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"PROBABILITY DOES NOT EXIST”

* The above phrase is what Bruno de Finetti wanted "printed In
capital letters in the preface™ to his Theory of Probability

* de Finetti: a probability P should be interpreted as the odds of a bet
one would offer when our opponent can take any side of this bet.

* The laws of probability can derived via simple “no-arbitrage
conditions” of these odds
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AUTOMATED MARKET MAK

* As contracts are purchased, how shall we set prices!
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* How to handle combinatorial outcome spaces, 1.e. when N is large?

¢ [ournament outcome: N = n!

®* Multi-candidate election: N = (E)




NAIVE APPROACH: ONE
EONTRACT PER OUTCCOS.

* A natural strategy would just be to sell one contract for each of the
large set of outcomes




BET TER APPROACH: A SMALL
"MENU" OF CONTRACTS

« Consider a multi-candidate election, where outcome is a set of k
winners from n candidates,

« Market maker sells n contracts, one for each i, of the form:
[pays off $1 when i is among k winners]

* That is, we allow bets on only a subset of “relevant” dimensions




THE PAYOFF MATRIX

SIMIALL

Cand. | | Cand. 2 | Cand. 3| Cand. 4 | Cand® S F &N

Outcome | S

&
A Outcome 2 $0
R
G
E Oulilc_olme $O

Outcome N $O

$0
$0

$0
$0

$ bl $0 $0
bl $0 bl $
$ $I $I $0
$0 $ $ $I




TH

o RIC

= SHARE

* For simple markets, prices lie in the simplex:

* For“complex” markets, what constraints must
we Impose on the prices!

* Price vector must lie in ConvexHull(outcomes)!
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PRICING VIA REGULARIZATION:
SIMPLE MARKETS
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PRICING VIA REGULARIZATION:
FOMPLEX MARKETS

Some Curved
Regularization
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RESULTS

* We have an efficient way to set prices in a prediction market with a
combinatorial outcome space

* The “liquidity” (i.e. price stability) depends on the curvature
properties of R -- more curved => more stability
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