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Introduction

Random Order Streams:

I Average case analysis: data is worst-case but order is random.

I Lower bounds are more useful than in the adversarial case.

I Streams ordered randomly: e.g., space-efficient sampling

Multiple Pass Streams:

I How much extra power do you get with a few extra passes?

I With external data, it’s easier to access data sequentially.
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Pass-Space Trade-Offs

Problem
Given a stream of n values from [n], what’s smallest value that
doesn’t appear in stream? You have p passes over the data.

I Version 1: All values appear exactly once except for the
missing value.

Θ̃(1)

I Version 2: All values less than smallest missing value appear
exactly once

Θ̃(n1/p)

I Version 3: General problem,

Θ̃(n/p)

Other trade-offs: Find length k increasing sequence given it exists:
Θ̃(k1+1/(2p−1)) [Liben-Nowell et al. ’06, Guha, McGregor ’08]
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Random Order Streams

Problem
Given m values from [n], find median in polylog(m, n) space.

Approximate Median (i.e., one with rank m/2± t) in One Pass:

I Adversarial: Θ̃(m)-approx [Greenwald, Khanna ’01]

I Random: Õ(m1/2)-approx [Guha, McGregor ’06]

Exact Median in Multiple Passes

I Adversarial: Θ(log m/ log log m) pass [Munro, Paterson ’78, Guha,

McGregor ’07]

I Random: Θ(log log m) pass [Guha, McGregor ’06, Chakrabarti,

Jayram, Patrascu ’08, Chakrabarti, Cormode, McGregor ’08]
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I Random: Õ(m1/2)-approx [Guha, McGregor ’06]

Exact Median in Multiple Passes

I Adversarial: Θ(log m/ log log m) pass [Munro, Paterson ’78, Guha,

McGregor ’07]

I Random: Θ(log log m) pass [Guha, McGregor ’06, Chakrabarti,

Jayram, Patrascu ’08, Chakrabarti, Cormode, McGregor ’08]



Random Order Streams

Problem
Given m values from [n], find median in polylog(m, n) space.

Approximate Median (i.e., one with rank m/2± t) in One Pass:

I Adversarial: Θ̃(m)-approx [Greenwald, Khanna ’01]
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Algorithms for Median in Adversarial-Order Stream

Theorem (Adversarial Order)

Can find element of rank m/2± εm in one pass and Õ(ε−1) space.
Can find median in O(log m/ log log m) passes and Õ(1) space.

I Already seen one pass result:
I Can find elements with rank iεm ± εm for i ∈ [ε−1]

I For multiple-pass result:

I In pass 1, use one pass alg. with ε = 1
log m to find a and b s.t.

rank(a) =
m

2
− 2m

log m
± m

log m
and rank(b) =

m

2
+

2m

log m
± m

log m

I In pass 2, compute rank(a) and rank(b)
I Recurse on elements in the range (a, b).
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One Pass Lower Bound

Theorem
Finding m/2±mδ rank element in 1 pass requires Ω(m1−δ) space.

I index Reduction: Alice has x ∈ {0, 1}t , Bob has j ∈ [t]

I Alice constructs A = {2i + xi : i ∈ [t]}
I Bob constructs B = {t − j copies of 0, j − 1 copies of 2t + 2}
I Median of the 2t − 1 values is 2j + xj

I ∴ Exact median requires Ω(t) = Ω(m) space.

I For approximate result, duplicate each element 2mδ + 1 times.

I ∴ Approx median requires Ω(t) = Ω(m/mδ) space.

Exercise
Prove an algorithm that doesn’t know m in advance requires Ω(m)
space to find median even when the data comes in sorted order.
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Two Pass Lower Bound

Theorem
Finding median in 2 passes requires Ω(m1/2) space.

I “2-level index” Reduction: Alice has x1, . . . , x t ∈ {0, 1}t ,
Bob has y ∈ [t]t , Charlie has i ∈ [t]. To determine x i

j where
j = yi after two rounds, requires Ω(t) bits of communication.
[Nisan, Widgerson ’91]

I For j ∈ [t], appropriate players construct

Ai = {2j + x i
j : i ∈ [t]}+ oi where oi = B(i − 1)

Bi = {t − yi copies of 0 and yi − 1 copies of B}+ oi

C = {t − i copies of 0 and i − 1 copies of Bot}

I Median of the O(t2) values is oi + 2j + x i
j where j = yi

I ∴ Exact median requires Ω(t) = Ω(m1/2) space.
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Random Order Algorithms

Theorem
Can find element of rank m/2± Õ(

√
m) in one pass and Õ(1)

space. Can find median in O(log log m) passes and Õ(1) space.

I One pass result:

I Split stream into O(log m) segments of length O(m/ log m)
I At start of i-th segment: we think rank(ai ) < m/2 < rank(bi ).
I Let c be first element in segment with ai < c < bi

I In rest of segment, estimate rank(c) by r̃
I If r̃ = m/2± Õ(

√
m) return r̃ , otherwise:

(ai+1, bi+1) =

{
(ai , c) if r̃ > m/2
(c , bi ) if r̃ < m/2

I For multiple-pass result: Recurse with care!
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I One pass result:
I Split stream into O(log m) segments of length O(m/ log m)
I At start of i-th segment: we think rank(ai ) < m/2 < rank(bi ).

I Let c be first element in segment with ai < c < bi

I In rest of segment, estimate rank(c) by r̃
I If r̃ = m/2± Õ(
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√
m) return r̃ , otherwise:

(ai+1, bi+1) =

{
(ai , c) if r̃ > m/2
(c , bi ) if r̃ < m/2

I For multiple-pass result: Recurse with care!



Random Order Algorithms

Theorem
Can find element of rank m/2± Õ(
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Random Order One Pass Lower Bound

Theorem
Finding median in 1 pass requires Ω(m1/2) space.

I index Reduction: Alice has x ∈ {0, 1}t , Bob has j ∈ [t].
Solving problem requires Ω(t) even when x ∈R {0, 1}t .

I For some constant c > 0, define:

A = {2i + xi : i ∈ [t]}

B = {ct2 + t − j copies of 0 and ct2 + j − 1 copies of 2t + 2}
I Alice and Bob simulate algorithm on random permutation of

A∪B. Alice determines 1st half and Bob determines 2nd half:

I Alice assumes j = t/2: Bob “fixes” the balance.
I Bob guesses values of xi if 2i + xi appears in his half.

I Choosing large c ensures ordering is sufficiently random.
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Frequency Moments

Problem
Given m elements from [n], find (1 + ε) approx for Fk =

∑
i∈[n] f k

i

with probability 1− δ where fi is the frequency of item i.

Theorem (Chakrabarti et al. ’03, Indyk, Woodruff ’05)

Θ̃ε,δ(n1−2/k) space when stream is in adversarial order.

Theorem (Andoni et al. ’08)

Ω̃(n1−2.5/k) space necessary when the stream is in random order.

Rumor has it that that this has been tightened to Ω(n1−2/k) . . .
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Adversarial Order Lower Bound

I t-DISJ Reduction: t sets S1, . . . ,St ⊂ [n] of size n/t. Are
sets pairwise-disjoint or does there exists common element?

I If i-th player has Si , t-DISJ requires Ω̃(n/t) communication.
[Bar-Yosseff et al. ’02, Chakrabarti et al. ’03]

I Let S = ∪i∈[t]Si . If tk > 2n,

(Fk(S) ≤ n)⇒ (t-DISJ(S) = “disjoint”)

(Fk(S) ≥ 2n)⇒ (t-DISJ(S) = “common element”)

I An 1-pass, s-space algorithm that 2-approximates Fk gives a
ts-space algorithm that solves (2n)1/k-DISJ
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Random Order Lower Bound

Theorem (Andoni et al. ’08)

Ω̃(n1−3/k) space necessary for random order stream.

I t-DISJ Reduction: S1, . . . ,St ⊂ [n′] of size n′/t.

I Using public random bits, players pick random stream S from
[2n]n, random map f : [n]→ [n], and random permutations πi

I Player i computes string σ(f (Si ))
I Players embed the strings in S at random locations:

I If embedding of two strings overlap, abort algorithm.
I Probability of aborting is sufficiently small if n′ = n1−1/k

Extending ideas, gives Ω̃(n1−2/k).
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Hamming Distance Lower Bound

Problem
Alice knows x ∈ {0, 1}n and Bob knows y ∈ {0, 1}n. Want to
estimate hamming distance up to ±o(

√
n) with probability 9/10.

Theorem (Woodruff 2004, Jayram et al. 2008)

Any one-way protocol requires Ω(n) bits of communication.

Theorem (Brody, Chakrabarti last week)

Any O(1)-round protocol requires Ω(n) bits of communication.

Corollary

Any O(1)-pass algorithm that (1 + ε) approximates F0 or F2

requires Ω(ε−2) space.
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One-Pass Lower Bound (1/2)

I Reduction from index problem: Alice knows z ∈ {0, 1}t and
Bob knows j ∈ [t]. Let’s assume |z | = t/2 and this is odd.

I Alice and Bob pick r ∈R {−1, 1}n using public random bits.

I Alice computes sn(r .z) and Bob computes sn(rj)

I Claim: For some constant c > 0,

P [sn(r .z) = sn(rj)] =

{
1/2 if zj = 0
1/2 + c/

√
t if zj = 1

I Repeat n = O(t) times to construct

xi = I [sn(r .z) = +] and yi = I [sn(rj) = +]

I With probability 9/10, for some constants c1 < c2,

zj = 0⇒ ∆(x , y) ≥ n/2− c1

√
n

zj = 1⇒ ∆(x , y) ≤ n/2− c2

√
n
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One-Pass Lower Bound (2/2)

Claim
For some constant c > 0,

P [sn(r .z) = sn(rj)] =

{
1/2 if zj = 0
1/2 + c/

√
t if zj = 1

I If zj = 0 then sn(r .z) and sn(rj) are independent.

I If zj = 1, let s = r .z − rj , A = {sn(r .z) = sn(rj)}:

P [A] = P [A|s = 0] P [s = 0] + P [A|s 6= 0] P [s 6= 0]

P [A|s = 0] = 1 and P [A|s 6= 0] = 1/2

P [s = 0] = 2c/
√

n for some constant c > 0
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I If zj = 1, let s = r .z − rj , A = {sn(r .z) = sn(rj)}:

P [A] = P [A|s = 0] P [s = 0] + P [A|s 6= 0] P [s 6= 0]

P [A|s = 0] = 1 and P [A|s 6= 0] = 1/2

P [s = 0] = 2c/
√

n for some constant c > 0



One-Pass Lower Bound (2/2)

Claim
For some constant c > 0,

P [sn(r .z) = sn(rj)] =

{
1/2 if zj = 0
1/2 + c/

√
t if zj = 1

I If zj = 0 then sn(r .z) and sn(rj) are independent.

I If zj = 1, let s = r .z − rj , A = {sn(r .z) = sn(rj)}:

P [A] = P [A|s = 0] P [s = 0] + P [A|s 6= 0] P [s 6= 0]

P [A|s = 0] = 1 and P [A|s 6= 0] = 1/2

P [s = 0] = 2c/
√

n for some constant c > 0



Summary: We looked at some nice problems, our curiousity is
piqued, and now we want to start finding more problems to solve.

Thanks!
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