ that maximizes $\sum_{e \in M} w_e$ such that no two edges in M share an endpoint.

Warm-Up

An easy 2 approx. for unweighted case in $\tilde{O}(n)$ space?

Theorem

 $3+2\sqrt{2}=5.83\ldots$ approx. in $\tilde{O}(n)$ space.

Problem

Stream of weighted edges (e, w_e) : Find $M \subset E$ that maximizes $\sum_{e \in M} w_e$ such that no two edges in M share an endpoint.

Warm-Up

An easy 2 approx. for unweighted case in $\tilde{O}(n)$ space?

Theorem

 $3 + 2\sqrt{2} = 5.83...$ approx. in $\tilde{O}(n)$ space.

Improved to 5.59... [Mariano 07] and 5.24... [Sarma et al. 09].

Problem

Stream of weighted edges (e, w_e) : Find $M \subset E$ that maximizes $\sum_{e \in M} w_e$ such that no two edges in M share an endpoint.

Warm-Up

An easy 2 approx. for unweighted case in $\tilde{O}(n)$ space?

Theorem

 $3 + 2\sqrt{2} = 5.83...$ approx. in $\tilde{O}(n)$ space.

Improved to 5.59... [Mariano 07] and 5.24... [Sarma et al. 09]. Open Problem

Prove a lower bound or a much better algorithm!

• At all times maintain a matching M, initially $M = \emptyset$.

- At all times maintain a matching M, initially $M = \emptyset$.
- ▶ On seeing e = (u, v), suppose $e' = (u, u_1), e'' = (v, u_2) \in M$

- At all times maintain a matching M, initially $M = \emptyset$.
- ▶ On seeing e = (u, v), suppose $e' = (u, u_1), e'' = (v, u_2) \in M$
- ▶ If $w_e \ge (1 + \gamma)(w_{e'} + w_{e''})$, $M \leftarrow M \cup \{e\} \setminus \{e', e''\}$

- At all times maintain a matching M, initially $M = \emptyset$.
- ▶ On seeing e = (u, v), suppose $e' = (u, u_1), e'' = (v, u_2) \in M$
- ► If $w_e \ge (1 + \gamma)(w_{e'} + w_{e''})$, $M \leftarrow M \cup \{e\} \setminus \{e', e''\}$

For the analysis we use the following definitions to describe the execution of the algorithm:

- At all times maintain a matching M, initially $M = \emptyset$.
- ▶ On seeing e = (u, v), suppose $e' = (u, u_1), e'' = (v, u_2) \in M$
- ► If $w_e \ge (1 + \gamma)(w_{e'} + w_{e''})$, $M \leftarrow M \cup \{e\} \setminus \{e', e''\}$

For the analysis we use the following definitions to describe the execution of the algorithm:

- At all times maintain a matching M, initially $M = \emptyset$.
- ▶ On seeing e = (u, v), suppose $e' = (u, u_1), e'' = (v, u_2) \in M$
- ▶ If $w_e \ge (1 + \gamma)(w_{e'} + w_{e''})$, $M \leftarrow M \cup \{e\} \setminus \{e', e''\}$

For the analysis we use the following definitions to describe the execution of the algorithm:

An edge e kills an edge e' if e' was removed when e arrives.

- At all times maintain a matching M, initially $M = \emptyset$.
- ▶ On seeing e = (u, v), suppose $e' = (u, u_1), e'' = (v, u_2) \in M$
- ▶ If $w_e \ge (1 + \gamma)(w_{e'} + w_{e''})$, $M \leftarrow M \cup \{e\} \setminus \{e', e''\}$

For the analysis we use the following definitions to describe the execution of the algorithm:

- An edge e kills an edge e' if e' was removed when e arrives.
- We say an edge is a survivor if it's in the final matching.

- At all times maintain a matching M, initially $M = \emptyset$.
- ▶ On seeing e = (u, v), suppose $e' = (u, u_1), e'' = (v, u_2) \in M$

• If
$$w_e \geq (1 + \gamma)(w_{e'} + w_{e''})$$
, $M \leftarrow M \cup \{e\} \setminus \{e', e''\}$

For the analysis we use the following definitions to describe the execution of the algorithm:

- An edge e kills an edge e' if e' was removed when e arrives.
- We say an edge is a survivor if it's in the final matching.
- ▶ For survivor *e*, the trail of the dead is $T(e) = C_1 \cup C_2 \cup ...$, where $C_0 = \{e\}$ and

$$C_i = \cup_{e' \in C_{i-1}} \{ \text{edges killed by } e' \}$$

Lemma

Let S be set of survivors and w(S) be weight of final matching.

1.
$$w(T(S)) \leq w(S)/\gamma$$

2. Opt $\leq (1 + \gamma) (w(T(S)) + 2w(S))$

Approximation factor is $1/\gamma + 3 + 2\gamma$ and $\gamma = 1/\sqrt{2}$ gives result.

Lemma

Let S be set of survivors and w(S) be weight of final matching.

- 1. $w(T(S)) \leq w(S)/\gamma$
- 2. Opt $\leq (1 + \gamma) (w(T(S)) + 2w(S))$

Approximation factor is $1/\gamma + 3 + 2\gamma$ and $\gamma = 1/\sqrt{2}$ gives result.

Proof.

Lemma

Let S be set of survivors and w(S) be weight of final matching.

- 1. $w(T(S)) \leq w(S)/\gamma$
- 2. Opt $\leq (1 + \gamma) (w(T(S)) + 2w(S))$

Approximation factor is $1/\gamma + 3 + 2\gamma$ and $\gamma = 1/\sqrt{2}$ gives result.

Proof.

1. Consider $e \in S$:

$$(1+\gamma)w(T(e)) = \sum_{i\geq 1}(1+\gamma)w(C_i) \leq \sum_{i\geq 0}w(C_i) = w(T(e))+w(e)$$

Lemma

Let S be set of survivors and w(S) be weight of final matching.

- 1. $w(T(S)) \leq w(S)/\gamma$
- 2. Opt $\leq (1 + \gamma) (w(T(S)) + 2w(S))$

Approximation factor is $1/\gamma + 3 + 2\gamma$ and $\gamma = 1/\sqrt{2}$ gives result.

Proof.

1. Consider $e \in S$:

$$(1+\gamma)w(T(e)) = \sum_{i\geq 1} (1+\gamma)w(C_i) \leq \sum_{i\geq 0} w(C_i) = w(T(e))+w(e)$$

Can charge the weights of edges in OPT to the S ∪ T(S) such that each edge e ∈ T(S) is charged at most (1 + γ)w(e) and each edge e ∈ S is charged at most 2(1 + γ)w(e).

Counting Triangles

Matching

Clustering

Graph Distances

k-center

Problem

Given a stream of distinct points $X = \{p_1, ..., p_n\}$ from a metric space (\mathcal{X}, d) , find the set of k points $Y \subset X$ that minimizes:

 $\max_{i} \min_{y \in Y} d(p_i, y)$

k-center

Problem

Given a stream of distinct points $X = \{p_1, ..., p_n\}$ from a metric space (\mathcal{X}, d) , find the set of k points $Y \subset X$ that minimizes:

$$\max_{i} \min_{y \in Y} d(p_i, y)$$

Warm-Up

- ► Find 2-approx. if you're given OPT.
- ▶ Find $(2 + \epsilon)$ -approx. if you're given that $a \leq OPT \leq b$

k-center

Problem

Given a stream of distinct points $X = \{p_1, ..., p_n\}$ from a metric space (\mathcal{X}, d) , find the set of k points $Y \subset X$ that minimizes:

$$\max_{i} \min_{y \in Y} d(p_i, y)$$

Warm-Up

- ► Find 2-approx. if you're given OPT.
- ▶ Find $(2 + \epsilon)$ -approx. if you're given that $a \leq OPT \leq b$

Theorem (Khuller and McCutchen 2009, Guha 2009) $(2 + \epsilon)$ approx. for metric k-center in $\tilde{O}(k\epsilon^{-1}\log\epsilon^{-1})$ space.

• Consider first k + 1 points: this gives a lower bound *a* on OPT.

- Consider first k + 1 points: this gives a lower bound *a* on OPT.
- Instantiate basic algorithm with guesses

$$\ell_1 = a, \ \ell_2 = (1 + \epsilon)a, \ \ell_3 = (1 + \epsilon)^2 a, \dots \ \ell_{1+t} = O(\epsilon^{-1})a$$

- Consider first k + 1 points: this gives a lower bound *a* on OPT.
- Instantiate basic algorithm with guesses

$$\ell_1 = a, \ \ell_2 = (1 + \epsilon)a, \ \ell_3 = (1 + \epsilon)^2 a, \dots \ \ell_{1+t} = O(\epsilon^{-1})a$$

Say instantiation goes bad if it tries to open (k + 1)-th center

- Consider first k + 1 points: this gives a lower bound *a* on OPT.
- Instantiate basic algorithm with guesses

$$\ell_1 = a, \ \ell_2 = (1 + \epsilon)a, \ \ell_3 = (1 + \epsilon)^2 a, \dots \ \ell_{1+t} = O(\epsilon^{-1})a$$

- Say instantiation goes bad if it tries to open (k + 1)-th center
- Suppose instantiation with guess ℓ goes bad when processing (j + 1)-th point

- Consider first k + 1 points: this gives a lower bound *a* on OPT.
- Instantiate basic algorithm with guesses

$$\ell_1 = a, \ \ell_2 = (1 + \epsilon)a, \ \ell_3 = (1 + \epsilon)^2 a, \dots \ \ell_{1+t} = O(\epsilon^{-1})a$$

- Say instantiation goes bad if it tries to open (k + 1)-th center
- Suppose instantiation with guess ℓ goes bad when processing (j+1)-th point
 - Let q_1, \ldots, q_k be centers chosen so far.

- Consider first k + 1 points: this gives a lower bound *a* on OPT.
- Instantiate basic algorithm with guesses

$$\ell_1 = a, \ \ell_2 = (1 + \epsilon)a, \ \ell_3 = (1 + \epsilon)^2 a, \dots \ \ell_{1+t} = O(\epsilon^{-1})a$$

- Say instantiation goes bad if it tries to open (k + 1)-th center
- Suppose instantiation with guess ℓ goes bad when processing (j + 1)-th point
 - Let q_1, \ldots, q_k be centers chosen so far.
 - Then p_1, \ldots, p_j are all at most 2ℓ from a q_i .

- Consider first k + 1 points: this gives a lower bound *a* on OPT.
- Instantiate basic algorithm with guesses

$$\ell_1 = a, \ \ell_2 = (1 + \epsilon)a, \ \ell_3 = (1 + \epsilon)^2 a, \dots \ \ell_{1+t} = O(\epsilon^{-1})a$$

- Say instantiation goes bad if it tries to open (k + 1)-th center
- Suppose instantiation with guess ℓ goes bad when processing (j + 1)-th point
 - Let q_1, \ldots, q_k be centers chosen so far.
 - Then p_1, \ldots, p_j are all at most 2ℓ from a q_i .
 - Optimum for $\{q_1, \ldots, q_k, p_{j+1}, \ldots, p_n\}$ is at most $OPT + 2\ell$.

- Consider first k + 1 points: this gives a lower bound *a* on OPT.
- Instantiate basic algorithm with guesses

$$\ell_1 = a, \ \ell_2 = (1 + \epsilon)a, \ \ell_3 = (1 + \epsilon)^2 a, \dots \ \ell_{1+t} = O(\epsilon^{-1})a$$

- Say instantiation goes bad if it tries to open (k + 1)-th center
- Suppose instantiation with guess ℓ goes bad when processing (j + 1)-th point
 - Let q_1, \ldots, q_k be centers chosen so far.
 - Then p_1, \ldots, p_j are all at most 2ℓ from a q_i .
 - Optimum for $\{q_1, \ldots, q_k, p_{j+1}, \ldots, p_n\}$ is at most $OPT + 2\ell$.
- ▶ Hence, for an instantiation with guess 2ℓ/ε only incurs a small if we use {q₁,..., q_k, p_{j+1},..., p_n} rather than {p₁,..., p_n}.

Counting Triangles

Matching

Clustering

Graph Distances

Problem

Stream of unweighted edges E defines a shortest path graph metric $d_G : V \times V \rightarrow \mathbb{N}$. For $u, v \in V$, estimate $d_G(u, v)$.

Problem

Stream of unweighted edges E defines a shortest path graph metric $d_G : V \times V \rightarrow \mathbb{N}$. For $u, v \in V$, estimate $d_G(u, v)$.

Definition

An α -spanner of a graph G = (V, E) is a subgraph H = (V, E') such that for all u, v,

$$d_G(u,v) \leq d_H(u,v) \leq \alpha d_G(u,v)$$

Problem

Stream of unweighted edges E defines a shortest path graph metric $d_G : V \times V \rightarrow \mathbb{N}$. For $u, v \in V$, estimate $d_G(u, v)$.

Definition

An α -spanner of a graph G = (V, E) is a subgraph H = (V, E') such that for all u, v,

$$d_G(u,v) \leq d_H(u,v) \leq \alpha d_G(u,v)$$

Warm-Up 2t - 1 spanner using $\tilde{O}(n^{1+1/t})$ space.

Problem

Stream of unweighted edges E defines a shortest path graph metric $d_G : V \times V \rightarrow \mathbb{N}$. For $u, v \in V$, estimate $d_G(u, v)$.

Definition

An α -spanner of a graph G = (V, E) is a subgraph H = (V, E') such that for all u, v,

$$d_G(u,v) \leq d_H(u,v) \leq \alpha d_G(u,v)$$

Warm-Up

2t-1 spanner using $\tilde{O}(n^{1+1/t})$ space.

Theorem (Elkin 2007)

2t - 1 stretch spanner using $\tilde{O}(n^{1+1/t})$ space with constant update time.

Problem

Can we get better approximation for $d_G(u, v)$ with multiple passes?

Problem

Can we get better approximation for $d_G(u, v)$ with multiple passes?

Warm-Up

Find $d_G(u, v)$ exactly in $\tilde{O}(n^{1+\gamma})$ space and $\tilde{O}(n^{1-\gamma})$ passes.

Problem

Can we get better approximation for $d_G(u, v)$ with multiple passes?

Warm-Up

Find $d_G(u, v)$ exactly in $\tilde{O}(n^{1+\gamma})$ space and $\tilde{O}(n^{1-\gamma})$ passes.

Theorem

O(k) approx in $\tilde{O}(n)$ space with $O(n^{1/k})$ passes.

Problem

Can we get better approximation for $d_G(u, v)$ with multiple passes?

Warm-Up

Find $d_G(u, v)$ exactly in $\tilde{O}(n^{1+\gamma})$ space and $\tilde{O}(n^{1-\gamma})$ passes.

Theorem

O(k) approx in $\tilde{O}(n)$ space with $O(n^{1/k})$ passes.

Theorem (via Thorup, Zwick 2006) $(1 + \epsilon)$ approx in $\tilde{O}(n)$ space with $n^{O(\log \epsilon^{-1})/\log \log n}$ passes.

Ramsey Partition Approach

Definition (Mendel, Naor 2006)

Ramsey Partition \mathcal{P}_{Δ} is a random partion of metric space. Each cluster has diameter at most Δ and for $t \leq \Delta/8$,

$$\Pr(B_X(x,t) \in \mathcal{P}_{\Delta}) \geq \left(\frac{|B_X(x,\Delta/8)|}{|B_X(x,\Delta)|}\right)^{16t/\Delta} \geq \left(\frac{1}{n}\right)^{16t/\Delta}$$

Can construct in stream model in $\tilde{O}(n)$ space and $O(\Delta)$ passes.

Ramsey Partition Approach

Definition (Mendel, Naor 2006)

Ramsey Partition \mathcal{P}_{Δ} is a random partion of metric space. Each cluster has diameter at most Δ and for $t \leq \Delta/8$,

$$\Pr(B_X(x,t) \in \mathcal{P}_{\Delta}) \geq \left(\frac{|B_X(x,\Delta/8)|}{|B_X(x,\Delta)|}\right)^{16t/\Delta} \geq \left(\frac{1}{n}\right)^{16t/\Delta}$$

Can construct in stream model in $\tilde{O}(n)$ space and $O(\Delta)$ passes. Algorithm

1. Sample "beacons" $b_1, \ldots, b_{n^{1-1/k}}$ including s and t from V

Ramsey Partition Approach

Definition (Mendel, Naor 2006)

Ramsey Partition \mathcal{P}_{Δ} is a random partion of metric space. Each cluster has diameter at most Δ and for $t \leq \Delta/8$,

$$\Pr(B_X(x,t) \in \mathcal{P}_{\Delta}) \geq \left(\frac{|B_X(x,\Delta/8)|}{|B_X(x,\Delta)|}\right)^{16t/\Delta} \geq \left(\frac{1}{n}\right)^{16t/\Delta}$$

Can construct in stream model in $\tilde{O}(n)$ space and $O(\Delta)$ passes.

Algorithm

- 1. Sample "beacons" $b_1, \ldots, b_{n^{1-1/k}}$ including s and t from V
- 2. Repeat $O(n^{1/k} \log n)$ times:
 - 2.1 Create RP with diameter $\Delta \approx k n^{1/k}$ and consider $t \approx n^{1/k}$.
 - 2.2 For each beacon, add Δ -weighted edge to center of its cluster.

Summary: We looked at some nice problems, our curiousity is piqued, and now we want to start finding more problems to solve.

Thanks!