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Abstract

The problem of “approximating the crowd” is that of estimating the crowd’s ma-
jority opinion by querying only a subset of it. Algorithms that approximate the
crowd can intelligently stretch a limited budget for a crowdsourcing task. We
present an algorithm, “CrowdSense,” that works in an online fashion to dynam-
ically sample subsets of labelers based on an exploration/exploitation criterion.
The algorithm produces a weighted combination of the labelers’ votes that ap-
proximates the crowd’s opinion.

1 Introduction

Crowdsourcing systems are a useful way to get a lot of opinions (or “votes”) very quickly. How-
ever, in cases where each vote is provided at a cost, collecting the crowd’s opinion in large scale
labeling tasks can be expensive and may not even be attainable under fixed budget constraints. Be-
cause of the open nature of crowdsourcing systems, it is not necessarily easy to approximate the
crowd on a budget. In particular, the crowd is often comprised of labelers with a range of qualities,
motives, and incentives; some labelers are simply better than others. In order to effectively approx-
imate the crowd, we need to determine who are the most trustworthy and representative members
of the crowd, in that they can best represent the interests of the crowd majority. This is even more
difficult to accomplish when items arrive over time, and it requires our budget to be used both for
1) estimating the majority vote, even before we understand the various qualities of each labeler, and
2) exploring the various labelers until we can estimate their qualities well. There is clearly an ex-
ploration/exploitation tradeoff: before we can exploit by using mainly the best labelers, we need to
explore to determine who these labelers are, based on their agreement with the crowd.

The main contributions of this work are a modular template for algorithms that approximate the
wisdom of the crowd, including the exploitation/exploration choices, and an algorithm, CrowdSense,
that arises from specific choices within this template. In an online fashion, CrowdSense dynamically
samples a subset of labelers, determines whether it has enough votes to make a decision, requests
more if the decision is sufficiently uncertain, and iteratively updates the labelers’ quality estimates.

2 Related Work

The low cost of crowdsourcing labor has increasingly led to the use of resources such as Amazon
Mechanical Turk to label data for machine learning purposes, where collecting multiple labels from
non-expert annotators can yield results that rival those of experts (e.g., [1]). Although a range
of approaches are being developed to manage the varying reliability of crowdsourced labor (see,
for example [2, 3, 4]), the most common method for using crowdsourcing to label data is to obtain
multiple labels for each item from different labelers and treat the majority label as an items true label.
Sheng et al. [5], for example, demonstrated that repeated labeling can be preferable to single labeling
in the presence of label noise, especially when the cost of data preprocessing is non-negligible. A
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number of researchers have explored approaches that learn how much to trust different labelers,
typically by comparing each labeler’s predictions to the majority-vote prediction of the full set.
These approaches often use methods to learn both labeler quality characteristics and latent variables
representing the “true” labels of items (e.g., [6, 7, 8, 9, 10]), sometimes in tandem with learning
values for other latent variables such as image difficulty [11, 12], classifier parameters [13, 14, 15],
or domain-specific information about the labeling task [12].

Our work appears similar to the preceding efforts in that we similarly seek predictions from multiple
labelers on a collection of items, and seek to understand how to assign weights to them based on
their prediction quality. However, previous work on this topic viewed labelers mainly as a resource
to use in order to lower uncertainty about the true labels of the data. In our work, we could always
obtain the true labels since they are the majority vote of the crowd. We seek to approximate the
correct prediction at lower cost by decreasing the number of labelers used, as opposed to increasing
accuracy by turning to additional labelers at additional cost. In other words, usually the classifier is
not known and the task is to try to learn it, whereas here the classifier is known and the task is to
approximate it. This work further differs from most of the preceding efforts in that they presume that
learning takes place after obtaining a collection of data, whereas our method also works in online
settings, where it simultaneously processes a stream of arriving data while learning the different
quality estimates for the labelers. [5] is one exception, performing active learning by reasoning
about the value of seeking additional labels on data given the data obtained thus far. Donmez et al.
[16] simultaneously estimate labeler accuracies and train a classifier using labelers’ votes to apply
active learning to select the next example for labeling. We discuss the approach taken in [16] further
in Section 4 as one of the baselines to which we compare our results.

Finally, our work appears superficially similar to what is accomplished by polling processes. Polls
obtain the opinions of a small number of people so as to approximate the opinions of a typically
much large population. However, polling presumes knowledge of individuals’ demographic charac-
teristics, determining how to extrapolate from the views of a small group with certain demographic
characteristics to a desired target population with its own demographic characteristics. Our work
knows nothing about the demographics of the labelers, and at its core assumes that however closely
a labeler matches the overall crowd is a good predictor of whether the labeler will do so in the future.

3 CrowdSense

The task of finding a subset of labelers that can accurately represent the wisdom of the crowd re-
quires a measure of how well the labelers in a set agree with the majority vote of the crowd, both
individually and as a group. We address this problem by modeling the labelers’ quality estimates as
a measure of their agreement with the crowd. Let L = {l1, l2, . . . , lM}, lk : x → {−1, 1} denote
the set of labelers and {x1, x2, . . . , xt, . . . , xN} denote the sequence of examples, which arrive one
at a time. We define Vit := li(xt) as li’s vote on xt and St ⊂ {1, . . . ,M} as the set of labelers
selected to label xt. For each labeler li, we then define cit as the number of times we have observed
a label from li so far, and ait as how many of those labels were consistent with that set of labelers:

cit :=

t∑
t̃=1

1[i∈St̃]
, ait :=

t∑
t̃=1

1[
i∈St̃,Vit̃=VS

t̃
t̃

]
where VStt = sign

(∑
i∈St

VitQit

)
is the weighted majority vote of the labelers in St. Labeler li’s

quality estimate is then defined as

Qit =
ait +K

cit + 2K
where t is the number of examples that we have collected labels for and K is a smoothing parameter,
yielding a Bayesian shrinkage estimate of the probability that labeler i will agree with the crowd,
pulling values down toward 1/2 when there are not enough data to get a more accurate estimate.
This ensures that labelers who have seen fewer examples are not considered more valuable than
labelers who have seen more examples and whose performance is more certain.

Pseudocode for the CrowdSense algorithm is given in Figure 1. At the beginning of an online
iteration to label a new example, the labeler pool is initialized with three labelers; we select two
labelers that have the highest quality estimates Qit and select another one uniformly at random.
This initial pool of seed labelers enables the algorithm to maintain a balance between exploitation
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1. Input: Examples {x1, x2, . . . , xN}, Labelers {l1, l2, . . . , lM}, confidence threshold ε,
smoothing parameter K.

2. Define: LQ = {l(1), . . . , l(M)}, labeler id’s in descending order of their quality estimates.
3. Initialize: ai1 ← 0, ci1 ← 0 for i = 1, . . . ,M .
4. Loop for t = 1, ..., N

(a) Compute quality estimates Qit =
ait+K
cit+2K , i = 1, . . . ,M . Update LQ.

(b) St = {l(1), l(2), k}, where k is randomly sampled from the set {l(3), . . . l(M)}.
(c) Loop for j = 3 . . .M, j 6= k

i. Score(St) =
∑

i∈St
VitQit, lcandidate = l(j).

ii. If
|Score(St)|−Qlcandidate,t

|St|+1 < ε, then St ← St ∪ lcandidate. Otherwise exit loop to stop
adding new labelers to St.

(d) Get the weighted majority vote of the labelers VStt = sign
(∑

i∈St
VitQit

)
(e) ∀i ∈ St where Vit = VStt, ait ← ait + 1

(f) ∀i ∈ St, cit ← cit + 1

5. End
Figure 1: Pseudocode for the CrowdSense algorithm.

of quality estimates and exploration of the quality of the entire set of labelers. We ask each labeler
to vote on the example, and we pay a fixed price per label. The votes obtained from these labelers
for this example are then used to generate a confidence score, given as

Score(St) =
∑
i∈St

VitQit

which represents the weighted majority vote of the labelers. Next, we determine whether we are
certain that the sign of Score(St) reflects the crowd’s majority vote, and if we are not sure, we
repeatedly ask another labeler to vote on this example until we obtain sufficient certainty about the
label. To measure how certain we are, we look at the value of |Score(St)| and select the labeler with
the highest quality estimate Qit that is not in St as a candidate to label this example. We then check
whether this labeler could either change the weighted majority vote if his vote were included, or if
his vote would bring us into the regime of uncertainty where the Score(St) is close to zero, and the
vote is approximately a tie. The criteria for adding the candidate labeler to St is defined as:

|Score(St)| −Qlcandidate,t

|St|+ 1
< ε (1)

where ε controls the level of uncertainty we are willing to permit, 0 < ε ≤ 1. If (1) is true, the
candidate labeler is added to St and we get this labeler’s vote for xt. We then recompute ScoreSt

and follow the same steps for the next-highest-quality candidate from the pool of unselected labelers.
If the candidate labeler is not added to St, we assign the weighted majority vote as the predicted label
of this example and proceed to label the next example in the collection.

4 Experimental Results

Our experimental evaluation assesses the predictive performance of CrowdSense from two perspec-
tives. First, we compare CrowdSense with several baselines to demonstrate its ability to accurately
approximate the crowd’s vote. We then present a modular view of CrowdSense, and show the im-
pact of each module on the algorithm’s accuracy, which represents the agreement with the straight
majority vote of the entire crowd. We conducted experiments on three separate datasets. MovieLens
represents a dataset of 137 movies given ratings by 11 people, where the goal is to find the majority
vote of these reviewers. ChemIR is a dataset of 1165 patents, where 11 algorithms from the 2009
TREC Chemistry Track predicted whether a given patent reflects “prior art” for a given new patent.
Reuters represents 6904 newswire stories where 13 classification algorithms (e.g., SVM, decision
trees, AdaBoost) were trained on the money-fx category and where the goal is to predict the majority
prediction of these algorithms. For MovieLens we added 50% and for ChemIR we added 60% noise
to 5 of the labelers to introduce a greater diversity of judgements, since all the original labelers had
comparable qualities and didn’t strongly reflect the characteristics of the problem that we address.
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Figure 2: Tradeoff curves. The x-axis is the total number of votes (the total cost) used by the
algorithm to label the entire dataset. The y-axis indicates the accuracy on the full dataset.

All reported results are averages of 100 runs with random ordering of examples to prevent bias due
to the order in which examples are presented.

We first compared CrowdSense with several baselines: (a) the accuracy of the average labeler,
represented as the mean accuracy of the individual labelers, (b) the accuracy of the overall best
labeler in hindsight, and (c) the algorithm that selects just over half the labelers (i.e. d11/2e = 6
for ChemIR and MovieLens, d13/2e = 7 for Reuters) uniformly at random, which combines the
votes of labelers with no quality assessment. We also compared CrowdSense with IEThresh [16].
IEThresh estimates an upper confidence interval UI for the probability that a labeler will agree with
the majority vote and selects all labelers with UI > ε×UImax. The ε parameter in both CrowdSense
and IEThresh tunes the size of the subset of labelers selected to vote, so we report results for a range
of ε values. Note that increasing ε relaxes CrowdSense’s selection criteria to ask for votes from
more labelers, whereas it causes IEThresh to have a more strict selection policy.

Figure 2 indicates that, for the same fixed total cost, across different values of ε CrowdSense consis-
tently achieved the highest accuracy against the baselines, indicating that CrowdSense uses a fixed
budget more effectively than IEThresh. The other baselines did not achieve the same level of perfor-
mance as CrowdSense and IEThresh. The accuracy of the best labeler in hindsight (baseline (b)) is
indicated as a straight line on the subplots in Figure 2. Baselines (a) and (c), which are the average
labeler and the unweighted random labelers, achieved performance beneath that of the best labeler.
For the MovieLens dataset, the values for these baselines are 74.05% and 83.69% respectively; for
ChemIR these values were 68.71% and 73.13% and for Reuters, the values are 84.84% and 95.25%.
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Figure 3: Effect of the modules
on CrowdSense’s performance.

The algorithm template underlying CrowdSense has three com-
ponents that can be instantiated in different ways: (1) the com-
position of the initial seed set of labelers (step 4(b) in the pseu-
docode), (2) how subsequent labelers are added to the set (step
4(c)), and (3) the weighting scheme that affects the selection of
the initial labeler set, the way how the additional labelers are
incorporated as well as combining the votes of individual label-
ers (steps 4(b)(c)(d)). We tested the effect of first component by
running separate experiments that initialize the labeler set with
three (3Q), one (1Q) and no (0Q) labelers that have the highest
quality estimates, where for the latter two additional labelers are
selected at random to complete the set of three initial labelers.
3Q removes the exploration capability of the initial set whereas

the latter two make limited use of the quality estimates. As seen in Figure 3, all three variants have
lower predictive performance compared to CrowdSense. Next, we experimented with the second
component by adding labelers randomly rather than in order of their qualities. In this case, ex-
ploitation is limited, and the algorithm again tends not to perform as well. To test the effect of the
weighting scheme in the third component, we removed the use of weights from the algorithm. This
approach performs dramatically worse than the rest of the variants, demonstrating the significance
of using quality estimates for labeler selection and the calculation of weighted vote.
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