Graph \& Geometry Problems in Data Streams 2009 Barbados Workshop on Computational Complexity

Andrew McGregor

Introduction

Models:

- Graph Streams: Stream of edges $E=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ describe a graph G on n nodes. Estimate properties of G.
- Geometric Streams: Stream of points $X=\left\{p_{1}, p_{2}, \ldots, p_{m}\right\}$ from some metric space (\mathcal{X}, d). Estimate properties of X.

Introduction

Models:

- Graph Streams: Stream of edges $E=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ describe a graph G on n nodes. Estimate properties of G.
- Geometric Streams: Stream of points $X=\left\{p_{1}, p_{2}, \ldots, p_{m}\right\}$ from some metric space (\mathcal{X}, d). Estimate properties of X.

Notes:

- \tilde{O} is our friend: we'll hide dependence on polylog (m, n) terms.
- Assume that p_{i} can be stored in $\tilde{O}(1)$ space and $d\left(p_{i}, p_{j}\right)$ can be calculated if both p_{i} and p_{j} are stored in memory.
- Theory isn't as cohesive but we get to cherry-pick results...

Counting Triangles

Matching

Clustering

Graph Distances

Outline

Counting Triangles

Matching

Clustering

Graph Distances

Triangles

Problem

Given a stream of edges, estimate the number of triangles T_{3} up to a factor $(1+\epsilon)$ with probability $1-\delta$ given promise that $T_{3}>t$.

Triangles

Problem

Given a stream of edges, estimate the number of triangles T_{3} up to a factor $(1+\epsilon)$ with probability $1-\delta$ given promise that $T_{3}>t$.

Warm-Up
What's an algorithm using $O\left(\epsilon^{-2}\left(n^{3} / t\right) \log \delta^{-1}\right)$ space?

Triangles

Problem

Given a stream of edges, estimate the number of triangles T_{3} up to a factor $(1+\epsilon)$ with probability $1-\delta$ given promise that $T_{3}>t$.

Warm-Up
What's an algorithm using $O\left(\epsilon^{-2}\left(n^{3} / t\right) \log \delta^{-1}\right)$ space?
Theorem
$\Omega\left(n^{2}\right)$ space required to determine if $t=0$ (with $\delta=1 / 3$).

Triangles

Problem

Given a stream of edges, estimate the number of triangles T_{3} up to a factor $(1+\epsilon)$ with probability $1-\delta$ given promise that $T_{3}>t$.

Warm-Up
What's an algorithm using $O\left(\epsilon^{-2}\left(n^{3} / t\right) \log \delta^{-1}\right)$ space?
Theorem
$\Omega\left(n^{2}\right)$ space required to determine if $t=0$ (with $\delta=1 / 3$).
Theorem (Sivakumar et al. 2002)
$\tilde{O}\left(\epsilon^{-2}(n m / t)^{2} \log \delta^{-1}\right)$ space is sufficient.

Triangles

Problem

Given a stream of edges, estimate the number of triangles T_{3} up to a factor $(1+\epsilon)$ with probability $1-\delta$ given promise that $T_{3}>t$.

Warm-Up
What's an algorithm using $O\left(\epsilon^{-2}\left(n^{3} / t\right) \log \delta^{-1}\right)$ space?
Theorem
$\Omega\left(n^{2}\right)$ space required to determine if $t=0$ (with $\delta=1 / 3$).
Theorem (Sivakumar et al. 2002)
$\tilde{O}\left(\epsilon^{-2}(n m / t)^{2} \log \delta^{-1}\right)$ space is sufficient.
Theorem (Buriol et al. 2006)
$\tilde{O}\left(\epsilon^{-2}(n m / t) \log \delta^{-1}\right)$ space is sufficient.

Lower Bound

Theorem
$\Omega\left(n^{2}\right)$ space required to determine if $T_{3} \neq 0$ when $\delta=1 / 3$.

Lower Bound

Theorem
$\Omega\left(n^{2}\right)$ space required to determine if $T_{3} \neq 0$ when $\delta=1 / 3$.

- Reduce from set-disjointness: Alice has $n \times n$ binary matrix A, Bob has $n \times n$ binary matrix B. Is $A_{i j}=B_{i j}=1$ for some (i, j) ? Needs $\Omega\left(n^{2}\right)$ bits of communication [Razborov 1992].

Lower Bound

Theorem
$\Omega\left(n^{2}\right)$ space required to determine if $T_{3} \neq 0$ when $\delta=1 / 3$.

- Reduce from set-disjointness: Alice has $n \times n$ binary matrix A, Bob has $n \times n$ binary matrix B. Is $A_{i j}=B_{i j}=1$ for some (i, j) ? Needs $\Omega\left(n^{2}\right)$ bits of communication [Razborov 1992].
- Consider graph $G=(V, E)$ with

$$
V=\left\{v_{1}, \ldots, v_{n}, u_{1}, \ldots, u_{n}, w_{1}, \ldots, w_{n}\right\} \text { and } E=\left\{\left(v_{i}, u_{i}\right): i \in[n]\right\}
$$

Lower Bound

Theorem

$\Omega\left(n^{2}\right)$ space required to determine if $T_{3} \neq 0$ when $\delta=1 / 3$.

- Reduce from set-disjointness: Alice has $n \times n$ binary matrix A, Bob has $n \times n$ binary matrix B. Is $A_{i j}=B_{i j}=1$ for some (i, j) ? Needs $\Omega\left(n^{2}\right)$ bits of communication [Razborov 1992].
- Consider graph $G=(V, E)$ with

$$
V=\left\{v_{1}, \ldots, v_{n}, u_{1}, \ldots, u_{n}, w_{1}, \ldots, w_{n}\right\} \text { and } E=\left\{\left(v_{i}, u_{i}\right): i \in[n]\right\}
$$

- Alice runs algorithm on G and edges $\left\{\left(u_{i}, w_{j}\right): A_{i j}=1\right\}$.

Lower Bound

Theorem

$\Omega\left(n^{2}\right)$ space required to determine if $T_{3} \neq 0$ when $\delta=1 / 3$.

- Reduce from set-disjointness: Alice has $n \times n$ binary matrix A, Bob has $n \times n$ binary matrix B. Is $A_{i j}=B_{i j}=1$ for some (i, j) ? Needs $\Omega\left(n^{2}\right)$ bits of communication [Razborov 1992].
- Consider graph $G=(V, E)$ with

$$
V=\left\{v_{1}, \ldots, v_{n}, u_{1}, \ldots, u_{n}, w_{1}, \ldots, w_{n}\right\} \text { and } E=\left\{\left(v_{i}, u_{i}\right): i \in[n]\right\}
$$

- Alice runs algorithm on G and edges $\left\{\left(u_{i}, w_{j}\right): A_{i j}=1\right\}$.
- Bob continues running algorithm on edges $\left\{\left(v_{i}, w_{j}\right): B_{i j}=1\right\}$.

Lower Bound

Theorem

$\Omega\left(n^{2}\right)$ space required to determine if $T_{3} \neq 0$ when $\delta=1 / 3$.

- Reduce from set-disjointness: Alice has $n \times n$ binary matrix A, Bob has $n \times n$ binary matrix B. Is $A_{i j}=B_{i j}=1$ for some (i, j) ? Needs $\Omega\left(n^{2}\right)$ bits of communication [Razborov 1992].
- Consider graph $G=(V, E)$ with

$$
V=\left\{v_{1}, \ldots, v_{n}, u_{1}, \ldots, u_{n}, w_{1}, \ldots, w_{n}\right\} \text { and } E=\left\{\left(v_{i}, u_{i}\right): i \in[n]\right\}
$$

- Alice runs algorithm on G and edges $\left\{\left(u_{i}, w_{j}\right): A_{i j}=1\right\}$.
- Bob continues running algorithm on edges $\left\{\left(v_{i}, w_{j}\right): B_{i j}=1\right\}$.
- $T_{3}>0$ iff $A_{i j}=B_{i j}=1$ for some (i, j).

First Algorithm

Theorem (Sivakumar et al. 2002)
$\tilde{O}\left(\epsilon^{-2}\left(n m / T_{3}\right)^{2} \log \delta^{-1}\right)$ space is sufficient.

First Algorithm

Theorem (Sivakumar et al. 2002)
$\tilde{O}\left(\epsilon^{-2}\left(n m / T_{3}\right)^{2} \log \delta^{-1}\right)$ space is sufficient.

- Given stream of edges induce stream of node-triples:

$$
\text { edge }(u, v) \text { gives rise to }\{u, v, w\} \text { for } w \in V \backslash\{u, v\}
$$

First Algorithm

Theorem (Sivakumar et al. 2002)
$\tilde{O}\left(\epsilon^{-2}\left(n m / T_{3}\right)^{2} \log \delta^{-1}\right)$ space is sufficient.

- Given stream of edges induce stream of node-triples:

$$
\text { edge }(u, v) \text { gives rise to }\{u, v, w\} \text { for } w \in V \backslash\{u, v\}
$$

- Consider $F_{k}=\sum(\text { freq. of }\{u, v, w\})^{k}$ and note

$$
\left(\begin{array}{l}
F_{0} \\
F_{1} \\
F_{2}
\end{array}\right)=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 3 \\
1 & 4 & 9
\end{array}\right)\left(\begin{array}{l}
T_{1} \\
T_{2} \\
T_{3}
\end{array}\right)
$$

where T_{i} is the set of node-triples having exactly i edges in the induced subgraph.

First Algorithm

Theorem (Sivakumar et al. 2002)
$\tilde{O}\left(\epsilon^{-2}\left(n m / T_{3}\right)^{2} \log \delta^{-1}\right)$ space is sufficient.

- Given stream of edges induce stream of node-triples:

$$
\text { edge }(u, v) \text { gives rise to }\{u, v, w\} \text { for } w \in V \backslash\{u, v\}
$$

- Consider $F_{k}=\sum(\text { freq. of }\{u, v, w\})^{k}$ and note

$$
\left(\begin{array}{l}
F_{0} \\
F_{1} \\
F_{2}
\end{array}\right)=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 3 \\
1 & 4 & 9
\end{array}\right)\left(\begin{array}{l}
T_{1} \\
T_{2} \\
T_{3}
\end{array}\right)
$$

where T_{i} is the set of node-triples having exactly i edges in the induced subgraph.

- $T_{3}=F_{0}-3 F_{1} / 2+F_{2} / 2$ so good approx. for F_{0}, F_{1}, F_{2} suffice.

Second Algorithm

Theorem (Buriol et al. 2006) $\tilde{O}\left(\epsilon^{-2}\left(n m / T_{3}\right) \log \delta^{-1}\right)$ space is sufficient.

Second Algorithm

Theorem (Buriol et al. 2006)
$\tilde{O}\left(\epsilon^{-2}\left(n m / T_{3}\right) \log \delta^{-1}\right)$ space is sufficient.

- Pick an edge $e_{i}=(u, v)$ uniformly at random from the stream.

Second Algorithm

Theorem (Buriol et al. 2006)
$\tilde{O}\left(\epsilon^{-2}\left(n m / T_{3}\right) \log \delta^{-1}\right)$ space is sufficient.

- Pick an edge $e_{i}=(u, v)$ uniformly at random from the stream.
- Pick w uniformly at random from $V \backslash\{u, v\}$

Second Algorithm

Theorem (Buriol et al. 2006)
$\tilde{O}\left(\epsilon^{-2}\left(n m / T_{3}\right) \log \delta^{-1}\right)$ space is sufficient.

- Pick an edge $e_{i}=(u, v)$ uniformly at random from the stream.
- Pick w uniformly at random from $V \backslash\{u, v\}$
- If $e_{j}=(u, w), e_{k}=(v, w)$ for $j, k>i$ exist return 1 ; else 0 .

Second Algorithm

Theorem (Buriol et al. 2006)
$\tilde{O}\left(\epsilon^{-2}\left(n m / T_{3}\right) \log \delta^{-1}\right)$ space is sufficient.

- Pick an edge $e_{i}=(u, v)$ uniformly at random from the stream.
- Pick w uniformly at random from $V \backslash\{u, v\}$
- If $e_{j}=(u, w), e_{k}=(v, w)$ for $j, k>i$ exist return 1 ; else 0 .

Lemma
Expected outcome of algorithm is $\frac{T_{3}}{3 m(n-2)}$.

Second Algorithm

Theorem (Buriol et al. 2006)
$\tilde{O}\left(\epsilon^{-2}\left(n m / T_{3}\right) \log \delta^{-1}\right)$ space is sufficient.

- Pick an edge $e_{i}=(u, v)$ uniformly at random from the stream.
- Pick w uniformly at random from $V \backslash\{u, v\}$
- If $e_{j}=(u, w), e_{k}=(v, w)$ for $j, k>i$ exist return 1 ; else 0 .

Lemma
Expected outcome of algorithm is $\frac{T_{3}}{3 m(n-2)}$.

- Repeat $O\left(\epsilon^{-2}(m n / t) \log \delta^{-1}\right)$ times in parallel and scale average up by $3 m(n-2)$.

Outline

Counting Triangles

Matching

Clustering

Graph Distances

Maximum Weight Matching

Problem

Stream of weighted edges $\left(e, w_{e}\right)$: Find $M \subset E$ that maximizes $\sum_{e \in M} w_{e}$ such that no two edges in M share an endpoint.

Maximum Weight Matching

Problem

Stream of weighted edges $\left(e, w_{e}\right)$: Find $M \subset E$ that maximizes $\sum_{e \in M} w_{e}$ such that no two edges in M share an endpoint.

Warm-Up
An easy 2 approx. for unweighted case in $\tilde{O}(n)$ space?

Maximum Weight Matching

Problem

Stream of weighted edges $\left(e, w_{e}\right)$: Find $M \subset E$ that maximizes $\sum_{e \in M} w_{e}$ such that no two edges in M share an endpoint.

Warm-Up
An easy 2 approx. for unweighted case in $\tilde{O}(n)$ space?
Theorem
$3+2 \sqrt{2}=5.83 \ldots$ approx. in $\tilde{O}(n)$ space.

Maximum Weight Matching

Problem

Stream of weighted edges $\left(e, w_{e}\right)$: Find $M \subset E$ that maximizes $\sum_{e \in M} w_{e}$ such that no two edges in M share an endpoint.

Warm-Up
An easy 2 approx. for unweighted case in $\tilde{O}(n)$ space?
Theorem
$3+2 \sqrt{2}=5.83 \ldots$ approx. in $\tilde{O}(n)$ space.

Improved to 5.59... [Mariano 07] and 5.24... [Sarma et al. 09].

Maximum Weight Matching

Problem

Stream of weighted edges $\left(e, w_{e}\right)$: Find $M \subset E$ that maximizes $\sum_{e \in M} w_{e}$ such that no two edges in M share an endpoint.

Warm-Up
An easy 2 approx. for unweighted case in $\tilde{O}(n)$ space?
Theorem
$3+2 \sqrt{2}=5.83 \ldots$ approx. in $\tilde{O}(n)$ space.

Improved to 5.59... [Mariano 07] and 5.24... [Sarma et al. 09].
Open Problem
Prove a lower bound or a much better algorithm!

An Algorithm

- At all times maintain a matching M, initially $M=\emptyset$.

An Algorithm

- At all times maintain a matching M, initially $M=\emptyset$.
- On seeing $e=(u, v)$, suppose $e^{\prime}=\left(u, u_{1}\right), e^{\prime \prime}=\left(v, u_{2}\right) \in M$

An Algorithm

- At all times maintain a matching M, initially $M=\emptyset$.
- On seeing $e=(u, v)$, suppose $e^{\prime}=\left(u, u_{1}\right), e^{\prime \prime}=\left(v, u_{2}\right) \in M$
- If $w_{e} \geq(1+\gamma)\left(w_{e^{\prime}}+w_{e^{\prime \prime}}\right), M \leftarrow M \cup\{e\} \backslash\left\{e^{\prime}, e^{\prime \prime}\right\}$

An Algorithm

- At all times maintain a matching M, initially $M=\emptyset$.
- On seeing $e=(u, v)$, suppose $e^{\prime}=\left(u, u_{1}\right), e^{\prime \prime}=\left(v, u_{2}\right) \in M$
- If $w_{e} \geq(1+\gamma)\left(w_{e^{\prime}}+w_{e^{\prime \prime}}\right), M \leftarrow M \cup\{e\} \backslash\left\{e^{\prime}, e^{\prime \prime}\right\}$

For the analysis we use the following definitions to describe the execution of the algorithm:

An Algorithm

- At all times maintain a matching M, initially $M=\emptyset$.
- On seeing $e=(u, v)$, suppose $e^{\prime}=\left(u, u_{1}\right), e^{\prime \prime}=\left(v, u_{2}\right) \in M$
- If $w_{e} \geq(1+\gamma)\left(w_{e^{\prime}}+w_{e^{\prime \prime}}\right), M \leftarrow M \cup\{e\} \backslash\left\{e^{\prime}, e^{\prime \prime}\right\}$

For the analysis we use the following definitions to describe the execution of the algorithm:

An Algorithm

- At all times maintain a matching M, initially $M=\emptyset$.
- On seeing $e=(u, v)$, suppose $e^{\prime}=\left(u, u_{1}\right), e^{\prime \prime}=\left(v, u_{2}\right) \in M$
- If $w_{e} \geq(1+\gamma)\left(w_{e^{\prime}}+w_{e^{\prime \prime}}\right), M \leftarrow M \cup\{e\} \backslash\left\{e^{\prime}, e^{\prime \prime}\right\}$

For the analysis we use the following definitions to describe the execution of the algorithm:

- An edge e kills an edge e^{\prime} if e^{\prime} was removed when e arrives.

An Algorithm

- At all times maintain a matching M, initially $M=\emptyset$.
- On seeing $e=(u, v)$, suppose $e^{\prime}=\left(u, u_{1}\right), e^{\prime \prime}=\left(v, u_{2}\right) \in M$
- If $w_{e} \geq(1+\gamma)\left(w_{e^{\prime}}+w_{e^{\prime \prime}}\right), M \leftarrow M \cup\{e\} \backslash\left\{e^{\prime}, e^{\prime \prime}\right\}$

For the analysis we use the following definitions to describe the execution of the algorithm:

- An edge e kills an edge e^{\prime} if e^{\prime} was removed when e arrives.
- We say an edge is a survivor if it's in the final matching.

An Algorithm

- At all times maintain a matching M, initially $M=\emptyset$.
- On seeing $e=(u, v)$, suppose $e^{\prime}=\left(u, u_{1}\right), e^{\prime \prime}=\left(v, u_{2}\right) \in M$
- If $w_{e} \geq(1+\gamma)\left(w_{e^{\prime}}+w_{e^{\prime \prime}}\right), M \leftarrow M \cup\{e\} \backslash\left\{e^{\prime}, e^{\prime \prime}\right\}$

For the analysis we use the following definitions to describe the execution of the algorithm:

- An edge e kills an edge e^{\prime} if e^{\prime} was removed when e arrives.
- We say an edge is a survivor if it's in the final matching.
- For survivor e, the trail of the dead is $T(e)=C_{1} \cup C_{2} \cup \ldots$, where $C_{0}=\{e\}$ and

$$
C_{i}=\cup_{e^{\prime} \in C_{i-1}}\left\{\text { edges killed by } e^{\prime}\right\}
$$

Analysis

Lemma

Let S be set of survivors and $w(S)$ be weight of final matching.

1. $w(T(S)) \leq w(S) / \gamma$
2. $\mathrm{OPT} \leq(1+\gamma)(w(T(S))+2 w(S))$

Approximation factor is $1 / \gamma+3+2 \gamma$ and $\gamma=1 / \sqrt{2}$ gives result.

Analysis

Lemma

Let S be set of survivors and $w(S)$ be weight of final matching.

1. $w(T(S)) \leq w(S) / \gamma$
2. $\mathrm{OPT} \leq(1+\gamma)(w(T(S))+2 w(S))$

Approximation factor is $1 / \gamma+3+2 \gamma$ and $\gamma=1 / \sqrt{2}$ gives result.
Proof.

Analysis

Lemma

Let S be set of survivors and $w(S)$ be weight of final matching.

$$
\begin{aligned}
& \text { 1. } w(T(S)) \leq w(S) / \gamma \\
& \text { 2. } \operatorname{OPT} \leq(1+\gamma)(w(T(S))+2 w(S))
\end{aligned}
$$

Approximation factor is $1 / \gamma+3+2 \gamma$ and $\gamma=1 / \sqrt{2}$ gives result.

Proof.

1. Consider $e \in S$:

$$
(1+\gamma) w(T(e))=\sum_{i \geq 1}(1+\gamma) w\left(C_{i}\right) \leq \sum_{i \geq 0} w\left(C_{i}\right)=w(T(e))+w(e)
$$

Analysis

Lemma

Let S be set of survivors and $w(S)$ be weight of final matching.

$$
\begin{aligned}
& \text { 1. } w(T(S)) \leq w(S) / \gamma \\
& \text { 2. } \operatorname{OPT} \leq(1+\gamma)(w(T(S))+2 w(S))
\end{aligned}
$$

Approximation factor is $1 / \gamma+3+2 \gamma$ and $\gamma=1 / \sqrt{2}$ gives result.

Proof.

1. Consider $e \in S$:

$$
(1+\gamma) w(T(e))=\sum_{i \geq 1}(1+\gamma) w\left(C_{i}\right) \leq \sum_{i \geq 0} w\left(C_{i}\right)=w(T(e))+w(e)
$$

2. Can charge the weights of edges in OPT to the $S \cup T(S)$ such that each edge $e \in T(S)$ is charged at most $(1+\gamma) w(e)$ and each edge $e \in S$ is charged at most $2(1+\gamma) w(e)$.

Outline

Counting Triangles

Matching

Clustering

Graph Distances

k-center

Problem
Given a stream of distinct points $X=\left\{p_{1}, \ldots, p_{n}\right\}$ from a metric space (\mathcal{X}, d), find the set of k points $Y \subset X$ that minimizes:

$$
\max _{i} \min _{y \in Y} d\left(p_{i}, y\right)
$$

k-center

Problem

Given a stream of distinct points $X=\left\{p_{1}, \ldots, p_{n}\right\}$ from a metric space (\mathcal{X}, d), find the set of k points $Y \subset X$ that minimizes:

$$
\max _{i} \min _{y \in Y} d\left(p_{i}, y\right)
$$

Warm-Up

- Find 2-approx. if you're given OPT.
- Find $(2+\epsilon)$-approx. if you're given that $a \leq \mathrm{OPT} \leq b$

k-center

Problem

Given a stream of distinct points $X=\left\{p_{1}, \ldots, p_{n}\right\}$ from a metric space (\mathcal{X}, d), find the set of k points $Y \subset X$ that minimizes:

$$
\max _{i} \min _{y \in Y} d\left(p_{i}, y\right)
$$

Warm-Up

- Find 2-approx. if you're given OPT.
- Find $(2+\epsilon)$-approx. if you're given that $a \leq$ OPT $\leq b$

Theorem (Khuller and McCutchen 2009, Guha 2009)
$(2+\epsilon)$ approx. for metric k-center in $\tilde{O}\left(k \epsilon^{-1} \log \epsilon^{-1}\right)$ space.

k-center: Algorithm and Analysis

- Consider first $k+1$ points: this gives a lower bound a on OPT.

k-center: Algorithm and Analysis

- Consider first $k+1$ points: this gives a lower bound a on OPT.
- Instantiate basic algorithm with guesses

$$
\ell_{1}=a, \ell_{2}=(1+\epsilon) a, \ell_{3}=(1+\epsilon)^{2} a, \ldots \ell_{1+t}=O\left(\epsilon^{-1}\right) a
$$

k-center: Algorithm and Analysis

- Consider first $k+1$ points: this gives a lower bound a on OPT.
- Instantiate basic algorithm with guesses

$$
\ell_{1}=a, \ell_{2}=(1+\epsilon) a, \ell_{3}=(1+\epsilon)^{2} a, \ldots \ell_{1+t}=O\left(\epsilon^{-1}\right) a
$$

- Say instantiation goes bad if it tries to open $(k+1)$-th center

k-center: Algorithm and Analysis

- Consider first $k+1$ points: this gives a lower bound a on OPT.
- Instantiate basic algorithm with guesses

$$
\ell_{1}=a, \ell_{2}=(1+\epsilon) a, \ell_{3}=(1+\epsilon)^{2} a, \ldots \ell_{1+t}=O\left(\epsilon^{-1}\right) a
$$

- Say instantiation goes bad if it tries to open $(k+1)$-th center
- Suppose instantiation with guess ℓ goes bad when processing ($j+1$)-th point

k-center: Algorithm and Analysis

- Consider first $k+1$ points: this gives a lower bound a on OPT.
- Instantiate basic algorithm with guesses

$$
\ell_{1}=a, \ell_{2}=(1+\epsilon) a, \ell_{3}=(1+\epsilon)^{2} a, \ldots \ell_{1+t}=O\left(\epsilon^{-1}\right) a
$$

- Say instantiation goes bad if it tries to open $(k+1)$-th center
- Suppose instantiation with guess ℓ goes bad when processing ($j+1$)-th point
- Let q_{1}, \ldots, q_{k} be centers chosen so far.

k-center: Algorithm and Analysis

- Consider first $k+1$ points: this gives a lower bound a on OPT.
- Instantiate basic algorithm with guesses

$$
\ell_{1}=a, \ell_{2}=(1+\epsilon) a, \ell_{3}=(1+\epsilon)^{2} a, \ldots \ell_{1+t}=O\left(\epsilon^{-1}\right) a
$$

- Say instantiation goes bad if it tries to open $(k+1)$-th center
- Suppose instantiation with guess ℓ goes bad when processing ($j+1$)-th point
- Let q_{1}, \ldots, q_{k} be centers chosen so far.
- Then p_{1}, \ldots, p_{j} are all at most 2ℓ from a q_{i}.

k-center: Algorithm and Analysis

- Consider first $k+1$ points: this gives a lower bound a on OPT.
- Instantiate basic algorithm with guesses

$$
\ell_{1}=a, \ell_{2}=(1+\epsilon) a, \ell_{3}=(1+\epsilon)^{2} a, \ldots \ell_{1+t}=O\left(\epsilon^{-1}\right) a
$$

- Say instantiation goes bad if it tries to open $(k+1)$-th center
- Suppose instantiation with guess ℓ goes bad when processing ($j+1$)-th point
- Let q_{1}, \ldots, q_{k} be centers chosen so far.
- Then p_{1}, \ldots, p_{j} are all at most 2ℓ from a q_{i}.
- Optimum for $\left\{q_{1}, \ldots, q_{k}, p_{j+1}, \ldots, p_{n}\right\}$ is at most OPT $+2 \ell$.

k-center: Algorithm and Analysis

- Consider first $k+1$ points: this gives a lower bound a on OPT.
- Instantiate basic algorithm with guesses

$$
\ell_{1}=a, \ell_{2}=(1+\epsilon) a, \ell_{3}=(1+\epsilon)^{2} a, \ldots \ell_{1+t}=O\left(\epsilon^{-1}\right) a
$$

- Say instantiation goes bad if it tries to open $(k+1)$-th center
- Suppose instantiation with guess ℓ goes bad when processing ($j+1$)-th point
- Let q_{1}, \ldots, q_{k} be centers chosen so far.
- Then p_{1}, \ldots, p_{j} are all at most 2ℓ from a q_{i}.
- Optimum for $\left\{q_{1}, \ldots, q_{k}, p_{j+1}, \ldots, p_{n}\right\}$ is at most OPT $+2 \ell$.
- Hence, for an instantiation with guess $2 \ell / \epsilon$ only incurs a small if we use $\left\{q_{1}, \ldots, q_{k}, p_{j+1}, \ldots, p_{n}\right\}$ rather than $\left\{p_{1}, \ldots, p_{n}\right\}$.

Outline

Counting Triangles

Matching

Clustering

Graph Distances

Distance Estimation

Problem

Stream of unweighted edges E defines a shortest path graph metric $d_{G}: V \times V \rightarrow \mathbb{N}$. For $u, v \in V$, estimate $d_{G}(u, v)$.

Distance Estimation

Problem

Stream of unweighted edges E defines a shortest path graph metric $d_{G}: V \times V \rightarrow \mathbb{N}$. For $u, v \in V$, estimate $d_{G}(u, v)$.

Definition
An α-spanner of a graph $G=(V, E)$ is a subgraph $H=\left(V, E^{\prime}\right)$ such that for all u, v,

$$
d_{G}(u, v) \leq d_{H}(u, v) \leq \alpha d_{G}(u, v)
$$

Distance Estimation

Problem

Stream of unweighted edges E defines a shortest path graph metric $d_{G}: V \times V \rightarrow \mathbb{N}$. For $u, v \in V$, estimate $d_{G}(u, v)$.

Definition
An α-spanner of a graph $G=(V, E)$ is a subgraph $H=\left(V, E^{\prime}\right)$ such that for all u, v,

$$
d_{G}(u, v) \leq d_{H}(u, v) \leq \alpha d_{G}(u, v)
$$

Warm-Up
$2 t-1$ spanner using $\tilde{O}\left(n^{1+1 / t}\right)$ space.

Distance Estimation

Problem

Stream of unweighted edges E defines a shortest path graph metric $d_{G}: V \times V \rightarrow \mathbb{N}$. For $u, v \in V$, estimate $d_{G}(u, v)$.

Definition
An α-spanner of a graph $G=(V, E)$ is a subgraph $H=\left(V, E^{\prime}\right)$ such that for all u, v,

$$
d_{G}(u, v) \leq d_{H}(u, v) \leq \alpha d_{G}(u, v)
$$

Warm-Up
$2 t-1$ spanner using $\tilde{O}\left(n^{1+1 / t}\right)$ space.
Theorem (Elkin 2007)
$2 t-1$ stretch spanner using $\tilde{O}\left(n^{1+1 / t}\right)$ space with constant update time.

Towards better results if you're allowed mulitple passes. . .

Problem
Can we get better approximation for $d_{G}(u, v)$ with multiple passes?

Towards better results if you're allowed mulitple passes. . .

Problem

Can we get better approximation for $d_{G}(u, v)$ with multiple passes?
Warm-Up
Find $d_{G}(u, v)$ exactly in $\tilde{O}\left(n^{1+\gamma}\right)$ space and $\tilde{O}\left(n^{1-\gamma}\right)$ passes.

Towards better results if you're allowed mulitple passes. . .

Problem

Can we get better approximation for $d_{G}(u, v)$ with multiple passes?
Warm-Up
Find $d_{G}(u, v)$ exactly in $\tilde{O}\left(n^{1+\gamma}\right)$ space and $\tilde{O}\left(n^{1-\gamma}\right)$ passes.
Theorem
$O(k)$ approx in $\tilde{O}(n)$ space with $O\left(n^{1 / k}\right)$ passes.

Towards better results if you're allowed mulitple passes. . .

Problem

Can we get better approximation for $d_{G}(u, v)$ with multiple passes?
Warm-Up
Find $d_{G}(u, v)$ exactly in $\tilde{O}\left(n^{1+\gamma}\right)$ space and $\tilde{O}\left(n^{1-\gamma}\right)$ passes.
Theorem
$O(k)$ approx in $\tilde{O}(n)$ space with $O\left(n^{1 / k}\right)$ passes.
Theorem (via Thorup, Zwick 2006)
$(1+\epsilon)$ approx in $\tilde{O}(n)$ space with $n^{O\left(\log \epsilon^{-1}\right) / \log \log n}$ passes.

Ramsey Partition Approach

Definition (Mendel, Naor 2006)

Ramsey Partition \mathcal{P}_{Δ} is a random partion of metric space. Each cluster has diameter at most Δ and for $t \leq \Delta / 8$,

$$
\operatorname{Pr}\left(B_{X}(x, t) \in \mathcal{P}_{\Delta}\right) \geq\left(\frac{\left|B_{X}(x, \Delta / 8)\right|}{\left|B_{X}(x, \Delta)\right|}\right)^{16 t / \Delta} \geq\left(\frac{1}{n}\right)^{16 t / \Delta}
$$

Can construct in stream model in $\tilde{O}(n)$ space and $O(\Delta)$ passes.

Ramsey Partition Approach

Definition (Mendel, Naor 2006)

Ramsey Partition \mathcal{P}_{Δ} is a random partion of metric space. Each cluster has diameter at most Δ and for $t \leq \Delta / 8$,

$$
\operatorname{Pr}\left(B_{X}(x, t) \in \mathcal{P}_{\Delta}\right) \geq\left(\frac{\left|B_{X}(x, \Delta / 8)\right|}{\left|B_{X}(x, \Delta)\right|}\right)^{16 t / \Delta} \geq\left(\frac{1}{n}\right)^{16 t / \Delta}
$$

Can construct in stream model in $\tilde{O}(n)$ space and $O(\Delta)$ passes.
Algorithm

1. Sample "beacons" $b_{1}, \ldots, b_{n^{1-1 / k}}$ including s and t from V

Ramsey Partition Approach

Definition (Mendel, Naor 2006)

Ramsey Partition \mathcal{P}_{Δ} is a random partion of metric space. Each cluster has diameter at most Δ and for $t \leq \Delta / 8$,

$$
\operatorname{Pr}\left(B_{X}(x, t) \in \mathcal{P}_{\Delta}\right) \geq\left(\frac{\left|B_{X}(x, \Delta / 8)\right|}{\left|B_{X}(x, \Delta)\right|}\right)^{16 t / \Delta} \geq\left(\frac{1}{n}\right)^{16 t / \Delta}
$$

Can construct in stream model in $\tilde{O}(n)$ space and $O(\Delta)$ passes.
Algorithm

1. Sample "beacons" $b_{1}, \ldots, b_{n^{1-1 / k}}$ including s and t from V
2. Repeat $O\left(n^{1 / k} \log n\right)$ times:
2.1 Create $R P$ with diameter $\Delta \approx k n^{1 / k}$ and consider $t \approx n^{1 / k}$.
2.2 For each beacon, add Δ-weighted edge to center of its cluster.

Summary: We looked at some nice problems, our curiousity is piqued, and now we want to start finding more problems to solve.

Thanks!

