
Data Streams: Random Order & Multiple Passes
2009 Barbados Workshop on Computational Complexity

Andrew McGregor

Introduction

Random Order Streams:

I Average case analysis: data is worst-case but order is random.

I Lower bounds are more useful than in the adversarial case.

I Streams ordered randomly: e.g., space-efficient sampling

Multiple Pass Streams:

I How much extra power do you get with a few extra passes?

I With external data, it’s easier to access data sequentially.

Introduction

Random Order Streams:

I Average case analysis: data is worst-case but order is random.

I Lower bounds are more useful than in the adversarial case.

I Streams ordered randomly: e.g., space-efficient sampling

Multiple Pass Streams:

I How much extra power do you get with a few extra passes?

I With external data, it’s easier to access data sequentially.

Pass-Space Trade-Offs

Problem
Given a stream of n values from [n], what’s smallest value that
doesn’t appear in stream? You have p passes over the data.

I Version 1: All values appear exactly once except for the
missing value.

Θ̃(1)

I Version 2: All values less than smallest missing value appear
exactly once

Θ̃(n1/p)

I Version 3: General problem,

Θ̃(n/p)

Other trade-offs: Find length k increasing sequence given it exists:
Θ̃(k1+1/(2p−1)) [Liben-Nowell et al. ’06, Guha, McGregor ’08]

Pass-Space Trade-Offs

Problem
Given a stream of n values from [n], what’s smallest value that
doesn’t appear in stream? You have p passes over the data.

I Version 1: All values appear exactly once except for the
missing value.

Θ̃(1)

I Version 2: All values less than smallest missing value appear
exactly once

Θ̃(n1/p)

I Version 3: General problem,

Θ̃(n/p)

Other trade-offs: Find length k increasing sequence given it exists:
Θ̃(k1+1/(2p−1)) [Liben-Nowell et al. ’06, Guha, McGregor ’08]

Pass-Space Trade-Offs

Problem
Given a stream of n values from [n], what’s smallest value that
doesn’t appear in stream? You have p passes over the data.

I Version 1: All values appear exactly once except for the
missing value.

Θ̃(1)

I Version 2: All values less than smallest missing value appear
exactly once

Θ̃(n1/p)

I Version 3: General problem,

Θ̃(n/p)

Other trade-offs: Find length k increasing sequence given it exists:
Θ̃(k1+1/(2p−1)) [Liben-Nowell et al. ’06, Guha, McGregor ’08]

Pass-Space Trade-Offs

Problem
Given a stream of n values from [n], what’s smallest value that
doesn’t appear in stream? You have p passes over the data.

I Version 1: All values appear exactly once except for the
missing value.

Θ̃(1)

I Version 2: All values less than smallest missing value appear
exactly once

Θ̃(n1/p)

I Version 3: General problem,

Θ̃(n/p)

Other trade-offs: Find length k increasing sequence given it exists:
Θ̃(k1+1/(2p−1)) [Liben-Nowell et al. ’06, Guha, McGregor ’08]

Pass-Space Trade-Offs

Problem
Given a stream of n values from [n], what’s smallest value that
doesn’t appear in stream? You have p passes over the data.

I Version 1: All values appear exactly once except for the
missing value.

Θ̃(1)

I Version 2: All values less than smallest missing value appear
exactly once

Θ̃(n1/p)

I Version 3: General problem,

Θ̃(n/p)

Other trade-offs: Find length k increasing sequence given it exists:
Θ̃(k1+1/(2p−1)) [Liben-Nowell et al. ’06, Guha, McGregor ’08]

Random Order Streams

Problem
Given m values from [n], find median in polylog(m, n) space.

Approximate Median (i.e., one with rank m/2± t) in One Pass:

I Adversarial: Θ̃(m)-approx [Greenwald, Khanna ’01]

I Random: Õ(m1/2)-approx [Guha, McGregor ’06]

Exact Median in Multiple Passes

I Adversarial: Θ(log m/ log log m) pass [Munro, Paterson ’78, Guha,

McGregor ’07]

I Random: Θ(log log m) pass [Guha, McGregor ’06, Chakrabarti,

Jayram, Patrascu ’08, Chakrabarti, Cormode, McGregor ’08]

Random Order Streams

Problem
Given m values from [n], find median in polylog(m, n) space.

Approximate Median (i.e., one with rank m/2± t) in One Pass:

I Adversarial: Θ̃(m)-approx [Greenwald, Khanna ’01]

I Random: Õ(m1/2)-approx [Guha, McGregor ’06]

Exact Median in Multiple Passes

I Adversarial: Θ(log m/ log log m) pass [Munro, Paterson ’78, Guha,

McGregor ’07]

I Random: Θ(log log m) pass [Guha, McGregor ’06, Chakrabarti,

Jayram, Patrascu ’08, Chakrabarti, Cormode, McGregor ’08]

Random Order Streams

Problem
Given m values from [n], find median in polylog(m, n) space.

Approximate Median (i.e., one with rank m/2± t) in One Pass:

I Adversarial: Θ̃(m)-approx [Greenwald, Khanna ’01]

I Random: Õ(m1/2)-approx [Guha, McGregor ’06]

Exact Median in Multiple Passes

I Adversarial: Θ(log m/ log log m) pass [Munro, Paterson ’78, Guha,

McGregor ’07]

I Random: Θ(log log m) pass [Guha, McGregor ’06, Chakrabarti,

Jayram, Patrascu ’08, Chakrabarti, Cormode, McGregor ’08]

Selection
Adversarial Order
Random Order

Frequency Moments

Hamming Distance

Outline

Selection
Adversarial Order
Random Order

Frequency Moments

Hamming Distance

Outline

Selection
Adversarial Order
Random Order

Frequency Moments

Hamming Distance

Algorithms for Median in Adversarial-Order Stream

Theorem (Adversarial Order)

Can find element of rank m/2± εm in one pass and Õ(ε−1) space.
Can find median in O(log m/ log log m) passes and Õ(1) space.

I Already seen one pass result:
I Can find elements with rank iεm ± εm for i ∈ [ε−1]

I For multiple-pass result:

I In pass 1, use one pass alg. with ε = 1
log m to find a and b s.t.

rank(a) =
m

2
− 2m

log m
± m

log m
and rank(b) =

m

2
+

2m

log m
± m

log m

I In pass 2, compute rank(a) and rank(b)
I Recurse on elements in the range (a, b).

Algorithms for Median in Adversarial-Order Stream

Theorem (Adversarial Order)

Can find element of rank m/2± εm in one pass and Õ(ε−1) space.
Can find median in O(log m/ log log m) passes and Õ(1) space.

I Already seen one pass result:
I Can find elements with rank iεm ± εm for i ∈ [ε−1]

I For multiple-pass result:

I In pass 1, use one pass alg. with ε = 1
log m to find a and b s.t.

rank(a) =
m

2
− 2m

log m
± m

log m
and rank(b) =

m

2
+

2m

log m
± m

log m

I In pass 2, compute rank(a) and rank(b)
I Recurse on elements in the range (a, b).

Algorithms for Median in Adversarial-Order Stream

Theorem (Adversarial Order)

Can find element of rank m/2± εm in one pass and Õ(ε−1) space.
Can find median in O(log m/ log log m) passes and Õ(1) space.

I Already seen one pass result:
I Can find elements with rank iεm ± εm for i ∈ [ε−1]

I For multiple-pass result:

I In pass 1, use one pass alg. with ε = 1
log m to find a and b s.t.

rank(a) =
m

2
− 2m

log m
± m

log m
and rank(b) =

m

2
+

2m

log m
± m

log m

I In pass 2, compute rank(a) and rank(b)
I Recurse on elements in the range (a, b).

Algorithms for Median in Adversarial-Order Stream

Theorem (Adversarial Order)

Can find element of rank m/2± εm in one pass and Õ(ε−1) space.
Can find median in O(log m/ log log m) passes and Õ(1) space.

I Already seen one pass result:
I Can find elements with rank iεm ± εm for i ∈ [ε−1]

I For multiple-pass result:
I In pass 1, use one pass alg. with ε = 1

log m to find a and b s.t.

rank(a) =
m

2
− 2m

log m
± m

log m
and rank(b) =

m

2
+

2m

log m
± m

log m

I In pass 2, compute rank(a) and rank(b)
I Recurse on elements in the range (a, b).

Algorithms for Median in Adversarial-Order Stream

Theorem (Adversarial Order)

Can find element of rank m/2± εm in one pass and Õ(ε−1) space.
Can find median in O(log m/ log log m) passes and Õ(1) space.

I Already seen one pass result:
I Can find elements with rank iεm ± εm for i ∈ [ε−1]

I For multiple-pass result:
I In pass 1, use one pass alg. with ε = 1

log m to find a and b s.t.

rank(a) =
m

2
− 2m

log m
± m

log m
and rank(b) =

m

2
+

2m

log m
± m

log m

I In pass 2, compute rank(a) and rank(b)

I Recurse on elements in the range (a, b).

Algorithms for Median in Adversarial-Order Stream

Theorem (Adversarial Order)

Can find element of rank m/2± εm in one pass and Õ(ε−1) space.
Can find median in O(log m/ log log m) passes and Õ(1) space.

I Already seen one pass result:
I Can find elements with rank iεm ± εm for i ∈ [ε−1]

I For multiple-pass result:
I In pass 1, use one pass alg. with ε = 1

log m to find a and b s.t.

rank(a) =
m

2
− 2m

log m
± m

log m
and rank(b) =

m

2
+

2m

log m
± m

log m

I In pass 2, compute rank(a) and rank(b)
I Recurse on elements in the range (a, b).

One Pass Lower Bound

Theorem
Finding m/2±mδ rank element in 1 pass requires Ω(m1−δ) space.

I index Reduction: Alice has x ∈ {0, 1}t , Bob has j ∈ [t]

I Alice constructs A = {2i + xi : i ∈ [t]}
I Bob constructs B = {t − j copies of 0, j − 1 copies of 2t + 2}
I Median of the 2t − 1 values is 2j + xj

I ∴ Exact median requires Ω(t) = Ω(m) space.

I For approximate result, duplicate each element 2mδ + 1 times.

I ∴ Approx median requires Ω(t) = Ω(m/mδ) space.

Exercise
Prove an algorithm that doesn’t know m in advance requires Ω(m)
space to find median even when the data comes in sorted order.

One Pass Lower Bound

Theorem
Finding m/2±mδ rank element in 1 pass requires Ω(m1−δ) space.

I index Reduction: Alice has x ∈ {0, 1}t , Bob has j ∈ [t]

I Alice constructs A = {2i + xi : i ∈ [t]}
I Bob constructs B = {t − j copies of 0, j − 1 copies of 2t + 2}
I Median of the 2t − 1 values is 2j + xj

I ∴ Exact median requires Ω(t) = Ω(m) space.

I For approximate result, duplicate each element 2mδ + 1 times.

I ∴ Approx median requires Ω(t) = Ω(m/mδ) space.

Exercise
Prove an algorithm that doesn’t know m in advance requires Ω(m)
space to find median even when the data comes in sorted order.

One Pass Lower Bound

Theorem
Finding m/2±mδ rank element in 1 pass requires Ω(m1−δ) space.

I index Reduction: Alice has x ∈ {0, 1}t , Bob has j ∈ [t]

I Alice constructs A = {2i + xi : i ∈ [t]}

I Bob constructs B = {t − j copies of 0, j − 1 copies of 2t + 2}
I Median of the 2t − 1 values is 2j + xj

I ∴ Exact median requires Ω(t) = Ω(m) space.

I For approximate result, duplicate each element 2mδ + 1 times.

I ∴ Approx median requires Ω(t) = Ω(m/mδ) space.

Exercise
Prove an algorithm that doesn’t know m in advance requires Ω(m)
space to find median even when the data comes in sorted order.

One Pass Lower Bound

Theorem
Finding m/2±mδ rank element in 1 pass requires Ω(m1−δ) space.

I index Reduction: Alice has x ∈ {0, 1}t , Bob has j ∈ [t]

I Alice constructs A = {2i + xi : i ∈ [t]}
I Bob constructs B = {t − j copies of 0, j − 1 copies of 2t + 2}

I Median of the 2t − 1 values is 2j + xj

I ∴ Exact median requires Ω(t) = Ω(m) space.

I For approximate result, duplicate each element 2mδ + 1 times.

I ∴ Approx median requires Ω(t) = Ω(m/mδ) space.

Exercise
Prove an algorithm that doesn’t know m in advance requires Ω(m)
space to find median even when the data comes in sorted order.

One Pass Lower Bound

Theorem
Finding m/2±mδ rank element in 1 pass requires Ω(m1−δ) space.

I index Reduction: Alice has x ∈ {0, 1}t , Bob has j ∈ [t]

I Alice constructs A = {2i + xi : i ∈ [t]}
I Bob constructs B = {t − j copies of 0, j − 1 copies of 2t + 2}
I Median of the 2t − 1 values is 2j + xj

I ∴ Exact median requires Ω(t) = Ω(m) space.

I For approximate result, duplicate each element 2mδ + 1 times.

I ∴ Approx median requires Ω(t) = Ω(m/mδ) space.

Exercise
Prove an algorithm that doesn’t know m in advance requires Ω(m)
space to find median even when the data comes in sorted order.

One Pass Lower Bound

Theorem
Finding m/2±mδ rank element in 1 pass requires Ω(m1−δ) space.

I index Reduction: Alice has x ∈ {0, 1}t , Bob has j ∈ [t]

I Alice constructs A = {2i + xi : i ∈ [t]}
I Bob constructs B = {t − j copies of 0, j − 1 copies of 2t + 2}
I Median of the 2t − 1 values is 2j + xj

I ∴ Exact median requires Ω(t) = Ω(m) space.

I For approximate result, duplicate each element 2mδ + 1 times.

I ∴ Approx median requires Ω(t) = Ω(m/mδ) space.

Exercise
Prove an algorithm that doesn’t know m in advance requires Ω(m)
space to find median even when the data comes in sorted order.

One Pass Lower Bound

Theorem
Finding m/2±mδ rank element in 1 pass requires Ω(m1−δ) space.

I index Reduction: Alice has x ∈ {0, 1}t , Bob has j ∈ [t]

I Alice constructs A = {2i + xi : i ∈ [t]}
I Bob constructs B = {t − j copies of 0, j − 1 copies of 2t + 2}
I Median of the 2t − 1 values is 2j + xj

I ∴ Exact median requires Ω(t) = Ω(m) space.

I For approximate result, duplicate each element 2mδ + 1 times.

I ∴ Approx median requires Ω(t) = Ω(m/mδ) space.

Exercise
Prove an algorithm that doesn’t know m in advance requires Ω(m)
space to find median even when the data comes in sorted order.

One Pass Lower Bound

Theorem
Finding m/2±mδ rank element in 1 pass requires Ω(m1−δ) space.

I index Reduction: Alice has x ∈ {0, 1}t , Bob has j ∈ [t]

I Alice constructs A = {2i + xi : i ∈ [t]}
I Bob constructs B = {t − j copies of 0, j − 1 copies of 2t + 2}
I Median of the 2t − 1 values is 2j + xj

I ∴ Exact median requires Ω(t) = Ω(m) space.

I For approximate result, duplicate each element 2mδ + 1 times.

I ∴ Approx median requires Ω(t) = Ω(m/mδ) space.

Exercise
Prove an algorithm that doesn’t know m in advance requires Ω(m)
space to find median even when the data comes in sorted order.

One Pass Lower Bound

Theorem
Finding m/2±mδ rank element in 1 pass requires Ω(m1−δ) space.

I index Reduction: Alice has x ∈ {0, 1}t , Bob has j ∈ [t]

I Alice constructs A = {2i + xi : i ∈ [t]}
I Bob constructs B = {t − j copies of 0, j − 1 copies of 2t + 2}
I Median of the 2t − 1 values is 2j + xj

I ∴ Exact median requires Ω(t) = Ω(m) space.

I For approximate result, duplicate each element 2mδ + 1 times.

I ∴ Approx median requires Ω(t) = Ω(m/mδ) space.

Exercise
Prove an algorithm that doesn’t know m in advance requires Ω(m)
space to find median even when the data comes in sorted order.

Two Pass Lower Bound

Theorem
Finding median in 2 passes requires Ω(m1/2) space.

I “2-level index” Reduction: Alice has x1, . . . , x t ∈ {0, 1}t ,
Bob has y ∈ [t]t , Charlie has i ∈ [t]. To determine x i

j where
j = yi after two rounds, requires Ω(t) bits of communication.
[Nisan, Widgerson ’91]

I For j ∈ [t], appropriate players construct

Ai = {2j + x i
j : i ∈ [t]}+ oi where oi = B(i − 1)

Bi = {t − yi copies of 0 and yi − 1 copies of B}+ oi

C = {t − i copies of 0 and i − 1 copies of Bot}

I Median of the O(t2) values is oi + 2j + x i
j where j = yi

I ∴ Exact median requires Ω(t) = Ω(m1/2) space.

Two Pass Lower Bound

Theorem
Finding median in 2 passes requires Ω(m1/2) space.

I “2-level index” Reduction: Alice has x1, . . . , x t ∈ {0, 1}t ,
Bob has y ∈ [t]t , Charlie has i ∈ [t]. To determine x i

j where
j = yi after two rounds, requires Ω(t) bits of communication.
[Nisan, Widgerson ’91]

I For j ∈ [t], appropriate players construct

Ai = {2j + x i
j : i ∈ [t]}+ oi where oi = B(i − 1)

Bi = {t − yi copies of 0 and yi − 1 copies of B}+ oi

C = {t − i copies of 0 and i − 1 copies of Bot}

I Median of the O(t2) values is oi + 2j + x i
j where j = yi

I ∴ Exact median requires Ω(t) = Ω(m1/2) space.

Two Pass Lower Bound

Theorem
Finding median in 2 passes requires Ω(m1/2) space.

I “2-level index” Reduction: Alice has x1, . . . , x t ∈ {0, 1}t ,
Bob has y ∈ [t]t , Charlie has i ∈ [t]. To determine x i

j where
j = yi after two rounds, requires Ω(t) bits of communication.
[Nisan, Widgerson ’91]

I For j ∈ [t], appropriate players construct

Ai = {2j + x i
j : i ∈ [t]}+ oi where oi = B(i − 1)

Bi = {t − yi copies of 0 and yi − 1 copies of B}+ oi

C = {t − i copies of 0 and i − 1 copies of Bot}

I Median of the O(t2) values is oi + 2j + x i
j where j = yi

I ∴ Exact median requires Ω(t) = Ω(m1/2) space.

Two Pass Lower Bound

Theorem
Finding median in 2 passes requires Ω(m1/2) space.

I “2-level index” Reduction: Alice has x1, . . . , x t ∈ {0, 1}t ,
Bob has y ∈ [t]t , Charlie has i ∈ [t]. To determine x i

j where
j = yi after two rounds, requires Ω(t) bits of communication.
[Nisan, Widgerson ’91]

I For j ∈ [t], appropriate players construct

Ai = {2j + x i
j : i ∈ [t]}+ oi where oi = B(i − 1)

Bi = {t − yi copies of 0 and yi − 1 copies of B}+ oi

C = {t − i copies of 0 and i − 1 copies of Bot}

I Median of the O(t2) values is oi + 2j + x i
j where j = yi

I ∴ Exact median requires Ω(t) = Ω(m1/2) space.

Two Pass Lower Bound

Theorem
Finding median in 2 passes requires Ω(m1/2) space.

I “2-level index” Reduction: Alice has x1, . . . , x t ∈ {0, 1}t ,
Bob has y ∈ [t]t , Charlie has i ∈ [t]. To determine x i

j where
j = yi after two rounds, requires Ω(t) bits of communication.
[Nisan, Widgerson ’91]

I For j ∈ [t], appropriate players construct

Ai = {2j + x i
j : i ∈ [t]}+ oi where oi = B(i − 1)

Bi = {t − yi copies of 0 and yi − 1 copies of B}+ oi

C = {t − i copies of 0 and i − 1 copies of Bot}

I Median of the O(t2) values is oi + 2j + x i
j where j = yi

I ∴ Exact median requires Ω(t) = Ω(m1/2) space.

Outline

Selection
Adversarial Order
Random Order

Frequency Moments

Hamming Distance

Random Order Algorithms

Theorem
Can find element of rank m/2± Õ(

√
m) in one pass and Õ(1)

space. Can find median in O(log log m) passes and Õ(1) space.

I One pass result:

I Split stream into O(log m) segments of length O(m/ log m)
I At start of i-th segment: we think rank(ai) < m/2 < rank(bi).
I Let c be first element in segment with ai < c < bi

I In rest of segment, estimate rank(c) by r̃
I If r̃ = m/2± Õ(

√
m) return r̃ , otherwise:

(ai+1, bi+1) =

{
(ai , c) if r̃ > m/2
(c , bi) if r̃ < m/2

I For multiple-pass result: Recurse with care!

Random Order Algorithms

Theorem
Can find element of rank m/2± Õ(

√
m) in one pass and Õ(1)

space. Can find median in O(log log m) passes and Õ(1) space.

I One pass result:

I Split stream into O(log m) segments of length O(m/ log m)
I At start of i-th segment: we think rank(ai) < m/2 < rank(bi).
I Let c be first element in segment with ai < c < bi

I In rest of segment, estimate rank(c) by r̃
I If r̃ = m/2± Õ(

√
m) return r̃ , otherwise:

(ai+1, bi+1) =

{
(ai , c) if r̃ > m/2
(c , bi) if r̃ < m/2

I For multiple-pass result: Recurse with care!

Random Order Algorithms

Theorem
Can find element of rank m/2± Õ(

√
m) in one pass and Õ(1)

space. Can find median in O(log log m) passes and Õ(1) space.

I One pass result:
I Split stream into O(log m) segments of length O(m/ log m)

I At start of i-th segment: we think rank(ai) < m/2 < rank(bi).
I Let c be first element in segment with ai < c < bi

I In rest of segment, estimate rank(c) by r̃
I If r̃ = m/2± Õ(

√
m) return r̃ , otherwise:

(ai+1, bi+1) =

{
(ai , c) if r̃ > m/2
(c , bi) if r̃ < m/2

I For multiple-pass result: Recurse with care!

Random Order Algorithms

Theorem
Can find element of rank m/2± Õ(

√
m) in one pass and Õ(1)

space. Can find median in O(log log m) passes and Õ(1) space.

I One pass result:
I Split stream into O(log m) segments of length O(m/ log m)
I At start of i-th segment: we think rank(ai) < m/2 < rank(bi).

I Let c be first element in segment with ai < c < bi

I In rest of segment, estimate rank(c) by r̃
I If r̃ = m/2± Õ(

√
m) return r̃ , otherwise:

(ai+1, bi+1) =

{
(ai , c) if r̃ > m/2
(c , bi) if r̃ < m/2

I For multiple-pass result: Recurse with care!

Random Order Algorithms

Theorem
Can find element of rank m/2± Õ(

√
m) in one pass and Õ(1)

space. Can find median in O(log log m) passes and Õ(1) space.

I One pass result:
I Split stream into O(log m) segments of length O(m/ log m)
I At start of i-th segment: we think rank(ai) < m/2 < rank(bi).
I Let c be first element in segment with ai < c < bi

I In rest of segment, estimate rank(c) by r̃
I If r̃ = m/2± Õ(

√
m) return r̃ , otherwise:

(ai+1, bi+1) =

{
(ai , c) if r̃ > m/2
(c , bi) if r̃ < m/2

I For multiple-pass result: Recurse with care!

Random Order Algorithms

Theorem
Can find element of rank m/2± Õ(

√
m) in one pass and Õ(1)

space. Can find median in O(log log m) passes and Õ(1) space.

I One pass result:
I Split stream into O(log m) segments of length O(m/ log m)
I At start of i-th segment: we think rank(ai) < m/2 < rank(bi).
I Let c be first element in segment with ai < c < bi

I In rest of segment, estimate rank(c) by r̃

I If r̃ = m/2± Õ(
√

m) return r̃ , otherwise:

(ai+1, bi+1) =

{
(ai , c) if r̃ > m/2
(c , bi) if r̃ < m/2

I For multiple-pass result: Recurse with care!

Random Order Algorithms

Theorem
Can find element of rank m/2± Õ(

√
m) in one pass and Õ(1)

space. Can find median in O(log log m) passes and Õ(1) space.

I One pass result:
I Split stream into O(log m) segments of length O(m/ log m)
I At start of i-th segment: we think rank(ai) < m/2 < rank(bi).
I Let c be first element in segment with ai < c < bi

I In rest of segment, estimate rank(c) by r̃
I If r̃ = m/2± Õ(

√
m) return r̃ , otherwise:

(ai+1, bi+1) =

{
(ai , c) if r̃ > m/2
(c , bi) if r̃ < m/2

I For multiple-pass result: Recurse with care!

Random Order Algorithms

Theorem
Can find element of rank m/2± Õ(

√
m) in one pass and Õ(1)

space. Can find median in O(log log m) passes and Õ(1) space.

I One pass result:
I Split stream into O(log m) segments of length O(m/ log m)
I At start of i-th segment: we think rank(ai) < m/2 < rank(bi).
I Let c be first element in segment with ai < c < bi

I In rest of segment, estimate rank(c) by r̃
I If r̃ = m/2± Õ(

√
m) return r̃ , otherwise:

(ai+1, bi+1) =

{
(ai , c) if r̃ > m/2
(c , bi) if r̃ < m/2

I For multiple-pass result: Recurse with care!

Random Order One Pass Lower Bound

Theorem
Finding median in 1 pass requires Ω(m1/2) space.

I index Reduction: Alice has x ∈ {0, 1}t , Bob has j ∈ [t].
Solving problem requires Ω(t) even when x ∈R {0, 1}t .

I For some constant c > 0, define:

A = {2i + xi : i ∈ [t]}

B = {ct2 + t − j copies of 0 and ct2 + j − 1 copies of 2t + 2}
I Alice and Bob simulate algorithm on random permutation of

A∪B. Alice determines 1st half and Bob determines 2nd half:

I Alice assumes j = t/2: Bob “fixes” the balance.
I Bob guesses values of xi if 2i + xi appears in his half.

I Choosing large c ensures ordering is sufficiently random.

Random Order One Pass Lower Bound

Theorem
Finding median in 1 pass requires Ω(m1/2) space.

I index Reduction: Alice has x ∈ {0, 1}t , Bob has j ∈ [t].
Solving problem requires Ω(t) even when x ∈R {0, 1}t .

I For some constant c > 0, define:

A = {2i + xi : i ∈ [t]}

B = {ct2 + t − j copies of 0 and ct2 + j − 1 copies of 2t + 2}
I Alice and Bob simulate algorithm on random permutation of

A∪B. Alice determines 1st half and Bob determines 2nd half:

I Alice assumes j = t/2: Bob “fixes” the balance.
I Bob guesses values of xi if 2i + xi appears in his half.

I Choosing large c ensures ordering is sufficiently random.

Random Order One Pass Lower Bound

Theorem
Finding median in 1 pass requires Ω(m1/2) space.

I index Reduction: Alice has x ∈ {0, 1}t , Bob has j ∈ [t].
Solving problem requires Ω(t) even when x ∈R {0, 1}t .

I For some constant c > 0, define:

A = {2i + xi : i ∈ [t]}

B = {ct2 + t − j copies of 0 and ct2 + j − 1 copies of 2t + 2}

I Alice and Bob simulate algorithm on random permutation of
A∪B. Alice determines 1st half and Bob determines 2nd half:

I Alice assumes j = t/2: Bob “fixes” the balance.
I Bob guesses values of xi if 2i + xi appears in his half.

I Choosing large c ensures ordering is sufficiently random.

Random Order One Pass Lower Bound

Theorem
Finding median in 1 pass requires Ω(m1/2) space.

I index Reduction: Alice has x ∈ {0, 1}t , Bob has j ∈ [t].
Solving problem requires Ω(t) even when x ∈R {0, 1}t .

I For some constant c > 0, define:

A = {2i + xi : i ∈ [t]}

B = {ct2 + t − j copies of 0 and ct2 + j − 1 copies of 2t + 2}
I Alice and Bob simulate algorithm on random permutation of

A∪B. Alice determines 1st half and Bob determines 2nd half:

I Alice assumes j = t/2: Bob “fixes” the balance.
I Bob guesses values of xi if 2i + xi appears in his half.

I Choosing large c ensures ordering is sufficiently random.

Random Order One Pass Lower Bound

Theorem
Finding median in 1 pass requires Ω(m1/2) space.

I index Reduction: Alice has x ∈ {0, 1}t , Bob has j ∈ [t].
Solving problem requires Ω(t) even when x ∈R {0, 1}t .

I For some constant c > 0, define:

A = {2i + xi : i ∈ [t]}

B = {ct2 + t − j copies of 0 and ct2 + j − 1 copies of 2t + 2}
I Alice and Bob simulate algorithm on random permutation of

A∪B. Alice determines 1st half and Bob determines 2nd half:

I Alice assumes j = t/2: Bob “fixes” the balance.

I Bob guesses values of xi if 2i + xi appears in his half.

I Choosing large c ensures ordering is sufficiently random.

Random Order One Pass Lower Bound

Theorem
Finding median in 1 pass requires Ω(m1/2) space.

I index Reduction: Alice has x ∈ {0, 1}t , Bob has j ∈ [t].
Solving problem requires Ω(t) even when x ∈R {0, 1}t .

I For some constant c > 0, define:

A = {2i + xi : i ∈ [t]}

B = {ct2 + t − j copies of 0 and ct2 + j − 1 copies of 2t + 2}
I Alice and Bob simulate algorithm on random permutation of

A∪B. Alice determines 1st half and Bob determines 2nd half:

I Alice assumes j = t/2: Bob “fixes” the balance.
I Bob guesses values of xi if 2i + xi appears in his half.

I Choosing large c ensures ordering is sufficiently random.

Random Order One Pass Lower Bound

Theorem
Finding median in 1 pass requires Ω(m1/2) space.

I index Reduction: Alice has x ∈ {0, 1}t , Bob has j ∈ [t].
Solving problem requires Ω(t) even when x ∈R {0, 1}t .

I For some constant c > 0, define:

A = {2i + xi : i ∈ [t]}

B = {ct2 + t − j copies of 0 and ct2 + j − 1 copies of 2t + 2}
I Alice and Bob simulate algorithm on random permutation of

A∪B. Alice determines 1st half and Bob determines 2nd half:

I Alice assumes j = t/2: Bob “fixes” the balance.
I Bob guesses values of xi if 2i + xi appears in his half.

I Choosing large c ensures ordering is sufficiently random.

Outline

Selection
Adversarial Order
Random Order

Frequency Moments

Hamming Distance

Frequency Moments

Problem
Given m elements from [n], find (1 + ε) approx for Fk =

∑
i∈[n] f k

i

with probability 1− δ where fi is the frequency of item i.

Theorem (Chakrabarti et al. ’03, Indyk, Woodruff ’05)

Θ̃ε,δ(n1−2/k) space when stream is in adversarial order.

Theorem (Andoni et al. ’08)

Ω̃(n1−2.5/k) space necessary when the stream is in random order.

Rumor has it that that this has been tightened to Ω(n1−2/k) . . .

Frequency Moments

Problem
Given m elements from [n], find (1 + ε) approx for Fk =

∑
i∈[n] f k

i

with probability 1− δ where fi is the frequency of item i.

Theorem (Chakrabarti et al. ’03, Indyk, Woodruff ’05)

Θ̃ε,δ(n1−2/k) space when stream is in adversarial order.

Theorem (Andoni et al. ’08)

Ω̃(n1−2.5/k) space necessary when the stream is in random order.

Rumor has it that that this has been tightened to Ω(n1−2/k) . . .

Frequency Moments

Problem
Given m elements from [n], find (1 + ε) approx for Fk =

∑
i∈[n] f k

i

with probability 1− δ where fi is the frequency of item i.

Theorem (Chakrabarti et al. ’03, Indyk, Woodruff ’05)

Θ̃ε,δ(n1−2/k) space when stream is in adversarial order.

Theorem (Andoni et al. ’08)

Ω̃(n1−2.5/k) space necessary when the stream is in random order.

Rumor has it that that this has been tightened to Ω(n1−2/k) . . .

Frequency Moments

Problem
Given m elements from [n], find (1 + ε) approx for Fk =

∑
i∈[n] f k

i

with probability 1− δ where fi is the frequency of item i.

Theorem (Chakrabarti et al. ’03, Indyk, Woodruff ’05)

Θ̃ε,δ(n1−2/k) space when stream is in adversarial order.

Theorem (Andoni et al. ’08)

Ω̃(n1−2.5/k) space necessary when the stream is in random order.

Rumor has it that that this has been tightened to Ω(n1−2/k) . . .

Adversarial Order Lower Bound

I t-DISJ Reduction: t sets S1, . . . ,St ⊂ [n] of size n/t. Are
sets pairwise-disjoint or does there exists common element?

I If i-th player has Si , t-DISJ requires Ω̃(n/t) communication.
[Bar-Yosseff et al. ’02, Chakrabarti et al. ’03]

I Let S = ∪i∈[t]Si . If tk > 2n,

(Fk(S) ≤ n)⇒ (t-DISJ(S) = “disjoint”)

(Fk(S) ≥ 2n)⇒ (t-DISJ(S) = “common element”)

I An 1-pass, s-space algorithm that 2-approximates Fk gives a
ts-space algorithm that solves (2n)1/k-DISJ

Adversarial Order Lower Bound

I t-DISJ Reduction: t sets S1, . . . ,St ⊂ [n] of size n/t. Are
sets pairwise-disjoint or does there exists common element?

I If i-th player has Si , t-DISJ requires Ω̃(n/t) communication.
[Bar-Yosseff et al. ’02, Chakrabarti et al. ’03]

I Let S = ∪i∈[t]Si . If tk > 2n,

(Fk(S) ≤ n)⇒ (t-DISJ(S) = “disjoint”)

(Fk(S) ≥ 2n)⇒ (t-DISJ(S) = “common element”)

I An 1-pass, s-space algorithm that 2-approximates Fk gives a
ts-space algorithm that solves (2n)1/k-DISJ

Adversarial Order Lower Bound

I t-DISJ Reduction: t sets S1, . . . ,St ⊂ [n] of size n/t. Are
sets pairwise-disjoint or does there exists common element?

I If i-th player has Si , t-DISJ requires Ω̃(n/t) communication.
[Bar-Yosseff et al. ’02, Chakrabarti et al. ’03]

I Let S = ∪i∈[t]Si . If tk > 2n,

(Fk(S) ≤ n)⇒ (t-DISJ(S) = “disjoint”)

(Fk(S) ≥ 2n)⇒ (t-DISJ(S) = “common element”)

I An 1-pass, s-space algorithm that 2-approximates Fk gives a
ts-space algorithm that solves (2n)1/k-DISJ

Adversarial Order Lower Bound

I t-DISJ Reduction: t sets S1, . . . ,St ⊂ [n] of size n/t. Are
sets pairwise-disjoint or does there exists common element?

I If i-th player has Si , t-DISJ requires Ω̃(n/t) communication.
[Bar-Yosseff et al. ’02, Chakrabarti et al. ’03]

I Let S = ∪i∈[t]Si . If tk > 2n,

(Fk(S) ≤ n)⇒ (t-DISJ(S) = “disjoint”)

(Fk(S) ≥ 2n)⇒ (t-DISJ(S) = “common element”)

I An 1-pass, s-space algorithm that 2-approximates Fk gives a
ts-space algorithm that solves (2n)1/k-DISJ

Random Order Lower Bound

Theorem (Andoni et al. ’08)

Ω̃(n1−3/k) space necessary for random order stream.

I t-DISJ Reduction: S1, . . . ,St ⊂ [n′] of size n′/t.

I Using public random bits, players pick random stream S from
[2n]n, random map f : [n]→ [n], and random permutations πi

I Player i computes string σ(f (Si))
I Players embed the strings in S at random locations:

I If embedding of two strings overlap, abort algorithm.
I Probability of aborting is sufficiently small if n′ = n1−1/k

Extending ideas, gives Ω̃(n1−2/k).

Random Order Lower Bound

Theorem (Andoni et al. ’08)

Ω̃(n1−3/k) space necessary for random order stream.

I t-DISJ Reduction: S1, . . . ,St ⊂ [n′] of size n′/t.

I Using public random bits, players pick random stream S from
[2n]n, random map f : [n]→ [n], and random permutations πi

I Player i computes string σ(f (Si))
I Players embed the strings in S at random locations:

I If embedding of two strings overlap, abort algorithm.
I Probability of aborting is sufficiently small if n′ = n1−1/k

Extending ideas, gives Ω̃(n1−2/k).

Random Order Lower Bound

Theorem (Andoni et al. ’08)

Ω̃(n1−3/k) space necessary for random order stream.

I t-DISJ Reduction: S1, . . . ,St ⊂ [n′] of size n′/t.

I Using public random bits, players pick random stream S from
[2n]n, random map f : [n]→ [n], and random permutations πi

I Player i computes string σ(f (Si))
I Players embed the strings in S at random locations:

I If embedding of two strings overlap, abort algorithm.
I Probability of aborting is sufficiently small if n′ = n1−1/k

Extending ideas, gives Ω̃(n1−2/k).

Random Order Lower Bound

Theorem (Andoni et al. ’08)

Ω̃(n1−3/k) space necessary for random order stream.

I t-DISJ Reduction: S1, . . . ,St ⊂ [n′] of size n′/t.

I Using public random bits, players pick random stream S from
[2n]n, random map f : [n]→ [n], and random permutations πi

I Player i computes string σ(f (Si))
I Players embed the strings in S at random locations:

I If embedding of two strings overlap, abort algorithm.
I Probability of aborting is sufficiently small if n′ = n1−1/k

Extending ideas, gives Ω̃(n1−2/k).

Random Order Lower Bound

Theorem (Andoni et al. ’08)

Ω̃(n1−3/k) space necessary for random order stream.

I t-DISJ Reduction: S1, . . . ,St ⊂ [n′] of size n′/t.

I Using public random bits, players pick random stream S from
[2n]n, random map f : [n]→ [n], and random permutations πi

I Player i computes string σ(f (Si))

I Players embed the strings in S at random locations:
I If embedding of two strings overlap, abort algorithm.
I Probability of aborting is sufficiently small if n′ = n1−1/k

Extending ideas, gives Ω̃(n1−2/k).

Random Order Lower Bound

Theorem (Andoni et al. ’08)

Ω̃(n1−3/k) space necessary for random order stream.

I t-DISJ Reduction: S1, . . . ,St ⊂ [n′] of size n′/t.

I Using public random bits, players pick random stream S from
[2n]n, random map f : [n]→ [n], and random permutations πi

I Player i computes string σ(f (Si))
I Players embed the strings in S at random locations:

I If embedding of two strings overlap, abort algorithm.
I Probability of aborting is sufficiently small if n′ = n1−1/k

Extending ideas, gives Ω̃(n1−2/k).

Random Order Lower Bound

Theorem (Andoni et al. ’08)

Ω̃(n1−3/k) space necessary for random order stream.

I t-DISJ Reduction: S1, . . . ,St ⊂ [n′] of size n′/t.

I Using public random bits, players pick random stream S from
[2n]n, random map f : [n]→ [n], and random permutations πi

I Player i computes string σ(f (Si))
I Players embed the strings in S at random locations:

I If embedding of two strings overlap, abort algorithm.
I Probability of aborting is sufficiently small if n′ = n1−1/k

Extending ideas, gives Ω̃(n1−2/k).

Outline

Selection
Adversarial Order
Random Order

Frequency Moments

Hamming Distance

Hamming Distance Lower Bound

Problem
Alice knows x ∈ {0, 1}n and Bob knows y ∈ {0, 1}n. Want to
estimate hamming distance up to ±o(

√
n) with probability 9/10.

Theorem (Woodruff 2004, Jayram et al. 2008)

Any one-way protocol requires Ω(n) bits of communication.

Theorem (Brody, Chakrabarti last week)

Any O(1)-round protocol requires Ω(n) bits of communication.

Corollary

Any O(1)-pass algorithm that (1 + ε) approximates F0 or F2

requires Ω(ε−2) space.

Hamming Distance Lower Bound

Problem
Alice knows x ∈ {0, 1}n and Bob knows y ∈ {0, 1}n. Want to
estimate hamming distance up to ±o(

√
n) with probability 9/10.

Theorem (Woodruff 2004, Jayram et al. 2008)

Any one-way protocol requires Ω(n) bits of communication.

Theorem (Brody, Chakrabarti last week)

Any O(1)-round protocol requires Ω(n) bits of communication.

Corollary

Any O(1)-pass algorithm that (1 + ε) approximates F0 or F2

requires Ω(ε−2) space.

Hamming Distance Lower Bound

Problem
Alice knows x ∈ {0, 1}n and Bob knows y ∈ {0, 1}n. Want to
estimate hamming distance up to ±o(

√
n) with probability 9/10.

Theorem (Woodruff 2004, Jayram et al. 2008)

Any one-way protocol requires Ω(n) bits of communication.

Theorem (Brody, Chakrabarti last week)

Any O(1)-round protocol requires Ω(n) bits of communication.

Corollary

Any O(1)-pass algorithm that (1 + ε) approximates F0 or F2

requires Ω(ε−2) space.

Hamming Distance Lower Bound

Problem
Alice knows x ∈ {0, 1}n and Bob knows y ∈ {0, 1}n. Want to
estimate hamming distance up to ±o(

√
n) with probability 9/10.

Theorem (Woodruff 2004, Jayram et al. 2008)

Any one-way protocol requires Ω(n) bits of communication.

Theorem (Brody, Chakrabarti last week)

Any O(1)-round protocol requires Ω(n) bits of communication.

Corollary

Any O(1)-pass algorithm that (1 + ε) approximates F0 or F2

requires Ω(ε−2) space.

One-Pass Lower Bound (1/2)

I Reduction from index problem: Alice knows z ∈ {0, 1}t and
Bob knows j ∈ [t]. Let’s assume |z | = t/2 and this is odd.

I Alice and Bob pick r ∈R {−1, 1}n using public random bits.

I Alice computes sn(r .z) and Bob computes sn(rj)

I Claim: For some constant c > 0,

P [sn(r .z) = sn(rj)] =

{
1/2 if zj = 0
1/2 + c/

√
t if zj = 1

I Repeat n = O(t) times to construct

xi = I [sn(r .z) = +] and yi = I [sn(rj) = +]

I With probability 9/10, for some constants c1 < c2,

zj = 0⇒ ∆(x , y) ≥ n/2− c1

√
n

zj = 1⇒ ∆(x , y) ≤ n/2− c2

√
n

One-Pass Lower Bound (1/2)

I Reduction from index problem: Alice knows z ∈ {0, 1}t and
Bob knows j ∈ [t]. Let’s assume |z | = t/2 and this is odd.

I Alice and Bob pick r ∈R {−1, 1}n using public random bits.

I Alice computes sn(r .z) and Bob computes sn(rj)

I Claim: For some constant c > 0,

P [sn(r .z) = sn(rj)] =

{
1/2 if zj = 0
1/2 + c/

√
t if zj = 1

I Repeat n = O(t) times to construct

xi = I [sn(r .z) = +] and yi = I [sn(rj) = +]

I With probability 9/10, for some constants c1 < c2,

zj = 0⇒ ∆(x , y) ≥ n/2− c1

√
n

zj = 1⇒ ∆(x , y) ≤ n/2− c2

√
n

One-Pass Lower Bound (1/2)

I Reduction from index problem: Alice knows z ∈ {0, 1}t and
Bob knows j ∈ [t]. Let’s assume |z | = t/2 and this is odd.

I Alice and Bob pick r ∈R {−1, 1}n using public random bits.

I Alice computes sn(r .z) and Bob computes sn(rj)

I Claim: For some constant c > 0,

P [sn(r .z) = sn(rj)] =

{
1/2 if zj = 0
1/2 + c/

√
t if zj = 1

I Repeat n = O(t) times to construct

xi = I [sn(r .z) = +] and yi = I [sn(rj) = +]

I With probability 9/10, for some constants c1 < c2,

zj = 0⇒ ∆(x , y) ≥ n/2− c1

√
n

zj = 1⇒ ∆(x , y) ≤ n/2− c2

√
n

One-Pass Lower Bound (1/2)

I Reduction from index problem: Alice knows z ∈ {0, 1}t and
Bob knows j ∈ [t]. Let’s assume |z | = t/2 and this is odd.

I Alice and Bob pick r ∈R {−1, 1}n using public random bits.

I Alice computes sn(r .z) and Bob computes sn(rj)

I Claim: For some constant c > 0,

P [sn(r .z) = sn(rj)] =

{
1/2 if zj = 0
1/2 + c/

√
t if zj = 1

I Repeat n = O(t) times to construct

xi = I [sn(r .z) = +] and yi = I [sn(rj) = +]

I With probability 9/10, for some constants c1 < c2,

zj = 0⇒ ∆(x , y) ≥ n/2− c1

√
n

zj = 1⇒ ∆(x , y) ≤ n/2− c2

√
n

One-Pass Lower Bound (1/2)

I Reduction from index problem: Alice knows z ∈ {0, 1}t and
Bob knows j ∈ [t]. Let’s assume |z | = t/2 and this is odd.

I Alice and Bob pick r ∈R {−1, 1}n using public random bits.

I Alice computes sn(r .z) and Bob computes sn(rj)

I Claim: For some constant c > 0,

P [sn(r .z) = sn(rj)] =

{
1/2 if zj = 0
1/2 + c/

√
t if zj = 1

I Repeat n = O(t) times to construct

xi = I [sn(r .z) = +] and yi = I [sn(rj) = +]

I With probability 9/10, for some constants c1 < c2,

zj = 0⇒ ∆(x , y) ≥ n/2− c1

√
n

zj = 1⇒ ∆(x , y) ≤ n/2− c2

√
n

One-Pass Lower Bound (1/2)

I Reduction from index problem: Alice knows z ∈ {0, 1}t and
Bob knows j ∈ [t]. Let’s assume |z | = t/2 and this is odd.

I Alice and Bob pick r ∈R {−1, 1}n using public random bits.

I Alice computes sn(r .z) and Bob computes sn(rj)

I Claim: For some constant c > 0,

P [sn(r .z) = sn(rj)] =

{
1/2 if zj = 0
1/2 + c/

√
t if zj = 1

I Repeat n = O(t) times to construct

xi = I [sn(r .z) = +] and yi = I [sn(rj) = +]

I With probability 9/10, for some constants c1 < c2,

zj = 0⇒ ∆(x , y) ≥ n/2− c1

√
n

zj = 1⇒ ∆(x , y) ≤ n/2− c2

√
n

One-Pass Lower Bound (2/2)

Claim
For some constant c > 0,

P [sn(r .z) = sn(rj)] =

{
1/2 if zj = 0
1/2 + c/

√
t if zj = 1

I If zj = 0 then sn(r .z) and sn(rj) are independent.

I If zj = 1, let s = r .z − rj , A = {sn(r .z) = sn(rj)}:

P [A] = P [A|s = 0] P [s = 0] + P [A|s 6= 0] P [s 6= 0]

P [A|s = 0] = 1 and P [A|s 6= 0] = 1/2

P [s = 0] = 2c/
√

n for some constant c > 0

One-Pass Lower Bound (2/2)

Claim
For some constant c > 0,

P [sn(r .z) = sn(rj)] =

{
1/2 if zj = 0
1/2 + c/

√
t if zj = 1

I If zj = 0 then sn(r .z) and sn(rj) are independent.

I If zj = 1, let s = r .z − rj , A = {sn(r .z) = sn(rj)}:

P [A] = P [A|s = 0] P [s = 0] + P [A|s 6= 0] P [s 6= 0]

P [A|s = 0] = 1 and P [A|s 6= 0] = 1/2

P [s = 0] = 2c/
√

n for some constant c > 0

One-Pass Lower Bound (2/2)

Claim
For some constant c > 0,

P [sn(r .z) = sn(rj)] =

{
1/2 if zj = 0
1/2 + c/

√
t if zj = 1

I If zj = 0 then sn(r .z) and sn(rj) are independent.

I If zj = 1, let s = r .z − rj , A = {sn(r .z) = sn(rj)}:

P [A] = P [A|s = 0] P [s = 0] + P [A|s 6= 0] P [s 6= 0]

P [A|s = 0] = 1 and P [A|s 6= 0] = 1/2

P [s = 0] = 2c/
√

n for some constant c > 0

One-Pass Lower Bound (2/2)

Claim
For some constant c > 0,

P [sn(r .z) = sn(rj)] =

{
1/2 if zj = 0
1/2 + c/

√
t if zj = 1

I If zj = 0 then sn(r .z) and sn(rj) are independent.

I If zj = 1, let s = r .z − rj , A = {sn(r .z) = sn(rj)}:

P [A] = P [A|s = 0] P [s = 0] + P [A|s 6= 0] P [s 6= 0]

P [A|s = 0] = 1 and P [A|s 6= 0] = 1/2

P [s = 0] = 2c/
√

n for some constant c > 0

One-Pass Lower Bound (2/2)

Claim
For some constant c > 0,

P [sn(r .z) = sn(rj)] =

{
1/2 if zj = 0
1/2 + c/

√
t if zj = 1

I If zj = 0 then sn(r .z) and sn(rj) are independent.

I If zj = 1, let s = r .z − rj , A = {sn(r .z) = sn(rj)}:

P [A] = P [A|s = 0] P [s = 0] + P [A|s 6= 0] P [s 6= 0]

P [A|s = 0] = 1 and P [A|s 6= 0] = 1/2

P [s = 0] = 2c/
√

n for some constant c > 0

One-Pass Lower Bound (2/2)

Claim
For some constant c > 0,

P [sn(r .z) = sn(rj)] =

{
1/2 if zj = 0
1/2 + c/

√
t if zj = 1

I If zj = 0 then sn(r .z) and sn(rj) are independent.

I If zj = 1, let s = r .z − rj , A = {sn(r .z) = sn(rj)}:

P [A] = P [A|s = 0] P [s = 0] + P [A|s 6= 0] P [s 6= 0]

P [A|s = 0] = 1 and P [A|s 6= 0] = 1/2

P [s = 0] = 2c/
√

n for some constant c > 0

Summary: We looked at some nice problems, our curiousity is
piqued, and now we want to start finding more problems to solve.

Thanks!

	Outline
	Selection
	Adversarial Order
	Random Order

	Frequency Moments
	Hamming Distance

