Data Streams: Random Order & Multiple Passes 2009 Barbados Workshop on Computational Complexity

Andrew McGregor

Introduction

Random Order Streams:

- Average case analysis: data is worst-case but order is random.
- Lower bounds are more useful than in the adversarial case.
- Streams ordered randomly: e.g., space-efficient sampling

Introduction

Random Order Streams:

- Average case analysis: data is worst-case but order is random.
- Lower bounds are more useful than in the adversarial case.
- Streams ordered randomly: e.g., space-efficient sampling

Multiple Pass Streams:

- How much extra power do you get with a few extra passes?
- ▶ With external data, it's easier to access data sequentially.

Problem

Given a stream of n values from [n], what's smallest value that doesn't appear in stream? You have p passes over the data.

Problem

Given a stream of n values from [n], what's smallest value that doesn't appear in stream? You have p passes over the data.

► Version 1: All values appear exactly once except for the missing value.
Õ(1)

Problem

Given a stream of n values from [n], what's smallest value that doesn't appear in stream? You have p passes over the data.

 Version 1: All values appear exactly once except for the missing value.

$\tilde{\Theta}(1)$

Version 2: All values less than smallest missing value appear exactly once

 $\tilde{\Theta}(n^{1/p})$

Problem

Given a stream of n values from [n], what's smallest value that doesn't appear in stream? You have p passes over the data.

 Version 1: All values appear exactly once except for the missing value.

$\tilde{\Theta}(1)$

Version 2: All values less than smallest missing value appear exactly once

 $\tilde{\Theta}(n^{1/p})$

► Version 3: General problem,

 $\tilde{\Theta}(n/p)$

Problem

Given a stream of n values from [n], what's smallest value that doesn't appear in stream? You have p passes over the data.

 Version 1: All values appear exactly once except for the missing value.

 $\tilde{\Theta}(1)$

Version 2: All values less than smallest missing value appear exactly once

 $\tilde{\Theta}(n^{1/p})$

Version 3: General problem,

 $\tilde{\Theta}(n/p)$

Other trade-offs: Find length k increasing sequence given it exists: $\tilde{\Theta}(k^{1+1/(2^{\rho}-1)})$ [Liben-Nowell et al. '06, Guha, McGregor '08]

Random Order Streams

Problem Given m values from [n], find median in polylog(m, n) space.

Random Order Streams

Problem

Given m values from [n], find median in polylog(m, n) space.

Approximate Median (i.e., one with rank $m/2 \pm t$) in One Pass:

- Adversarial: Θ̃(m)-approx [Greenwald, Khanna '01]
- Random: $\tilde{O}(m^{1/2})$ -approx [Guha, McGregor '06]

Random Order Streams

Problem

Given m values from [n], find median in polylog(m, n) space.

Approximate Median (i.e., one with rank $m/2 \pm t$) in One Pass:

- Adversarial: Θ̃(m)-approx [Greenwald, Khanna '01]
- Random: $\tilde{O}(m^{1/2})$ -approx [Guha, McGregor '06]

Exact Median in Multiple Passes

- Adversarial: Θ(log m/ log log m) pass [Munro, Paterson '78, Guha, McGregor '07]
- Random: Θ(log log m) pass [Guha, McGregor '06, Chakrabarti, Jayram, Patrascu '08, Chakrabarti, Cormode, McGregor '08]

Selection

Adversarial Order Random Order

Frequency Moments

Outline

Selection Adversarial Order Random Order

Frequency Moments

Outline

Selection Adversarial Order Random Order

Frequency Moments

Theorem (Adversarial Order)

Can find element of rank $m/2 \pm \epsilon m$ in one pass and $\tilde{O}(\epsilon^{-1})$ space. Can find median in $O(\log m / \log \log m)$ passes and $\tilde{O}(1)$ space.

Theorem (Adversarial Order)

Can find element of rank $m/2 \pm \epsilon m$ in one pass and $\tilde{O}(\epsilon^{-1})$ space. Can find median in $O(\log m / \log \log m)$ passes and $\tilde{O}(1)$ space.

- Already seen one pass result:
 - Can find elements with rank $i\epsilon m \pm \epsilon m$ for $i \in [\epsilon^{-1}]$

Theorem (Adversarial Order)

Can find element of rank $m/2 \pm \epsilon m$ in one pass and $\tilde{O}(\epsilon^{-1})$ space. Can find median in $O(\log m / \log \log m)$ passes and $\tilde{O}(1)$ space.

- Already seen one pass result:
 - Can find elements with rank $i\epsilon m \pm \epsilon m$ for $i \in [\epsilon^{-1}]$

For multiple-pass result:

Theorem (Adversarial Order)

Can find element of rank $m/2 \pm \epsilon m$ in one pass and $\tilde{O}(\epsilon^{-1})$ space. Can find median in $O(\log m / \log \log m)$ passes and $\tilde{O}(1)$ space.

- Already seen one pass result:
 - Can find elements with rank $i \epsilon m \pm \epsilon m$ for $i \in [\epsilon^{-1}]$
- ► For multiple-pass result:

▶ In pass 1, use one pass alg. with $\epsilon = \frac{1}{\log m}$ to find *a* and *b* s.t.

$$\operatorname{rank}(a) = \frac{m}{2} - \frac{2m}{\log m} \pm \frac{m}{\log m}$$
 and $\operatorname{rank}(b) = \frac{m}{2} + \frac{2m}{\log m} \pm \frac{m}{\log m}$

Theorem (Adversarial Order)

Can find element of rank $m/2 \pm \epsilon m$ in one pass and $\tilde{O}(\epsilon^{-1})$ space. Can find median in $O(\log m / \log \log m)$ passes and $\tilde{O}(1)$ space.

- Already seen one pass result:
 - Can find elements with rank $i \epsilon m \pm \epsilon m$ for $i \in [\epsilon^{-1}]$
- ► For multiple-pass result:
 - ▶ In pass 1, use one pass alg. with $\epsilon = \frac{1}{\log m}$ to find *a* and *b* s.t.

$$\operatorname{rank}(a) = \frac{m}{2} - \frac{2m}{\log m} \pm \frac{m}{\log m}$$
 and $\operatorname{rank}(b) = \frac{m}{2} + \frac{2m}{\log m} \pm \frac{m}{\log m}$

In pass 2, compute rank(a) and rank(b)

Theorem (Adversarial Order)

Can find element of rank $m/2 \pm \epsilon m$ in one pass and $\tilde{O}(\epsilon^{-1})$ space. Can find median in $O(\log m / \log \log m)$ passes and $\tilde{O}(1)$ space.

- Already seen one pass result:
 - Can find elements with rank $i \epsilon m \pm \epsilon m$ for $i \in [\epsilon^{-1}]$
- ► For multiple-pass result:
 - ▶ In pass 1, use one pass alg. with $\epsilon = \frac{1}{\log m}$ to find *a* and *b* s.t.

$$\operatorname{rank}(a) = \frac{m}{2} - \frac{2m}{\log m} \pm \frac{m}{\log m}$$
 and $\operatorname{rank}(b) = \frac{m}{2} + \frac{2m}{\log m} \pm \frac{m}{\log m}$

- In pass 2, compute rank(a) and rank(b)
- Recurse on elements in the range (a, b).

Theorem

Finding $m/2 \pm m^{\delta}$ rank element in 1 pass requires $\Omega(m^{1-\delta})$ space.

▶ INDEX Reduction: Alice has $x \in \{0,1\}^t$, Bob has $j \in [t]$

Theorem

- ▶ INDEX Reduction: Alice has $x \in \{0, 1\}^t$, Bob has $j \in [t]$
- Alice constructs $A = \{2i + x_i : i \in [t]\}$

Theorem

- ▶ INDEX Reduction: Alice has $x \in \{0, 1\}^t$, Bob has $j \in [t]$
- Alice constructs $A = \{2i + x_i : i \in [t]\}$
- ▶ Bob constructs $B = \{t j \text{ copies of } 0, j 1 \text{ copies of } 2t + 2\}$

Theorem

- ▶ INDEX Reduction: Alice has $x \in \{0,1\}^t$, Bob has $j \in [t]$
- Alice constructs $A = \{2i + x_i : i \in [t]\}$
- ▶ Bob constructs $B = \{t j \text{ copies of } 0, j 1 \text{ copies of } 2t + 2\}$
- Median of the 2t 1 values is $2j + x_j$

Theorem

- ▶ INDEX Reduction: Alice has $x \in \{0,1\}^t$, Bob has $j \in [t]$
- Alice constructs $A = \{2i + x_i : i \in [t]\}$
- ▶ Bob constructs $B = \{t j \text{ copies of } 0, j 1 \text{ copies of } 2t + 2\}$
- Median of the 2t 1 values is $2j + x_j$
- \therefore Exact median requires $\Omega(t) = \Omega(m)$ space.

Theorem

- ▶ INDEX Reduction: Alice has $x \in \{0,1\}^t$, Bob has $j \in [t]$
- Alice constructs $A = \{2i + x_i : i \in [t]\}$
- ▶ Bob constructs $B = \{t j \text{ copies of } 0, j 1 \text{ copies of } 2t + 2\}$
- Median of the 2t 1 values is $2j + x_j$
- \therefore Exact median requires $\Omega(t) = \Omega(m)$ space.
- For approximate result, duplicate each element $2m^{\delta} + 1$ times.

Theorem

- ▶ INDEX Reduction: Alice has $x \in \{0,1\}^t$, Bob has $j \in [t]$
- Alice constructs $A = \{2i + x_i : i \in [t]\}$
- ▶ Bob constructs $B = \{t j \text{ copies of } 0, j 1 \text{ copies of } 2t + 2\}$
- Median of the 2t 1 values is $2j + x_j$
- \therefore Exact median requires $\Omega(t) = \Omega(m)$ space.
- For approximate result, duplicate each element $2m^{\delta} + 1$ times.
- \therefore Approx median requires $\Omega(t) = \Omega(m/m^{\delta})$ space.

Theorem

Finding $m/2 \pm m^{\delta}$ rank element in 1 pass requires $\Omega(m^{1-\delta})$ space.

- ▶ INDEX Reduction: Alice has $x \in \{0,1\}^t$, Bob has $j \in [t]$
- Alice constructs $A = \{2i + x_i : i \in [t]\}$
- ▶ Bob constructs $B = \{t j \text{ copies of } 0, j 1 \text{ copies of } 2t + 2\}$
- Median of the 2t 1 values is $2j + x_j$
- \therefore Exact median requires $\Omega(t) = \Omega(m)$ space.
- For approximate result, duplicate each element $2m^{\delta} + 1$ times.
- \therefore Approx median requires $\Omega(t) = \Omega(m/m^{\delta})$ space.

Exercise

Prove an algorithm that doesn't know m in advance requires $\Omega(m)$ space to find median even when the data comes in sorted order.

Theorem

Finding median in 2 passes requires $\Omega(m^{1/2})$ space.

Theorem

Finding median in 2 passes requires $\Omega(m^{1/2})$ space.

 "2-level INDEX" Reduction: Alice has x¹,...,x^t ∈ {0,1}^t, Bob has y ∈ [t]^t, Charlie has i ∈ [t]. To determine x^j_j where j = y_i after two rounds, requires Ω(t) bits of communication. [Nisan, Widgerson '91]

Theorem

Finding median in 2 passes requires $\Omega(m^{1/2})$ space.

- "2-level INDEX" Reduction: Alice has $x^1, \ldots, x^t \in \{0, 1\}^t$, Bob has $y \in [t]^t$, Charlie has $i \in [t]$. To determine x_j^i where $j = y_i$ after two rounds, requires $\Omega(t)$ bits of communication. [Nisan, Widgerson '91]
- For $j \in [t]$, appropriate players construct

$$A_i = \{2j + x_j^i : i \in [t]\} + o_i \text{ where } o_i = B(i-1)$$

 $B_i = \{t - y_i \text{ copies of } 0 \text{ and } y_i - 1 \text{ copies of } B\} + o_i$ $C = \{t - i \text{ copies of } 0 \text{ and } i - 1 \text{ copies of } Bo_t\}$

Theorem

Finding median in 2 passes requires $\Omega(m^{1/2})$ space.

- "2-level INDEX" Reduction: Alice has $x^1, \ldots, x^t \in \{0, 1\}^t$, Bob has $y \in [t]^t$, Charlie has $i \in [t]$. To determine x_j^i where $j = y_i$ after two rounds, requires $\Omega(t)$ bits of communication. [Nisan, Widgerson '91]
- For $j \in [t]$, appropriate players construct

$$A_i = \{2j + x_j^i : i \in [t]\} + o_i \text{ where } o_i = B(i-1)$$

 $B_i = \{t - y_i \text{ copies of } 0 \text{ and } y_i - 1 \text{ copies of } B\} + o_i$

 $C = \{t - i \text{ copies of } 0 \text{ and } i - 1 \text{ copies of } Bo_t\}$

• Median of the $O(t^2)$ values is $o_i + 2j + x_j^i$ where $j = y_i$

Theorem

Finding median in 2 passes requires $\Omega(m^{1/2})$ space.

- "2-level INDEX" Reduction: Alice has $x^1, \ldots, x^t \in \{0, 1\}^t$, Bob has $y \in [t]^t$, Charlie has $i \in [t]$. To determine x_j^i where $j = y_i$ after two rounds, requires $\Omega(t)$ bits of communication. [Nisan, Widgerson '91]
- ▶ For $j \in [t]$, appropriate players construct

$$A_i = \{2j + x_j^i : i \in [t]\} + o_i \text{ where } o_i = B(i-1)$$

 $B_i = \{t - y_i \text{ copies of } 0 \text{ and } y_i - 1 \text{ copies of } B\} + o_i$

 $C = \{t - i \text{ copies of } 0 \text{ and } i - 1 \text{ copies of } Bo_t\}$

- Median of the $O(t^2)$ values is $o_i + 2j + x_j^i$ where $j = y_i$
- \therefore Exact median requires $\Omega(t) = \Omega(m^{1/2})$ space.

Outline

Selection Adversarial Order Random Order

Frequency Moments

Random Order Algorithms

Theorem

Can find element of rank $m/2 \pm \tilde{O}(\sqrt{m})$ in one pass and $\tilde{O}(1)$ space. Can find median in $O(\log \log m)$ passes and $\tilde{O}(1)$ space.

Theorem

Can find element of rank $m/2 \pm \tilde{O}(\sqrt{m})$ in one pass and $\tilde{O}(1)$ space. Can find median in $O(\log \log m)$ passes and $\tilde{O}(1)$ space.

One pass result:

Theorem

- One pass result:
 - Split stream into $O(\log m)$ segments of length $O(m/\log m)$

Theorem

- One pass result:
 - Split stream into $O(\log m)$ segments of length $O(m/\log m)$
 - At start of *i*-th segment: we think $rank(a_i) < m/2 < rank(b_i)$.

Theorem

- One pass result:
 - Split stream into $O(\log m)$ segments of length $O(m/\log m)$
 - At start of *i*-th segment: we think $rank(a_i) < m/2 < rank(b_i)$.
 - Let c be first element in segment with $a_i < c < b_i$

Theorem

- One pass result:
 - Split stream into $O(\log m)$ segments of length $O(m/\log m)$
 - At start of *i*-th segment: we think $rank(a_i) < m/2 < rank(b_i)$.
 - Let c be first element in segment with $a_i < c < b_i$
 - In rest of segment, estimate rank(c) by \tilde{r}

Theorem

- One pass result:
 - Split stream into $O(\log m)$ segments of length $O(m/\log m)$
 - At start of *i*-th segment: we think $rank(a_i) < m/2 < rank(b_i)$.
 - Let c be first element in segment with $a_i < c < b_i$
 - In rest of segment, estimate rank(c) by \tilde{r}
 - If $\tilde{r} = m/2 \pm \tilde{O}(\sqrt{m})$ return \tilde{r} , otherwise:

$$(a_{i+1}, b_{i+1}) = \begin{cases} (a_i, c) & \text{if } \tilde{r} > m/2\\ (c, b_i) & \text{if } \tilde{r} < m/2 \end{cases}$$

Theorem

Can find element of rank $m/2 \pm \tilde{O}(\sqrt{m})$ in one pass and $\tilde{O}(1)$ space. Can find median in $O(\log \log m)$ passes and $\tilde{O}(1)$ space.

- One pass result:
 - Split stream into $O(\log m)$ segments of length $O(m/\log m)$
 - At start of *i*-th segment: we think $rank(a_i) < m/2 < rank(b_i)$.
 - Let c be first element in segment with $a_i < c < b_i$
 - In rest of segment, estimate rank(c) by \tilde{r}
 - If $\tilde{r} = m/2 \pm \tilde{O}(\sqrt{m})$ return \tilde{r} , otherwise:

$$(a_{i+1}, b_{i+1}) = \begin{cases} (a_i, c) & \text{if } \tilde{r} > m/2\\ (c, b_i) & \text{if } \tilde{r} < m/2 \end{cases}$$

▶ For multiple-pass result: Recurse with care!

Theorem Finding median in 1 pass requires $\Omega(m^{1/2})$ space.

Theorem Finding median in 1 pass requires $\Omega(m^{1/2})$ space.

INDEX Reduction: Alice has x ∈ {0,1}^t, Bob has j ∈ [t]. Solving problem requires Ω(t) even when x ∈_R {0,1}^t.

Theorem

Finding median in 1 pass requires $\Omega(m^{1/2})$ space.

- INDEX Reduction: Alice has x ∈ {0,1}^t, Bob has j ∈ [t]. Solving problem requires Ω(t) even when x ∈_R {0,1}^t.
- For some constant c > 0, define:

$$A = \{2i + x_i : i \in [t]\}$$

Theorem

Finding median in 1 pass requires $\Omega(m^{1/2})$ space.

- INDEX Reduction: Alice has x ∈ {0,1}^t, Bob has j ∈ [t]. Solving problem requires Ω(t) even when x ∈_R {0,1}^t.
- For some constant c > 0, define:

$$A = \{2i + x_i : i \in [t]\}$$

 $B = \{ct^2 + t - j \text{ copies of } 0 \text{ and } ct^2 + j - 1 \text{ copies of } 2t + 2\}$

► Alice and Bob simulate algorithm on random permutation of A∪B. Alice determines 1st half and Bob determines 2nd half:

Theorem

Finding median in 1 pass requires $\Omega(m^{1/2})$ space.

- INDEX Reduction: Alice has x ∈ {0,1}^t, Bob has j ∈ [t]. Solving problem requires Ω(t) even when x ∈_R {0,1}^t.
- For some constant c > 0, define:

$$A = \{2i + x_i : i \in [t]\}$$

- ► Alice and Bob simulate algorithm on random permutation of A∪B. Alice determines 1st half and Bob determines 2nd half:
 - Alice assumes j = t/2: Bob "fixes" the balance.

Theorem

Finding median in 1 pass requires $\Omega(m^{1/2})$ space.

- INDEX Reduction: Alice has x ∈ {0,1}^t, Bob has j ∈ [t]. Solving problem requires Ω(t) even when x ∈_R {0,1}^t.
- For some constant c > 0, define:

$$A = \{2i + x_i : i \in [t]\}$$

- ► Alice and Bob simulate algorithm on random permutation of A∪B. Alice determines 1st half and Bob determines 2nd half:
 - Alice assumes j = t/2: Bob "fixes" the balance.
 - Bob guesses values of x_i if $2i + x_i$ appears in his half.

Theorem

Finding median in 1 pass requires $\Omega(m^{1/2})$ space.

- INDEX Reduction: Alice has x ∈ {0,1}^t, Bob has j ∈ [t]. Solving problem requires Ω(t) even when x ∈_R {0,1}^t.
- For some constant c > 0, define:

$$A = \{2i + x_i : i \in [t]\}$$

- ► Alice and Bob simulate algorithm on random permutation of A∪B. Alice determines 1st half and Bob determines 2nd half:
 - Alice assumes j = t/2: Bob "fixes" the balance.
 - Bob guesses values of x_i if $2i + x_i$ appears in his half.
- Choosing large *c* ensures ordering is sufficiently random.

Outline

Selection Adversarial Order Random Order

Frequency Moments

Hamming Distance

Problem

Given *m* elements from [*n*], find $(1 + \epsilon)$ approx for $F_k = \sum_{i \in [n]} f_i^k$ with probability $1 - \delta$ where f_i is the frequency of item *i*.

Problem

Given *m* elements from [*n*], find $(1 + \epsilon)$ approx for $F_k = \sum_{i \in [n]} f_i^k$ with probability $1 - \delta$ where f_i is the frequency of item *i*.

Theorem (Chakrabarti et al. '03, Indyk, Woodruff '05) $\tilde{\Theta}_{\epsilon,\delta}(n^{1-2/k})$ space when stream is in adversarial order.

Problem

Given *m* elements from [*n*], find $(1 + \epsilon)$ approx for $F_k = \sum_{i \in [n]} f_i^k$ with probability $1 - \delta$ where f_i is the frequency of item *i*.

Theorem (Chakrabarti et al. '03, Indyk, Woodruff '05) $\tilde{\Theta}_{\epsilon,\delta}(n^{1-2/k})$ space when stream is in adversarial order.

Theorem (Andoni et al. '08)

 $\tilde{\Omega}(n^{1-2.5/k})$ space necessary when the stream is in random order.

Problem

Given *m* elements from [*n*], find $(1 + \epsilon)$ approx for $F_k = \sum_{i \in [n]} f_i^k$ with probability $1 - \delta$ where f_i is the frequency of item *i*.

Theorem (Chakrabarti et al. '03, Indyk, Woodruff '05) $\tilde{\Theta}_{\epsilon,\delta}(n^{1-2/k})$ space when stream is in adversarial order. Theorem (Andoni et al. '08)

 $\tilde{\Omega}(n^{1-2.5/k})$ space necessary when the stream is in random order.

Rumor has it that that this has been tightened to $\Omega(n^{1-2/k})\dots$

► t-DISJ Reduction: t sets S₁,..., S_t ⊂ [n] of size n/t. Are sets pairwise-disjoint or does there exists common element?

- ► t-DISJ Reduction: t sets S₁,..., S_t ⊂ [n] of size n/t. Are sets pairwise-disjoint or does there exists common element?
- If *i*-th player has S_i, t-DISJ requires Ω̃(n/t) communication.
 [Bar-Yosseff et al. '02, Chakrabarti et al. '03]

- ► t-DISJ Reduction: t sets S₁,..., S_t ⊂ [n] of size n/t. Are sets pairwise-disjoint or does there exists common element?
- If *i*-th player has S_i, t-DISJ requires Ω̃(n/t) communication.
 [Bar-Yosseff et al. '02, Chakrabarti et al. '03]

• Let
$$S = \bigcup_{i \in [t]} S_i$$
. If $t^k > 2n$,

$$(F_k(S) \leq n) \Rightarrow (t - \text{DISJ}(S) = \text{``disjoint''})$$

 $(F_k(S) \ge 2n) \Rightarrow (t - \text{DISJ}(S) = \text{``common element''})$

- ► t-DISJ Reduction: t sets S₁,..., S_t ⊂ [n] of size n/t. Are sets pairwise-disjoint or does there exists common element?
- If *i*-th player has S_i, t-DISJ requires Ω̃(n/t) communication.
 [Bar-Yosseff et al. '02, Chakrabarti et al. '03]

► Let
$$S = \bigcup_{i \in [t]} S_i$$
. If $t^k > 2n$,
 $(F_k(S) \le n) \Rightarrow (t \text{-DISJ}(S) = \text{``disjoint''})$
 $(F_k(S) \ge 2n) \Rightarrow (t \text{-DISJ}(S) = \text{``common element''})$

► An 1-pass, s-space algorithm that 2-approximates F_k gives a ts-space algorithm that solves (2n)^{1/k}-DISJ

Theorem (Andoni et al. '08)

Theorem (Andoni et al. '08)

 $\tilde{\Omega}(n^{1-3/k})$ space necessary for random order stream.

▶ *t*-DISJ Reduction: $S_1, \ldots, S_t \subset [n']$ of size n'/t.

Theorem (Andoni et al. '08)

- ▶ *t*-DISJ Reduction: $S_1, \ldots, S_t \subset [n']$ of size n'/t.
- ▶ Using public random bits, players pick random stream *S* from $[2n]^n$, random map $f : [n] \rightarrow [n]$, and random permutations π_i

Theorem (Andoni et al. '08)

- ▶ *t*-DISJ Reduction: $S_1, \ldots, S_t \subset [n']$ of size n'/t.
- ▶ Using public random bits, players pick random stream *S* from $[2n]^n$, random map $f : [n] \rightarrow [n]$, and random permutations π_i

Theorem (Andoni et al. '08)

- ▶ *t*-DISJ Reduction: $S_1, \ldots, S_t \subset [n']$ of size n'/t.
- ▶ Using public random bits, players pick random stream S from $[2n]^n$, random map $f : [n] \to [n]$, and random permutations π_i
- Player *i* computes string $\sigma(f(S_i))$

Theorem (Andoni et al. '08)

- ▶ *t*-DISJ Reduction: $S_1, \ldots, S_t \subset [n']$ of size n'/t.
- ▶ Using public random bits, players pick random stream S from $[2n]^n$, random map $f : [n] \to [n]$, and random permutations π_i
- Player *i* computes string $\sigma(f(S_i))$
- ▶ Players embed the strings in *S* at random locations:
 - If embedding of two strings overlap, abort algorithm.
 - Probability of aborting is sufficiently small if $n' = n^{1-1/k}$

Theorem (Andoni et al. '08)

 $\tilde{\Omega}(n^{1-3/k})$ space necessary for random order stream.

- ▶ *t*-DISJ Reduction: $S_1, \ldots, S_t \subset [n']$ of size n'/t.
- ▶ Using public random bits, players pick random stream S from $[2n]^n$, random map $f : [n] \to [n]$, and random permutations π_i
- Player i computes string \(\sigma(f(S_i))\)\)
- Players embed the strings in S at random locations:
 - If embedding of two strings overlap, abort algorithm.
 - Probability of aborting is sufficiently small if $n' = n^{1-1/k}$

Extending ideas, gives $\tilde{\Omega}(n^{1-2/k})$.

Outline

Selection Adversarial Order Random Order

Frequency Moments

Hamming Distance

Problem

Alice knows $x \in \{0,1\}^n$ and Bob knows $y \in \{0,1\}^n$. Want to estimate hamming distance up to $\pm o(\sqrt{n})$ with probability 9/10.

Problem

Alice knows $x \in \{0,1\}^n$ and Bob knows $y \in \{0,1\}^n$. Want to estimate hamming distance up to $\pm o(\sqrt{n})$ with probability 9/10.

Theorem (Woodruff 2004, Jayram et al. 2008)

Any one-way protocol requires $\Omega(n)$ bits of communication.

Problem

Alice knows $x \in \{0,1\}^n$ and Bob knows $y \in \{0,1\}^n$. Want to estimate hamming distance up to $\pm o(\sqrt{n})$ with probability 9/10.

Theorem (Woodruff 2004, Jayram et al. 2008) Any one-way protocol requires $\Omega(n)$ bits of communication.

- Theorem (Brody, Chakrabarti last week)
- Any O(1)-round protocol requires $\Omega(n)$ bits of communication.

Problem

Alice knows $x \in \{0,1\}^n$ and Bob knows $y \in \{0,1\}^n$. Want to estimate hamming distance up to $\pm o(\sqrt{n})$ with probability 9/10.

Theorem (Woodruff 2004, Jayram et al. 2008) Any one-way protocol requires $\Omega(n)$ bits of communication.

Theorem (Brody, Chakrabarti last week) Any O(1)-round protocol requires $\Omega(n)$ bits of communication.

Corollary

Any O(1)-pass algorithm that (1 + ϵ) approximates F0 or F2 requires $\Omega(\epsilon^{-2})$ space.

One-Pass Lower Bound (1/2)

▶ Reduction from INDEX problem: Alice knows z ∈ {0,1}^t and Bob knows j ∈ [t]. Let's assume |z| = t/2 and this is odd.

- ▶ Reduction from INDEX problem: Alice knows z ∈ {0,1}^t and Bob knows j ∈ [t]. Let's assume |z| = t/2 and this is odd.
- Alice and Bob pick $r \in_{R} \{-1, 1\}^{n}$ using public random bits.

- ▶ Reduction from INDEX problem: Alice knows z ∈ {0,1}^t and Bob knows j ∈ [t]. Let's assume |z| = t/2 and this is odd.
- Alice and Bob pick $r \in_R \{-1, 1\}^n$ using public random bits.
- ▶ Alice computes sn(*r*.*z*) and Bob computes sn(*r_j*)

- ▶ Reduction from INDEX problem: Alice knows z ∈ {0,1}^t and Bob knows j ∈ [t]. Let's assume |z| = t/2 and this is odd.
- Alice and Bob pick $r \in_R \{-1, 1\}^n$ using public random bits.
- ▶ Alice computes sn(*r*.*z*) and Bob computes sn(*r_j*)

• Claim: For some constant c > 0,

$$\mathbb{P}\left[\operatorname{sn}(r.z) = \operatorname{sn}(r_j)\right] = \begin{cases} 1/2 & \text{if } z_j = 0\\ 1/2 + c/\sqrt{t} & \text{if } z_j = 1 \end{cases}$$

- ▶ Reduction from INDEX problem: Alice knows z ∈ {0,1}^t and Bob knows j ∈ [t]. Let's assume |z| = t/2 and this is odd.
- Alice and Bob pick $r \in_R \{-1, 1\}^n$ using public random bits.
- ▶ Alice computes sn(*r*.*z*) and Bob computes sn(*r_j*)

• Claim: For some constant c > 0,

$$\mathbb{P}\left[\operatorname{sn}(r.z) = \operatorname{sn}(r_j)\right] = \begin{cases} 1/2 & \text{if } z_j = 0\\ 1/2 + c/\sqrt{t} & \text{if } z_j = 1 \end{cases}$$

• Repeat n = O(t) times to construct

$$x_i = I[\operatorname{sn}(r.z) = +]$$
 and $y_i = I[\operatorname{sn}(r_j) = +]$

- ▶ Reduction from INDEX problem: Alice knows z ∈ {0,1}^t and Bob knows j ∈ [t]. Let's assume |z| = t/2 and this is odd.
- Alice and Bob pick $r \in_R \{-1, 1\}^n$ using public random bits.
- ▶ Alice computes sn(*r*.*z*) and Bob computes sn(*r_j*)

• Claim: For some constant c > 0,

$$\mathbb{P}\left[\operatorname{sn}(r.z) = \operatorname{sn}(r_j)\right] = \begin{cases} 1/2 & \text{if } z_j = 0\\ 1/2 + c/\sqrt{t} & \text{if } z_j = 1 \end{cases}$$

• Repeat n = O(t) times to construct

 $x_i = I[\operatorname{sn}(r.z) = +]$ and $y_i = I[\operatorname{sn}(r_j) = +]$

• With probability 9/10, for some constants $c_1 < c_2$,

$$egin{aligned} z_j &= 0 \Rightarrow \Delta(x,y) \geq n/2 - c_1 \sqrt{n} \ z_j &= 1 \Rightarrow \Delta(x,y) \leq n/2 - c_2 \sqrt{n} \end{aligned}$$

Claim

For some constant c > 0,

$$\mathbb{P}\left[\operatorname{sn}(r.z) = \operatorname{sn}(r_j)\right] = \begin{cases} 1/2 & \text{if } z_j = 0\\ 1/2 + c/\sqrt{t} & \text{if } z_j = 1 \end{cases}$$

Claim

For some constant c > 0,

$$\mathbb{P}\left[\operatorname{sn}(r.z) = \operatorname{sn}(r_j)\right] = \begin{cases} 1/2 & \text{if } z_j = 0\\ 1/2 + c/\sqrt{t} & \text{if } z_j = 1 \end{cases}$$

• If $z_j = 0$ then sn(r,z) and $sn(r_j)$ are independent.

Claim

For some constant c > 0,

$$\mathbb{P}\left[\operatorname{sn}(r.z) = \operatorname{sn}(r_j)\right] = \begin{cases} 1/2 & \text{if } z_j = 0\\ 1/2 + c/\sqrt{t} & \text{if } z_j = 1 \end{cases}$$

If z_j = 0 then sn(r.z) and sn(r_j) are independent.
 If z_j = 1, let s = r.z − r_j, A = {sn(r.z) = sn(r_j)}:

Claim

For some constant c > 0,

$$\mathbb{P}\left[\operatorname{sn}(r.z) = \operatorname{sn}(r_j)\right] = \begin{cases} 1/2 & \text{if } z_j = 0\\ 1/2 + c/\sqrt{t} & \text{if } z_j = 1 \end{cases}$$

Claim

For some constant c > 0,

$$\mathbb{P}\left[\operatorname{sn}(r.z) = \operatorname{sn}(r_j)\right] = \begin{cases} 1/2 & \text{if } z_j = 0\\ 1/2 + c/\sqrt{t} & \text{if } z_j = 1 \end{cases}$$

$$\mathbb{P}\left[A|s=0
ight]=1$$
 and $\mathbb{P}\left[A|s
eq0
ight]=1/2$

Claim

For some constant c > 0,

$$\mathbb{P}\left[\operatorname{sn}(r.z) = \operatorname{sn}(r_j)\right] = \begin{cases} 1/2 & \text{if } z_j = 0\\ 1/2 + c/\sqrt{t} & \text{if } z_j = 1 \end{cases}$$

$$\mathbb{P}\left[A|s=0
ight]=1$$
 and $\mathbb{P}\left[A|s
eq0
ight]=1/2$

 $\mathbb{P}\left[s=0
ight]=2c/\sqrt{n}$ for some constant c>0

Summary: We looked at some nice problems, our curiousity is piqued, and now we want to start finding more problems to solve.

Thanks!