
Graph & Geometry Problems in Data Streams
2009 Barbados Workshop on Computational Complexity

Andrew McGregor

Introduction

Models:

I Graph Streams: Stream of edges E = {e1, e2, . . . , em}
describe a graph G on n nodes. Estimate properties of G .

I Geometric Streams: Stream of points X = {p1, p2, . . . , pm}
from some metric space (X , d). Estimate properties of X .

Notes:

I Õ is our friend: we’ll hide dependence on polylog(m, n) terms.

I Assume that pi can be stored in Õ(1) space and d(pi , pj) can
be calculated if both pi and pj are stored in memory.

I Theory isn’t as cohesive but we get to cherry-pick results. . .

Introduction

Models:

I Graph Streams: Stream of edges E = {e1, e2, . . . , em}
describe a graph G on n nodes. Estimate properties of G .

I Geometric Streams: Stream of points X = {p1, p2, . . . , pm}
from some metric space (X , d). Estimate properties of X .

Notes:

I Õ is our friend: we’ll hide dependence on polylog(m, n) terms.

I Assume that pi can be stored in Õ(1) space and d(pi , pj) can
be calculated if both pi and pj are stored in memory.

I Theory isn’t as cohesive but we get to cherry-pick results. . .

Counting Triangles

Matching

Clustering

Graph Distances

Outline

Counting Triangles

Matching

Clustering

Graph Distances

Triangles

Problem
Given a stream of edges, estimate the number of triangles T3 up to
a factor (1 + ε) with probability 1− δ given promise that T3 > t.

Warm-Up

What’s an algorithm using O(ε−2(n3/t) log δ−1) space?

Theorem
Ω(n2) space required to determine if t = 0 (with δ = 1/3).

Theorem (Sivakumar et al. 2002)

Õ(ε−2(nm/t)2 log δ−1) space is sufficient.

Theorem (Buriol et al. 2006)

Õ(ε−2(nm/t) log δ−1) space is sufficient.

Triangles

Problem
Given a stream of edges, estimate the number of triangles T3 up to
a factor (1 + ε) with probability 1− δ given promise that T3 > t.

Warm-Up

What’s an algorithm using O(ε−2(n3/t) log δ−1) space?

Theorem
Ω(n2) space required to determine if t = 0 (with δ = 1/3).

Theorem (Sivakumar et al. 2002)

Õ(ε−2(nm/t)2 log δ−1) space is sufficient.

Theorem (Buriol et al. 2006)

Õ(ε−2(nm/t) log δ−1) space is sufficient.

Triangles

Problem
Given a stream of edges, estimate the number of triangles T3 up to
a factor (1 + ε) with probability 1− δ given promise that T3 > t.

Warm-Up

What’s an algorithm using O(ε−2(n3/t) log δ−1) space?

Theorem
Ω(n2) space required to determine if t = 0 (with δ = 1/3).

Theorem (Sivakumar et al. 2002)

Õ(ε−2(nm/t)2 log δ−1) space is sufficient.

Theorem (Buriol et al. 2006)

Õ(ε−2(nm/t) log δ−1) space is sufficient.

Triangles

Problem
Given a stream of edges, estimate the number of triangles T3 up to
a factor (1 + ε) with probability 1− δ given promise that T3 > t.

Warm-Up

What’s an algorithm using O(ε−2(n3/t) log δ−1) space?

Theorem
Ω(n2) space required to determine if t = 0 (with δ = 1/3).

Theorem (Sivakumar et al. 2002)

Õ(ε−2(nm/t)2 log δ−1) space is sufficient.

Theorem (Buriol et al. 2006)

Õ(ε−2(nm/t) log δ−1) space is sufficient.

Triangles

Problem
Given a stream of edges, estimate the number of triangles T3 up to
a factor (1 + ε) with probability 1− δ given promise that T3 > t.

Warm-Up

What’s an algorithm using O(ε−2(n3/t) log δ−1) space?

Theorem
Ω(n2) space required to determine if t = 0 (with δ = 1/3).

Theorem (Sivakumar et al. 2002)

Õ(ε−2(nm/t)2 log δ−1) space is sufficient.

Theorem (Buriol et al. 2006)

Õ(ε−2(nm/t) log δ−1) space is sufficient.

Lower Bound

Theorem
Ω(n2) space required to determine if T3 6= 0 when δ = 1/3.

I Reduce from set-disjointness: Alice has n× n binary matrix A,
Bob has n × n binary matrix B. Is Aij = Bij = 1 for some
(i , j)? Needs Ω(n2) bits of communication [Razborov 1992].

I Consider graph G = (V ,E) with

V = {v1, . . . , vn, u1, . . . , un,w1, . . . ,wn} and E = {(vi , ui) : i ∈ [n]}

I Alice runs algorithm on G and edges {(ui ,wj) : Aij = 1}.
I Bob continues running algorithm on edges {(vi ,wj) : Bij = 1}.
I T3 > 0 iff Aij = Bij = 1 for some (i , j).

Lower Bound

Theorem
Ω(n2) space required to determine if T3 6= 0 when δ = 1/3.

I Reduce from set-disjointness: Alice has n× n binary matrix A,
Bob has n × n binary matrix B. Is Aij = Bij = 1 for some
(i , j)? Needs Ω(n2) bits of communication [Razborov 1992].

I Consider graph G = (V ,E) with

V = {v1, . . . , vn, u1, . . . , un,w1, . . . ,wn} and E = {(vi , ui) : i ∈ [n]}

I Alice runs algorithm on G and edges {(ui ,wj) : Aij = 1}.
I Bob continues running algorithm on edges {(vi ,wj) : Bij = 1}.
I T3 > 0 iff Aij = Bij = 1 for some (i , j).

Lower Bound

Theorem
Ω(n2) space required to determine if T3 6= 0 when δ = 1/3.

I Reduce from set-disjointness: Alice has n× n binary matrix A,
Bob has n × n binary matrix B. Is Aij = Bij = 1 for some
(i , j)? Needs Ω(n2) bits of communication [Razborov 1992].

I Consider graph G = (V ,E) with

V = {v1, . . . , vn, u1, . . . , un,w1, . . . ,wn} and E = {(vi , ui) : i ∈ [n]}

I Alice runs algorithm on G and edges {(ui ,wj) : Aij = 1}.
I Bob continues running algorithm on edges {(vi ,wj) : Bij = 1}.
I T3 > 0 iff Aij = Bij = 1 for some (i , j).

Lower Bound

Theorem
Ω(n2) space required to determine if T3 6= 0 when δ = 1/3.

I Reduce from set-disjointness: Alice has n× n binary matrix A,
Bob has n × n binary matrix B. Is Aij = Bij = 1 for some
(i , j)? Needs Ω(n2) bits of communication [Razborov 1992].

I Consider graph G = (V ,E) with

V = {v1, . . . , vn, u1, . . . , un,w1, . . . ,wn} and E = {(vi , ui) : i ∈ [n]}

I Alice runs algorithm on G and edges {(ui ,wj) : Aij = 1}.

I Bob continues running algorithm on edges {(vi ,wj) : Bij = 1}.
I T3 > 0 iff Aij = Bij = 1 for some (i , j).

Lower Bound

Theorem
Ω(n2) space required to determine if T3 6= 0 when δ = 1/3.

I Reduce from set-disjointness: Alice has n× n binary matrix A,
Bob has n × n binary matrix B. Is Aij = Bij = 1 for some
(i , j)? Needs Ω(n2) bits of communication [Razborov 1992].

I Consider graph G = (V ,E) with

V = {v1, . . . , vn, u1, . . . , un,w1, . . . ,wn} and E = {(vi , ui) : i ∈ [n]}

I Alice runs algorithm on G and edges {(ui ,wj) : Aij = 1}.
I Bob continues running algorithm on edges {(vi ,wj) : Bij = 1}.

I T3 > 0 iff Aij = Bij = 1 for some (i , j).

Lower Bound

Theorem
Ω(n2) space required to determine if T3 6= 0 when δ = 1/3.

I Reduce from set-disjointness: Alice has n× n binary matrix A,
Bob has n × n binary matrix B. Is Aij = Bij = 1 for some
(i , j)? Needs Ω(n2) bits of communication [Razborov 1992].

I Consider graph G = (V ,E) with

V = {v1, . . . , vn, u1, . . . , un,w1, . . . ,wn} and E = {(vi , ui) : i ∈ [n]}

I Alice runs algorithm on G and edges {(ui ,wj) : Aij = 1}.
I Bob continues running algorithm on edges {(vi ,wj) : Bij = 1}.
I T3 > 0 iff Aij = Bij = 1 for some (i , j).

First Algorithm

Theorem (Sivakumar et al. 2002)

Õ(ε−2(nm/T3)2 log δ−1) space is sufficient.

I Given stream of edges induce stream of node-triples:

edge (u, v) gives rise to {u, v ,w} for w ∈ V \ {u, v}

I Consider Fk =
∑

(freq. of {u,v,w})k and note F0

F1

F2

 =

 1 1 1
1 2 3
1 4 9

 T1

T2

T3

where Ti is the set of node-triples having exactly i edges in
the induced subgraph.

I T3 = F0 − 3F1/2 + F2/2 so good approx. for F0,F1,F2 suffice.

First Algorithm

Theorem (Sivakumar et al. 2002)

Õ(ε−2(nm/T3)2 log δ−1) space is sufficient.

I Given stream of edges induce stream of node-triples:

edge (u, v) gives rise to {u, v ,w} for w ∈ V \ {u, v}

I Consider Fk =
∑

(freq. of {u,v,w})k and note F0

F1

F2

 =

 1 1 1
1 2 3
1 4 9

 T1

T2

T3

where Ti is the set of node-triples having exactly i edges in
the induced subgraph.

I T3 = F0 − 3F1/2 + F2/2 so good approx. for F0,F1,F2 suffice.

First Algorithm

Theorem (Sivakumar et al. 2002)

Õ(ε−2(nm/T3)2 log δ−1) space is sufficient.

I Given stream of edges induce stream of node-triples:

edge (u, v) gives rise to {u, v ,w} for w ∈ V \ {u, v}

I Consider Fk =
∑

(freq. of {u,v,w})k and note F0

F1

F2

 =

 1 1 1
1 2 3
1 4 9

 T1

T2

T3

where Ti is the set of node-triples having exactly i edges in
the induced subgraph.

I T3 = F0 − 3F1/2 + F2/2 so good approx. for F0,F1,F2 suffice.

First Algorithm

Theorem (Sivakumar et al. 2002)

Õ(ε−2(nm/T3)2 log δ−1) space is sufficient.

I Given stream of edges induce stream of node-triples:

edge (u, v) gives rise to {u, v ,w} for w ∈ V \ {u, v}

I Consider Fk =
∑

(freq. of {u,v,w})k and note F0

F1

F2

 =

 1 1 1
1 2 3
1 4 9

 T1

T2

T3

where Ti is the set of node-triples having exactly i edges in
the induced subgraph.

I T3 = F0 − 3F1/2 + F2/2 so good approx. for F0,F1,F2 suffice.

Second Algorithm

Theorem (Buriol et al. 2006)

Õ(ε−2(nm/T3) log δ−1) space is sufficient.

I Pick an edge ei = (u, v) uniformly at random from the stream.

I Pick w uniformly at random from V \ {u, v}
I If ej = (u,w), ek = (v ,w) for j , k > i exist return 1; else 0.

Lemma
Expected outcome of algorithm is T3

3m(n−2) .

I Repeat O(ε−2(mn/t) log δ−1) times in parallel and scale
average up by 3m(n − 2).

Second Algorithm

Theorem (Buriol et al. 2006)

Õ(ε−2(nm/T3) log δ−1) space is sufficient.

I Pick an edge ei = (u, v) uniformly at random from the stream.

I Pick w uniformly at random from V \ {u, v}
I If ej = (u,w), ek = (v ,w) for j , k > i exist return 1; else 0.

Lemma
Expected outcome of algorithm is T3

3m(n−2) .

I Repeat O(ε−2(mn/t) log δ−1) times in parallel and scale
average up by 3m(n − 2).

Second Algorithm

Theorem (Buriol et al. 2006)

Õ(ε−2(nm/T3) log δ−1) space is sufficient.

I Pick an edge ei = (u, v) uniformly at random from the stream.

I Pick w uniformly at random from V \ {u, v}

I If ej = (u,w), ek = (v ,w) for j , k > i exist return 1; else 0.

Lemma
Expected outcome of algorithm is T3

3m(n−2) .

I Repeat O(ε−2(mn/t) log δ−1) times in parallel and scale
average up by 3m(n − 2).

Second Algorithm

Theorem (Buriol et al. 2006)

Õ(ε−2(nm/T3) log δ−1) space is sufficient.

I Pick an edge ei = (u, v) uniformly at random from the stream.

I Pick w uniformly at random from V \ {u, v}
I If ej = (u,w), ek = (v ,w) for j , k > i exist return 1; else 0.

Lemma
Expected outcome of algorithm is T3

3m(n−2) .

I Repeat O(ε−2(mn/t) log δ−1) times in parallel and scale
average up by 3m(n − 2).

Second Algorithm

Theorem (Buriol et al. 2006)

Õ(ε−2(nm/T3) log δ−1) space is sufficient.

I Pick an edge ei = (u, v) uniformly at random from the stream.

I Pick w uniformly at random from V \ {u, v}
I If ej = (u,w), ek = (v ,w) for j , k > i exist return 1; else 0.

Lemma
Expected outcome of algorithm is T3

3m(n−2) .

I Repeat O(ε−2(mn/t) log δ−1) times in parallel and scale
average up by 3m(n − 2).

Second Algorithm

Theorem (Buriol et al. 2006)

Õ(ε−2(nm/T3) log δ−1) space is sufficient.

I Pick an edge ei = (u, v) uniformly at random from the stream.

I Pick w uniformly at random from V \ {u, v}
I If ej = (u,w), ek = (v ,w) for j , k > i exist return 1; else 0.

Lemma
Expected outcome of algorithm is T3

3m(n−2) .

I Repeat O(ε−2(mn/t) log δ−1) times in parallel and scale
average up by 3m(n − 2).

Outline

Counting Triangles

Matching

Clustering

Graph Distances

Maximum Weight Matching

Problem
Stream of weighted edges (e,we): Find M ⊂ E that maximizes∑

e∈M we such that no two edges in M share an endpoint.

Warm-Up

An easy 2 approx. for unweighted case in Õ(n) space?

Theorem
3 + 2

√
2 = 5.83 . . . approx. in Õ(n) space.

Improved to 5.59. . . [Mariano 07] and 5.24. . . [Sarma et al. 09].

Open Problem

Prove a lower bound or a much better algorithm!

Maximum Weight Matching

Problem
Stream of weighted edges (e,we): Find M ⊂ E that maximizes∑

e∈M we such that no two edges in M share an endpoint.

Warm-Up

An easy 2 approx. for unweighted case in Õ(n) space?

Theorem
3 + 2

√
2 = 5.83 . . . approx. in Õ(n) space.

Improved to 5.59. . . [Mariano 07] and 5.24. . . [Sarma et al. 09].

Open Problem

Prove a lower bound or a much better algorithm!

Maximum Weight Matching

Problem
Stream of weighted edges (e,we): Find M ⊂ E that maximizes∑

e∈M we such that no two edges in M share an endpoint.

Warm-Up

An easy 2 approx. for unweighted case in Õ(n) space?

Theorem
3 + 2

√
2 = 5.83 . . . approx. in Õ(n) space.

Improved to 5.59. . . [Mariano 07] and 5.24. . . [Sarma et al. 09].

Open Problem

Prove a lower bound or a much better algorithm!

Maximum Weight Matching

Problem
Stream of weighted edges (e,we): Find M ⊂ E that maximizes∑

e∈M we such that no two edges in M share an endpoint.

Warm-Up

An easy 2 approx. for unweighted case in Õ(n) space?

Theorem
3 + 2

√
2 = 5.83 . . . approx. in Õ(n) space.

Improved to 5.59. . . [Mariano 07] and 5.24. . . [Sarma et al. 09].

Open Problem

Prove a lower bound or a much better algorithm!

Maximum Weight Matching

Problem
Stream of weighted edges (e,we): Find M ⊂ E that maximizes∑

e∈M we such that no two edges in M share an endpoint.

Warm-Up

An easy 2 approx. for unweighted case in Õ(n) space?

Theorem
3 + 2

√
2 = 5.83 . . . approx. in Õ(n) space.

Improved to 5.59. . . [Mariano 07] and 5.24. . . [Sarma et al. 09].

Open Problem

Prove a lower bound or a much better algorithm!

An Algorithm

I At all times maintain a matching M, initially M = ∅.

I On seeing e = (u, v), suppose e ′ = (u, u1), e ′′ = (v , u2) ∈ M

I If we ≥ (1 + γ)(we′ + we′′), M ← M ∪ {e} \ {e ′, e ′′}

For the analysis we use the following definitions to describe the
execution of the algorithm:

I An edge e kills an edge e ′ if e ′ was removed when e arrives.

I We say an edge is a survivor if it’s in the final matching.

I For survivor e, the trail of the dead is T (e) = C1 ∪ C2 ∪ . . .,
where C0 = {e} and

Ci = ∪e′∈Ci−1
{edges killed by e ′}

An Algorithm

I At all times maintain a matching M, initially M = ∅.
I On seeing e = (u, v), suppose e ′ = (u, u1), e ′′ = (v , u2) ∈ M

I If we ≥ (1 + γ)(we′ + we′′), M ← M ∪ {e} \ {e ′, e ′′}

For the analysis we use the following definitions to describe the
execution of the algorithm:

I An edge e kills an edge e ′ if e ′ was removed when e arrives.

I We say an edge is a survivor if it’s in the final matching.

I For survivor e, the trail of the dead is T (e) = C1 ∪ C2 ∪ . . .,
where C0 = {e} and

Ci = ∪e′∈Ci−1
{edges killed by e ′}

An Algorithm

I At all times maintain a matching M, initially M = ∅.
I On seeing e = (u, v), suppose e ′ = (u, u1), e ′′ = (v , u2) ∈ M

I If we ≥ (1 + γ)(we′ + we′′), M ← M ∪ {e} \ {e ′, e ′′}

For the analysis we use the following definitions to describe the
execution of the algorithm:

I An edge e kills an edge e ′ if e ′ was removed when e arrives.

I We say an edge is a survivor if it’s in the final matching.

I For survivor e, the trail of the dead is T (e) = C1 ∪ C2 ∪ . . .,
where C0 = {e} and

Ci = ∪e′∈Ci−1
{edges killed by e ′}

An Algorithm

I At all times maintain a matching M, initially M = ∅.
I On seeing e = (u, v), suppose e ′ = (u, u1), e ′′ = (v , u2) ∈ M

I If we ≥ (1 + γ)(we′ + we′′), M ← M ∪ {e} \ {e ′, e ′′}

For the analysis we use the following definitions to describe the
execution of the algorithm:

I An edge e kills an edge e ′ if e ′ was removed when e arrives.

I We say an edge is a survivor if it’s in the final matching.

I For survivor e, the trail of the dead is T (e) = C1 ∪ C2 ∪ . . .,
where C0 = {e} and

Ci = ∪e′∈Ci−1
{edges killed by e ′}

An Algorithm

I At all times maintain a matching M, initially M = ∅.
I On seeing e = (u, v), suppose e ′ = (u, u1), e ′′ = (v , u2) ∈ M

I If we ≥ (1 + γ)(we′ + we′′), M ← M ∪ {e} \ {e ′, e ′′}

For the analysis we use the following definitions to describe the
execution of the algorithm:

I An edge e kills an edge e ′ if e ′ was removed when e arrives.

I We say an edge is a survivor if it’s in the final matching.

I For survivor e, the trail of the dead is T (e) = C1 ∪ C2 ∪ . . .,
where C0 = {e} and

Ci = ∪e′∈Ci−1
{edges killed by e ′}

An Algorithm

I At all times maintain a matching M, initially M = ∅.
I On seeing e = (u, v), suppose e ′ = (u, u1), e ′′ = (v , u2) ∈ M

I If we ≥ (1 + γ)(we′ + we′′), M ← M ∪ {e} \ {e ′, e ′′}

For the analysis we use the following definitions to describe the
execution of the algorithm:

I An edge e kills an edge e ′ if e ′ was removed when e arrives.

I We say an edge is a survivor if it’s in the final matching.

I For survivor e, the trail of the dead is T (e) = C1 ∪ C2 ∪ . . .,
where C0 = {e} and

Ci = ∪e′∈Ci−1
{edges killed by e ′}

An Algorithm

I At all times maintain a matching M, initially M = ∅.
I On seeing e = (u, v), suppose e ′ = (u, u1), e ′′ = (v , u2) ∈ M

I If we ≥ (1 + γ)(we′ + we′′), M ← M ∪ {e} \ {e ′, e ′′}

For the analysis we use the following definitions to describe the
execution of the algorithm:

I An edge e kills an edge e ′ if e ′ was removed when e arrives.

I We say an edge is a survivor if it’s in the final matching.

I For survivor e, the trail of the dead is T (e) = C1 ∪ C2 ∪ . . .,
where C0 = {e} and

Ci = ∪e′∈Ci−1
{edges killed by e ′}

An Algorithm

I At all times maintain a matching M, initially M = ∅.
I On seeing e = (u, v), suppose e ′ = (u, u1), e ′′ = (v , u2) ∈ M

I If we ≥ (1 + γ)(we′ + we′′), M ← M ∪ {e} \ {e ′, e ′′}

For the analysis we use the following definitions to describe the
execution of the algorithm:

I An edge e kills an edge e ′ if e ′ was removed when e arrives.

I We say an edge is a survivor if it’s in the final matching.

I For survivor e, the trail of the dead is T (e) = C1 ∪ C2 ∪ . . .,
where C0 = {e} and

Ci = ∪e′∈Ci−1
{edges killed by e ′}

Analysis

Lemma
Let S be set of survivors and w(S) be weight of final matching.

1. w(T (S)) ≤ w(S)/γ

2. opt ≤ (1 + γ) (w(T (S)) + 2w(S))

Approximation factor is 1/γ + 3 + 2γ and γ = 1/
√

2 gives result.

Proof.

1. Consider e ∈ S :

(1+γ)w(T (e)) =
∑
i≥1

(1+γ)w(Ci) ≤
∑
i≥0

w(Ci) = w(T (e))+w(e)

2. Can charge the weights of edges in opt to the S ∪ T (S) such
that each edge e ∈ T (S) is charged at most (1 + γ)w(e) and
each edge e ∈ S is charged at most 2(1 + γ)w(e).

Analysis

Lemma
Let S be set of survivors and w(S) be weight of final matching.

1. w(T (S)) ≤ w(S)/γ

2. opt ≤ (1 + γ) (w(T (S)) + 2w(S))

Approximation factor is 1/γ + 3 + 2γ and γ = 1/
√

2 gives result.

Proof.

1. Consider e ∈ S :

(1+γ)w(T (e)) =
∑
i≥1

(1+γ)w(Ci) ≤
∑
i≥0

w(Ci) = w(T (e))+w(e)

2. Can charge the weights of edges in opt to the S ∪ T (S) such
that each edge e ∈ T (S) is charged at most (1 + γ)w(e) and
each edge e ∈ S is charged at most 2(1 + γ)w(e).

Analysis

Lemma
Let S be set of survivors and w(S) be weight of final matching.

1. w(T (S)) ≤ w(S)/γ

2. opt ≤ (1 + γ) (w(T (S)) + 2w(S))

Approximation factor is 1/γ + 3 + 2γ and γ = 1/
√

2 gives result.

Proof.

1. Consider e ∈ S :

(1+γ)w(T (e)) =
∑
i≥1

(1+γ)w(Ci) ≤
∑
i≥0

w(Ci) = w(T (e))+w(e)

2. Can charge the weights of edges in opt to the S ∪ T (S) such
that each edge e ∈ T (S) is charged at most (1 + γ)w(e) and
each edge e ∈ S is charged at most 2(1 + γ)w(e).

Analysis

Lemma
Let S be set of survivors and w(S) be weight of final matching.

1. w(T (S)) ≤ w(S)/γ

2. opt ≤ (1 + γ) (w(T (S)) + 2w(S))

Approximation factor is 1/γ + 3 + 2γ and γ = 1/
√

2 gives result.

Proof.

1. Consider e ∈ S :

(1+γ)w(T (e)) =
∑
i≥1

(1+γ)w(Ci) ≤
∑
i≥0

w(Ci) = w(T (e))+w(e)

2. Can charge the weights of edges in opt to the S ∪ T (S) such
that each edge e ∈ T (S) is charged at most (1 + γ)w(e) and
each edge e ∈ S is charged at most 2(1 + γ)w(e).

Outline

Counting Triangles

Matching

Clustering

Graph Distances

k-center

Problem
Given a stream of distinct points X = {p1, . . . , pn} from a metric
space (X , d), find the set of k points Y ⊂ X that minimizes:

max
i

min
y∈Y

d(pi , y)

Warm-Up

I Find 2-approx. if you’re given opt.

I Find (2 + ε)-approx. if you’re given that a ≤ opt ≤ b

Theorem (Khuller and McCutchen 2009, Guha 2009)

(2 + ε) approx. for metric k-center in Õ(kε−1 log ε−1) space.

k-center

Problem
Given a stream of distinct points X = {p1, . . . , pn} from a metric
space (X , d), find the set of k points Y ⊂ X that minimizes:

max
i

min
y∈Y

d(pi , y)

Warm-Up

I Find 2-approx. if you’re given opt.

I Find (2 + ε)-approx. if you’re given that a ≤ opt ≤ b

Theorem (Khuller and McCutchen 2009, Guha 2009)

(2 + ε) approx. for metric k-center in Õ(kε−1 log ε−1) space.

k-center

Problem
Given a stream of distinct points X = {p1, . . . , pn} from a metric
space (X , d), find the set of k points Y ⊂ X that minimizes:

max
i

min
y∈Y

d(pi , y)

Warm-Up

I Find 2-approx. if you’re given opt.

I Find (2 + ε)-approx. if you’re given that a ≤ opt ≤ b

Theorem (Khuller and McCutchen 2009, Guha 2009)

(2 + ε) approx. for metric k-center in Õ(kε−1 log ε−1) space.

k-center: Algorithm and Analysis

I Consider first k + 1 points: this gives a lower bound a on opt.

I Instantiate basic algorithm with guesses

`1 = a, `2 = (1 + ε)a, `3 = (1 + ε)2a, . . . `1+t = O(ε−1)a

I Say instantiation goes bad if it tries to open (k + 1)-th center
I Suppose instantiation with guess ` goes bad when processing

(j + 1)-th point

I Let q1, . . . , qk be centers chosen so far.
I Then p1, . . . , pj are all at most 2` from a qi .
I Optimum for {q1, . . . , qk , pj+1, . . . , pn} is at most opt + 2`.

I Hence, for an instantiation with guess 2`/ε only incurs a small
if we use {q1, . . . , qk , pj+1, . . . , pn} rather than {p1, . . . , pn}.

k-center: Algorithm and Analysis

I Consider first k + 1 points: this gives a lower bound a on opt.

I Instantiate basic algorithm with guesses

`1 = a, `2 = (1 + ε)a, `3 = (1 + ε)2a, . . . `1+t = O(ε−1)a

I Say instantiation goes bad if it tries to open (k + 1)-th center
I Suppose instantiation with guess ` goes bad when processing

(j + 1)-th point

I Let q1, . . . , qk be centers chosen so far.
I Then p1, . . . , pj are all at most 2` from a qi .
I Optimum for {q1, . . . , qk , pj+1, . . . , pn} is at most opt + 2`.

I Hence, for an instantiation with guess 2`/ε only incurs a small
if we use {q1, . . . , qk , pj+1, . . . , pn} rather than {p1, . . . , pn}.

k-center: Algorithm and Analysis

I Consider first k + 1 points: this gives a lower bound a on opt.

I Instantiate basic algorithm with guesses

`1 = a, `2 = (1 + ε)a, `3 = (1 + ε)2a, . . . `1+t = O(ε−1)a

I Say instantiation goes bad if it tries to open (k + 1)-th center

I Suppose instantiation with guess ` goes bad when processing
(j + 1)-th point

I Let q1, . . . , qk be centers chosen so far.
I Then p1, . . . , pj are all at most 2` from a qi .
I Optimum for {q1, . . . , qk , pj+1, . . . , pn} is at most opt + 2`.

I Hence, for an instantiation with guess 2`/ε only incurs a small
if we use {q1, . . . , qk , pj+1, . . . , pn} rather than {p1, . . . , pn}.

k-center: Algorithm and Analysis

I Consider first k + 1 points: this gives a lower bound a on opt.

I Instantiate basic algorithm with guesses

`1 = a, `2 = (1 + ε)a, `3 = (1 + ε)2a, . . . `1+t = O(ε−1)a

I Say instantiation goes bad if it tries to open (k + 1)-th center
I Suppose instantiation with guess ` goes bad when processing

(j + 1)-th point

I Let q1, . . . , qk be centers chosen so far.
I Then p1, . . . , pj are all at most 2` from a qi .
I Optimum for {q1, . . . , qk , pj+1, . . . , pn} is at most opt + 2`.

I Hence, for an instantiation with guess 2`/ε only incurs a small
if we use {q1, . . . , qk , pj+1, . . . , pn} rather than {p1, . . . , pn}.

k-center: Algorithm and Analysis

I Consider first k + 1 points: this gives a lower bound a on opt.

I Instantiate basic algorithm with guesses

`1 = a, `2 = (1 + ε)a, `3 = (1 + ε)2a, . . . `1+t = O(ε−1)a

I Say instantiation goes bad if it tries to open (k + 1)-th center
I Suppose instantiation with guess ` goes bad when processing

(j + 1)-th point
I Let q1, . . . , qk be centers chosen so far.

I Then p1, . . . , pj are all at most 2` from a qi .
I Optimum for {q1, . . . , qk , pj+1, . . . , pn} is at most opt + 2`.

I Hence, for an instantiation with guess 2`/ε only incurs a small
if we use {q1, . . . , qk , pj+1, . . . , pn} rather than {p1, . . . , pn}.

k-center: Algorithm and Analysis

I Consider first k + 1 points: this gives a lower bound a on opt.

I Instantiate basic algorithm with guesses

`1 = a, `2 = (1 + ε)a, `3 = (1 + ε)2a, . . . `1+t = O(ε−1)a

I Say instantiation goes bad if it tries to open (k + 1)-th center
I Suppose instantiation with guess ` goes bad when processing

(j + 1)-th point
I Let q1, . . . , qk be centers chosen so far.
I Then p1, . . . , pj are all at most 2` from a qi .

I Optimum for {q1, . . . , qk , pj+1, . . . , pn} is at most opt + 2`.

I Hence, for an instantiation with guess 2`/ε only incurs a small
if we use {q1, . . . , qk , pj+1, . . . , pn} rather than {p1, . . . , pn}.

k-center: Algorithm and Analysis

I Consider first k + 1 points: this gives a lower bound a on opt.

I Instantiate basic algorithm with guesses

`1 = a, `2 = (1 + ε)a, `3 = (1 + ε)2a, . . . `1+t = O(ε−1)a

I Say instantiation goes bad if it tries to open (k + 1)-th center
I Suppose instantiation with guess ` goes bad when processing

(j + 1)-th point
I Let q1, . . . , qk be centers chosen so far.
I Then p1, . . . , pj are all at most 2` from a qi .
I Optimum for {q1, . . . , qk , pj+1, . . . , pn} is at most opt + 2`.

I Hence, for an instantiation with guess 2`/ε only incurs a small
if we use {q1, . . . , qk , pj+1, . . . , pn} rather than {p1, . . . , pn}.

k-center: Algorithm and Analysis

I Consider first k + 1 points: this gives a lower bound a on opt.

I Instantiate basic algorithm with guesses

`1 = a, `2 = (1 + ε)a, `3 = (1 + ε)2a, . . . `1+t = O(ε−1)a

I Say instantiation goes bad if it tries to open (k + 1)-th center
I Suppose instantiation with guess ` goes bad when processing

(j + 1)-th point
I Let q1, . . . , qk be centers chosen so far.
I Then p1, . . . , pj are all at most 2` from a qi .
I Optimum for {q1, . . . , qk , pj+1, . . . , pn} is at most opt + 2`.

I Hence, for an instantiation with guess 2`/ε only incurs a small
if we use {q1, . . . , qk , pj+1, . . . , pn} rather than {p1, . . . , pn}.

Outline

Counting Triangles

Matching

Clustering

Graph Distances

Distance Estimation

Problem
Stream of unweighted edges E defines a shortest path graph
metric dG : V × V → N. For u, v ∈ V , estimate dG (u, v).

Definition
An α-spanner of a graph G = (V ,E) is a subgraph H = (V ,E ′)
such that for all u, v ,

dG (u, v) ≤ dH(u, v) ≤ αdG (u, v)

Warm-Up

2t − 1 spanner using Õ(n1+1/t) space.

Theorem (Elkin 2007)

2t − 1 stretch spanner using Õ(n1+1/t) space with constant
update time.

Distance Estimation

Problem
Stream of unweighted edges E defines a shortest path graph
metric dG : V × V → N. For u, v ∈ V , estimate dG (u, v).

Definition
An α-spanner of a graph G = (V ,E) is a subgraph H = (V ,E ′)
such that for all u, v ,

dG (u, v) ≤ dH(u, v) ≤ αdG (u, v)

Warm-Up

2t − 1 spanner using Õ(n1+1/t) space.

Theorem (Elkin 2007)

2t − 1 stretch spanner using Õ(n1+1/t) space with constant
update time.

Distance Estimation

Problem
Stream of unweighted edges E defines a shortest path graph
metric dG : V × V → N. For u, v ∈ V , estimate dG (u, v).

Definition
An α-spanner of a graph G = (V ,E) is a subgraph H = (V ,E ′)
such that for all u, v ,

dG (u, v) ≤ dH(u, v) ≤ αdG (u, v)

Warm-Up

2t − 1 spanner using Õ(n1+1/t) space.

Theorem (Elkin 2007)

2t − 1 stretch spanner using Õ(n1+1/t) space with constant
update time.

Distance Estimation

Problem
Stream of unweighted edges E defines a shortest path graph
metric dG : V × V → N. For u, v ∈ V , estimate dG (u, v).

Definition
An α-spanner of a graph G = (V ,E) is a subgraph H = (V ,E ′)
such that for all u, v ,

dG (u, v) ≤ dH(u, v) ≤ αdG (u, v)

Warm-Up

2t − 1 spanner using Õ(n1+1/t) space.

Theorem (Elkin 2007)

2t − 1 stretch spanner using Õ(n1+1/t) space with constant
update time.

Towards better results if you’re allowed mulitple passes. . .

Problem
Can we get better approximation for dG (u, v) with multiple passes?

Warm-Up

Find dG (u, v) exactly in Õ(n1+γ) space and Õ(n1−γ) passes.

Theorem
O(k) approx in Õ(n) space with O(n1/k) passes.

Theorem (via Thorup, Zwick 2006)

(1 + ε) approx in Õ(n) space with nO(log ε−1)/ log log n passes.

Towards better results if you’re allowed mulitple passes. . .

Problem
Can we get better approximation for dG (u, v) with multiple passes?

Warm-Up

Find dG (u, v) exactly in Õ(n1+γ) space and Õ(n1−γ) passes.

Theorem
O(k) approx in Õ(n) space with O(n1/k) passes.

Theorem (via Thorup, Zwick 2006)

(1 + ε) approx in Õ(n) space with nO(log ε−1)/ log log n passes.

Towards better results if you’re allowed mulitple passes. . .

Problem
Can we get better approximation for dG (u, v) with multiple passes?

Warm-Up

Find dG (u, v) exactly in Õ(n1+γ) space and Õ(n1−γ) passes.

Theorem
O(k) approx in Õ(n) space with O(n1/k) passes.

Theorem (via Thorup, Zwick 2006)

(1 + ε) approx in Õ(n) space with nO(log ε−1)/ log log n passes.

Towards better results if you’re allowed mulitple passes. . .

Problem
Can we get better approximation for dG (u, v) with multiple passes?

Warm-Up

Find dG (u, v) exactly in Õ(n1+γ) space and Õ(n1−γ) passes.

Theorem
O(k) approx in Õ(n) space with O(n1/k) passes.

Theorem (via Thorup, Zwick 2006)

(1 + ε) approx in Õ(n) space with nO(log ε−1)/ log log n passes.

Ramsey Partition Approach

Definition (Mendel, Naor 2006)

Ramsey Partition P∆ is a random partion of metric space. Each
cluster has diameter at most ∆ and for t ≤ ∆/8,

Pr(BX (x , t) ∈ P∆) ≥
(
|BX (x ,∆/8)|
|BX (x ,∆)|

)16t/∆

≥
(

1

n

)16t/∆

.

Can construct in stream model in Õ(n) space and O(∆) passes.

Algorithm

1. Sample “beacons” b1, . . . , bn1−1/k including s and t from V

2. Repeat O(n1/k log n) times:

2.1 Create RP with diameter ∆ ≈ kn1/k and consider t ≈ n1/k .
2.2 For each beacon, add ∆-weighted edge to center of its cluster.

Ramsey Partition Approach

Definition (Mendel, Naor 2006)

Ramsey Partition P∆ is a random partion of metric space. Each
cluster has diameter at most ∆ and for t ≤ ∆/8,

Pr(BX (x , t) ∈ P∆) ≥
(
|BX (x ,∆/8)|
|BX (x ,∆)|

)16t/∆

≥
(

1

n

)16t/∆

.

Can construct in stream model in Õ(n) space and O(∆) passes.

Algorithm

1. Sample “beacons” b1, . . . , bn1−1/k including s and t from V

2. Repeat O(n1/k log n) times:

2.1 Create RP with diameter ∆ ≈ kn1/k and consider t ≈ n1/k .
2.2 For each beacon, add ∆-weighted edge to center of its cluster.

Ramsey Partition Approach

Definition (Mendel, Naor 2006)

Ramsey Partition P∆ is a random partion of metric space. Each
cluster has diameter at most ∆ and for t ≤ ∆/8,

Pr(BX (x , t) ∈ P∆) ≥
(
|BX (x ,∆/8)|
|BX (x ,∆)|

)16t/∆

≥
(

1

n

)16t/∆

.

Can construct in stream model in Õ(n) space and O(∆) passes.

Algorithm

1. Sample “beacons” b1, . . . , bn1−1/k including s and t from V

2. Repeat O(n1/k log n) times:

2.1 Create RP with diameter ∆ ≈ kn1/k and consider t ≈ n1/k .
2.2 For each beacon, add ∆-weighted edge to center of its cluster.

Summary: We looked at some nice problems, our curiousity is
piqued, and now we want to start finding more problems to solve.

Thanks!

	Outline
	Counting Triangles
	Matching
	Clustering
	Graph Distances

