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College Applications

e Irish college applicants apply through a central system
administered by the College Applications Office (CAO).
e Applicants list up to ten degree courses in order of preference.

e Applicants are awarded points on the basis of their Leaving
Certificate results; these determine course entry.
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Goals

e It has been postulated that a number of factors influence
course choices:
e Institution & Location
e Degree subject
o Degree type (Specific vs. General)
e Points Requirement
o Gender
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Dataset

e We study the cohort of applicants to degree courses from the
year 2000.
e The applications data has the following properties:

e There were 55737 applicants;
e They selected from a list of 533 courses;

e Applicants selected up to 10 courses.
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Data Coding

Conclusions Questions

e The data coding (s1, 52, ...,St) of m|o is defined by

sj + 1 = rank of 771(j) in o after removing 7= (1 :j — 1).

Example, if c =[a b c d] and 71 =[c a b d]

o
1) =c s1=2 a|b|c|d
712)=a s5=0 a|b d
7 13)=b s3 = - |b d
771(4) =d s4 =0 d
t—1

e Kendall's distance is dkenagai(7,0) =

—15j-
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Generalized Mallow's models

Mallow's model assumes that

P(7T|0',9):1]Z)1 exp GZSJ(W\U

Can extend Mallow's model to allow for varying precision in
ranking

P(rlo,0) =

1
exp Z Oisj(m|o)
Q)
Location parameter o, scale parameters (01, ..., 0maxt—1)-
¥(0) is a tractable normalization constant.
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p ~ Dirichlet(a/K,...,a/K)
e ¢; ~ Multinomial(py, ..., pk)
O-C,G_; ~ Gp o PO(U’&V’F)

;i ~ GM(7i|oe, 07_-)

—

e Prior: conjugate to GM, informative w.r.t. 6.

e DPMM benefits: no need to specify K upfront, identifies both
large and small clusters.
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Gibbs sampler

1. Resample cluster assignments:

1.1 Draw existing cluster w.p. N+Ca L GM(xlo.,6.) or Beta
function approximation.

1.2 Draw new cluster w.p.

(n—1t)!
N+a—1 nl

2. Resample cluster parameters:

2.1 Draw 9_; by slice sampling or a Beta distribution approx.
2.2 Draw o, “stage-wise”" or by a Beta function approx.

Beta approx. based sampler (Beta-Gibbs) faster than slice based
sampler (Slice-Gibbs) (per iteration & overall time to convergence).
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General properties of the clusterings

e The DPMM found 164 clusters.
e Thirty three of these clusters had nine or more members.
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e The clusters were characterized by a number of features.

Cluster Size Description Male (%) Points Average (SD)
1 4536 CS & Engineering 77.2 369 (41)
2 4340 Applied Business 48.5 366 (40)
3 4077 Arts & Social Science 13.1 384 (42)
4 3898 Engineering (Ex-Dublin) 85.2 374 (39)
5 3814 Business (Ex-Dublin) 41.8 394 (32)
6 3106 Cork Based 48.9 397 (33)

33 9 Teaching (Home Economics) 0.0 417 (4)
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Precision

e The precision parameters (6;) were very high for top rankings.
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rank j

e The 0; values tended to decrease with j.

e In many cases, the 0; values dropped suddenly after a
particular point.

e The central ranking o for each cluster is of length 533; the 0;
values suggested a point to truncate the ranking.
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Overall trends

e Subject
e Subject matter is a key determinant of course choice.
e The courses chosen are similar in subject area.
e Some opt for general degrees (eg. Science) and others opt for
specific (eg. Chemical Engineering).



Findings

e0

Overall trends
e Subject
e Subject matter is a key determinant of course choice.
e The courses chosen are similar in subject area.
e Some opt for general degrees (eg. Science) and others opt for
specific (eg. Chemical Engineering).
e Gender
e There is quite a difference in the percentage male/female
applicants in some clusters.
e Males tend to dominate CS/Engineering clusters.
e Females tend to dominate social science/education clusters.
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Overall trends
e Subject
e Subject matter is a key determinant of course choice.
e The courses chosen are similar in subject area.
e Some opt for general degrees (eg. Science) and others opt for
specific (eg. Chemical Engineering).
e Gender
e There is quite a difference in the percentage male/female
applicants in some clusters.
e Males tend to dominate CS/Engineering clusters.
e Females tend to dominate social science/education clusters.
e Geography
e There is evidence of the college location influencing choice.
e The sixth largest cluster is dominated by courses from colleges
in Cork (CIT and UCC).
e There is evidence of a mix of subject matter and geography
having a joint effect; the fourth largest cluster is dominated by
engineering courses outside Dublin.
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Points

e The points requirements for the courses in the truncated
central rankings were not monotonically decreasing in any
cluster.

points

5
cluster

e This suggests that points requirements are not important
when students are ranking courses.
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Conclusions & Lessons Learned

The CAO system appears to be working more effectively than
many suggest.

The clusters revealed in this analysis tend to be cohesive in
subject matter.

The focus of possible improvements to the CAO system might
be directed at how points are scored.

The Generalized Mallows DPMM facilitated discovering small
clusters that were missed in previous analyses.

The model also allowed for the study of precision in rankings
within clusters.
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Questions?

Thanks!
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