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Abstract

Across many disciplines, interest is increasing in the use of computational text
analysis in the service of social science questions. We survey the spectrum of
current methods, which lie on two dimensions: (1) computational and statistical
model complexity; and (2) domain assumptions. This comparative perspective
suggests directions of research to better align new methods with the goals of social
scientists.

1 Use cases for computational text analysis in the social sciences

The use of computational methods to explore research questions in the social sciences and humani-
ties has boomed over the past several years, as the volume of data capturing human communication
(including text, audio, video, etc.) has risen to match the ambitious goal of understanding the be-
haviors of people and society [1]. Automated content analysis of text, which draws on techniques
developed in natural language processing, information retrieval, text mining, and machine learning,
should be properly understood as a class of quantitative social science methodologies. Employed
techniques range from simple analysis of comparative word frequencies to more complex hierarchi-
cal admixture models. As this nascent field grows, it is important to clearly present and characterize
the assumptions of techniques currently in use, so that new practitioners can be better informed as
to the range of available models.

To illustrate the breadth of current applications, we list a sampling of substantive questions and
studies that have developed or applied computational text analysis to address them.

• Political Science: How do U.S. Senate speeches reflect agendas and attention? How are Senate
institutions changing [27]? What are the agendas expressed in Senators’ press releases [28]? Do
U.S. Supreme Court oral arguments predict justices’ voting behavior [29]? Does social media
reflect public political opinion, or forecast elections [12, 30]? What determines international
conflict and cooperation [31, 32, 33]? How much did racial attitudes affect voting in the 2008
U.S. presidential election [34]?

• Economics: How does sentiment in the media affect the stock market [2, 3]? Does sentiment in
social media associate with stocks [4, 5, 6]? Do a company’s SEC filings predict aspects of stock
performance [7, 8]? What determines a customer’s trust in an online merchant [9]? How can we
measure macroeconomic variables with search queries and social media text [10, 11, 12]? How
can we forecast consumer demand for movies [13, 14]?

• Psychology: How does a person’s mental and affective state manifest in their language [15]? Are
diurnal and seasonal mood cycles cross-cultural [16]?

• Scientometrics/Bibliometrics: What are influential topics within a scientific community? What
determines a paper’s citations [35, 36, 37, 38]?
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Figure 1: Schematic of model complexity versus domain assumptions for various computational text
analysis methods. Statistical models are listed with their respective inference/training algorithms;
computational expense increases with model expressiveness.
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Figure 2: Typical methods used in computational text analysis. Compare to Table 1 in [27].

• Sociolinguistics: What are the geographic determinants of lexical variation in social media [39]?
Demographic determinants [12, 40]?

• Public Health: How can search queries and social media help measure levels of the flu and other
public health issues [41, 42, 43]?

• History: How did modern English legal institutions develop over the 17th to 20th centuries [17]?
When did concepts of religion, secularism, and social institutions develop over two millennia of
Latin literature [18]? What can topical labels in Diderot’s 18th Encyclopédie reveal about con-
temporary ways of thought [19]? Who were the true authors of a particular piece of historical text
[20]? The last deserves mention as a classic (1964) work that analyzed pseudonymous Federalist
papers and answered long-standing questions about their authorship—one of the earliest instances
of automated, statistical stylometry and automated text analysis for social science in general.

• Literature: What are the textual allusions in Classical Latin poetry [21] and the synoptic gospels
[22]? How do demographic determinants of fictional characters affect their language use [23]?
Who is the true author of a work of literature [24]? Roberto Busa’s work in digitizing and lem-
matizing the complete works of Thomas Aquinas, begun in 1949, also deserves mention as one
of the earliest efforts at creating a machine-readable annotated corpus [25, 26].

This list is incomplete, both in the works cited and in the range of areas that have used or could
use these methods. These techniques are still in their infancy: while several of the works above
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thoroughly address substantive questions (and, in a few cases, there exist lines of work published
in high-quality social science journals), most tend to focus on developing new methodologies or
data sources. There are also more exploratory analyses not aimed at specific research questions
[44, 45]. In most cases, automated text analysis functions as a tool for discovery and measurement
of prevalent attitudes, concepts, or events in textual data.

2 Classes of methods

In most cases, the analysis is restricted to the frequencies of words or short phrases (n-grams) in
documents and corpora.1 Even so, there is still a rich variety of methods, with two important axes
of variation: statistical model assumptions and domain assumptions (Figure 1).

Domain assumptions refer to how much knowledge of the substantive issue in question is used in
the analysis. A purely exploratory, “bare words” analysis only considers the words of documents;
for example, examining the most common words in a corpus, or latent topics extracted automatically
from them. Next, non-textual metadata about the documents is almost always used; for example,
tracking word frequencies by year of book publication [45], or spatial location of a microblog-
ger [39]. We call these naturally-labeled documents; typically the labels take the form of contin-
uous, discrete, or ordinal variables associated with documents or segments of them. In contrast,
manually-labeled documents may be created in order to better understand particular quantities of
interest; for example, annotating news articles with information about the events they describe [32].
Creating and evaluating the codebook (that carefully defines the semantics of the annotations a coder
will produce) can be a laborious and iterative process, but is essential to understand the problem and
create a psychometrically reliable coding standard [46]. Finally, another source of domain infor-
mation can take the form of dictionaries: lists of terms of interest to the analysis, such as names,
emotional words, topic-specific keywords, etc. Ideally, they may be custom-built for the problem
(if done manually, a labor-intensive task similar to coding documents), or they may be reused or
adapted from already-existing dictionaries (e.g., Freebase [47] for names or LIWC [15] for affect,
though see [48]’s critical comments on the naı̈ve use of affect dictionaries). Useful information
can be revealed with just a handful of terms; for example, [34] analyzes the Google search query
frequencies of one highly charged racial epithet as a proxy for racial attitudes.

The second dimension is computational and statistical complexity.2 The simplest techniques
count words. A typical analysis is to compare word frequencies between groups (e.g., listing the
most common words per speaker in a debate). Note that any type of comparison requires some form
of natural labels for text; generally, metadata is what links text to interesting substantive questions.
In this case, the metadata is speaker identity, but time, social group membership, and others have
also been considered—as in the common analysis of plotting a word’s frequency over time.

Frequency ratios and correlations with response variables can be seen as parameters or hypothesis
tests for simple two-variable models between text frequencies and response/metadata variables; in
the case of a categorical metadata variable, words’ conditional probabilities p(x | y) correspond to
parameters of the naı̈ve Bayes model of text. A hallmark of this class is that they are computationally
straightforward to calculate; typically they involve a single pass through the data to compute counts,
sums, and other quantities.

Another popular set of techniques sits on the other side of the computational spectrum: hierarchical
admixture models, specifically LDA-style topic models [49]. Here, documents undergo dimension
reduction by being modeled as mixtures of multinomials, where each component is a distribution
over words—called a topic. The output of a topic model can be used for exploratory analysis, or
post-hoc compared across observed variables. With some work, these models can also be usefully
customized for a variety of applications; typically, an important change is to incorporate the natural
labels and structure of the domain. (Models that can incorporate reasonably generic types of labels,
and in substantially different ways, include SLDA, DMR, and PLDA [50, 51, 36].)

Another class of techniques is generalized linear models, and specifically regularized linear and
logistic regression [52]. In text regression, the response variable is modeled as a conditional dis-
tribution given a linear combination of text features, p(y | x). This model has often been used

1A few interesting exceptions: [18, 9, 31].
2We use the term “complexity” informally, not intending to imply any of its technical senses.
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for the task of text categorization, to predict a document’s category according to a training set of
prespecified labeled documents; research has shown that linear models are state-of-the-art for this
problem ([53] §14.7-8). A researcher can manually label documents and train a classifier to aid in
the analysis of a large document collection; but these models can also be used for natural labels, to
directly model a response variable of interest with text. We prefer the term regression for both dis-
crete and continuous response variables, to emphasize these models’ connections to the extensively
developed statistical literature in GLMs and applied regression analysis [54, 55, 56].

An alternative is inverse text regression, where p(x | y) is modeled as a multinomial logistic re-
gression over the vocabulary, using the document labels [57] (or possibly latent variables [58]) as
features. This direction of conditioning is more like naı̈ve Bayes and (labeled) topic models in that
it grounds out as multinomials over the vocabulary, but with linear parameterization of the multino-
mials, using additive effects instead of mixture memberships to select word probabilities.

3 Considerations

Which method to use completely depends on the goals and needs of the analysis: all three can be
used for descriptive analysis and prediction. One consideration is the usual tradeoff between sim-
plicity and expressiveness. Frequencies and correlations are easily computed and replicable; regres-
sions require more computation, though often have unique solutions and off-the-shelf solvers; while
topic models use fitting procedures that are more expensive (MCMC), or less flexible (variational
inference), and may be less stable in that different runs can produce different results. This is part
of the tradeoff of their greater expressive power. Regressions have the same level of expressiveness
as word frequencies, but control for covariation through additive effects, where a word’s coefficient
explains the specific effect of that word when controlling for other words and other covariates. ([37]
illustrates how this can make a difference for analysis.)

We should note that all the methods described in the previous section assign vectors of weights
across the vocabulary, giving words associations to non-textual document-level variables, and are
therefore fundamentally interpretable, because the researcher can inspect words’ numeric weights.
Word correlations and regressions associate words to observed document label variables, while topic
models associate words to hidden topic variables. (Per-word association weights are individual
correlations, regression coefficients, or conditional topic probabilities, respectively.) In all these
cases, a way to summarize a particular document-level variable, then, is to look at the top-weighted
words for that vector – e.g., the top 10 words with highest probability under a topic, or highest
coefficient for a label class, or highest correlation/frequency. An analyst can then view the corpus
through the lens of these top-words lists and their associated variables. This level of interpretability
is a major advantage over black-box non-linear methods like kernel methods (e.g. kernelized SVMs)
or neural networks, especially given that linear methods often have similar predictive performance.

A third consideration is what sort of the relationship between text and observed variables the re-
searcher is interested in. If there are few observed variables, then topic models can still be used
for purely exploratory analysis. However, since many of the substantive questions researchers are
interested in typically involve conditioning on observed variables to make comparisons (whether the
observed variables are natural or hand-labeled), it is useful to allow the model to tie relevant textual
features to the variables in question.

For some problems, like analyzing Congressional floor speeches, topics correspond quite well to the
substantive issues under consideration [27]. But for other problems, they can work less well. As one
example, we have observed several cases where SLDA (an LDA variant that models a document-
level variable through a GLM regression on topic proportions [50]) has similar [59] or worse [39, 57]
predictive performance than regularized text regression, For the problem of predicting U.S. users’
locations from their microblog text [39], we observed that Lasso regression selected a small number
of words to have non-zero coefficients (e.g., “taco” to indicate the West Coast). We believe that in
SLDA, the impact of these sparse cues was blunted from their incorporation into broad topics, since
the model had to explain not just the response, but also the entirety of all the text. Sometimes the
relationship between text and the document variable is better explained by individual words alone.
The extremes of individual word frequencies versus broad topic proportions are only two points in
the space of possible text representations; it remains an interesting open question how to design
models that can reliably abstract beyond individual words in service of social science analysis.
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