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RECAP: PREDICTION MARKETS 
MERGE BELIEFS

Consensus
estimate



BELIEFS, DISTRIBUTIONS, PRICES



• The above phrase is what Bruno de Finetti wanted “printed in 
capital letters in the preface” to his Theory of Probability

• de Finetti: a probability P should be interpreted as the odds of a bet 
one would offer when our opponent can take any side of this bet.

• The laws of probability can derived via simple “no-arbitrage 
conditions” of these odds

“PROBABILITY DOES NOT EXIST”



TWO PROBLEMS FOR 
AUTOMATED MARKET MAKERS

• As contracts are purchased, how shall we set prices?

• How to handle combinatorial outcome spaces, i.e. when N is large?

•Tournament outcome: N = n!

•Multi-candidate election: N = ( )n
k



NAIVE APPROACH: ONE 
CONTRACT PER OUTCOME

• A natural strategy would just be to sell one contract for each of the 
large set of outcomes



BETTER APPROACH: A SMALL 
“MENU” OF CONTRACTS

• Consider a multi-candidate election, where outcome is a set of k 
winners from n candidates,

• Market maker sells n contracts, one for each i, of the form:

      [pays off $1 when i is among k winners]

• That is, we allow bets on only a subset of “relevant” dimensions



THE PAYOFF MATRIX

Cand. 1 Cand. 2 Cand. 3 Cand. 4 Cand. 5 Cand. 6

Outcome 1 $1 $0 $1 $1 $0 $0

Outcome 2 $0 $0 $1 $0 $1 $1

..........................................

Outcome 
N-1 $0 $0 $1 $1 $1 $0

Outcome N $0 $0 $0 $1 $1 $1
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THE PRICE SPACE

• For simple markets, prices lie in the simplex:

• For “complex” markets, what constraints must 
we impose on the prices?

• Price vector must lie in ConvexHull(outcomes)! outcomes

price space



PRICING VIA REGULARIZATION:
SIMPLE MARKETS

p(i) =
exp(ηq(i))�
j exp(ηq(j))LMSR:

p := arg max
p�∈K

q · p� − R(p�)
η

Alternative:

Simplex

Neg. Entropy



PRICING VIA REGULARIZATION:
COMPLEX MARKETS

p := arg max
p�∈K

q · p� − R(p�)
η

Convex Hull of
Outcome Space

Some Curved
Regularization 



RESULTS

• We have an efficient way to set prices in a prediction market with a 
combinatorial outcome space

• The “liquidity” (i.e. price stability) depends on the curvature 
properties of R -- more curved => more stability

• The worst-case loss of the market maker is no more than 

maxK R−minK R

η
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