UMass Amherst

Department of Computer Science
 

Computer Science Course Descriptions for Fall of 2006

CMPSCI 105: Computer Literacy (R2)

Professor: Verts

Microcomputers are now used widely in all areas of modern life. For this reason it's important that all students understand how computers work and how computers can be used as a problem-solving tool. The focus of this course is on computer applications. The course stresses the ways in which computers can help you solve problems efficiently and effectively. The course provides a broad introduction to hardware, software, and mathematical aspects of computers. Then four application areas are discussed: word processing, spreadsheets, databases and telecommunications (access to the Internet). Weekly lab assignments are an integral part of the course. There are optional lab times set up for students who do not have the proper equipment available to them. Students who are more interested in computer programming should take CMPSCI 121 or 187. Prerequisites: reasonable high school math skills. Typing ability is also an important asset for the course. Previous computer experience is not expected. Pre-registration is not available to majors and pre-majors. 3 credits.

CMPSCI 105C: Computer Literacy (R2)

Professor: Verts

Same as 105.

CMPSCI 105D: Computer Literacy (R2)

Professor: Verts

Same as 105.

CMPSCI 105E: Computer Literacy (R2)

Professor: Verts

Same as 105.

CMPSCI 120: Introduction to Problem Solving with the Internet (R2)

Professor: Kirlin

The Internet is a goldmine of information and software resources for those who know how to plug in and navigate it. Originally designed by computer scientists for computer scientists, the net is now a driving force behind life in the information age and a new global economy. This course will provide non-CMPSCI majors with timely skills needed to tap the net. We will cover Web browser features, e-mail management, Web page design, software downloads, strategies for finding information and virtual communities, and public key cryptography. In addition, we will survey key social and political topics that are relevant to the Internet, such as copyright laws, First Amendment issues, privacy in a digital world, and the culture of the Internet. Prerequisites: some hands-on experience with PCs or MACs or UNIX (programming experience is NOT required). CMPSCI majors and pre-majors may not pre-register. 3 credits.

CMPSCI 121: Introduction to Problem Solving with Computers (R2)

Professor: McCallum

CMPSCI 121 provides an introduction in problem solving and computer programming using the programming language Java. It teaches how real-world problems can be solved computationally using the programming constructs and data abstractions of a modern programming language. Concepts and techniques covered include data types, expressions, objects, methods, top-down program design, program testing and debugging, state representation, interactive programs, data abstraction, conditionals, iteration, interfaces, inheritance, lists and arrays. No previous programming experience required. Use of computer is required. Prerequisite: R1. 3 credits.

CMPSCI 121CE: Introduction to Problem Solving with Computers (R2)

Professor: Kohler

An introductory course in problem solving and computer programming using the programming language Java. The course focuses on the fundamental concepts of problem solving and the techniques associated with the development of algorithms and their implementation as computer programs. This course or its equivalent is required for all additional courses in CMPSCI. Three hours of lecture/recitation per week. About 6 programming projects are assigned. In addition there are assigned homework problems, a midterm exam and a final. No computer science prerequisite, although basic math skills (e.g. R1) and basic computer literacy (as taught in CMPSCI 105) are assumed. There will be a computer literacy exam during the first week to assess your general computer competence. Use of computer is required. Prerequisite: R1. 3 credits.

CMPSCI 123(191B): Intro to Java II

Professor: Lehnert

CmpSci 191B (123) is a programming course in Java for students who have previous programming experience in Java, C or C++. Students will be introduced to a variety of advanced topics such as inheritance, polymorphism, interface design, threads, and design patterns. Object-oriented concepts will be covered in great detail, but 123 assumes general familiarity with basic programming concepts such as arithmetic operators, boolean operators, conditional control structures, iterative control structures, and arrays. Students will have an opportunity to strengthen object-oriented programming skills through a series of required programming projects.

CMPSCI 187: Programming with Data Structures (R2)

Professor: Hanson

The course introduces and develops methods for designing and implementing abstract data types using the Java programming language. The main focus is on how to build and encapsulate data objects and their associated operations. Specific topics include linked structures, recursive structures and algorithms, binary trees, balanced trees, and hash tables. There will be weekly assignments, consisting of programming and written exercises, a midterm, and a final exam. Prerequisites: CMPSCI 121H (or equivalent Java experience) and Basic Math Skills (R1). Basic Java language concepts are introduced quickly; if unsure of background, contact instructor. 4 credits.

CMPSCI 191A: CMPSCI TAP Seminar

Professor: Fu, Levine

Conversations with members of the UMass CMPSCI community, to explore issues in and subareas of computer science. Open only to first-year students in the CMPSCI TAP residential program. 1 credit.

CMPSCI 201: Architecture and Assembly Language (E)

Professor: Verts

Lecture, discussion, lab. The architecture and machine-level operations of modern computers at the logic, component, and system levels. Topics include integer, scaled, and floating point binary arithmetic; Boolean algebra and logic gates; control, arithmetic-logic, and pipeline units; addressing modes; cache, primary, and virtual memory; system buses; input-output and interrupts. Simple assembly language for a modern embedded processor is used to explore how common computational tasks are accomplished by a computer. Two lectures and one discussion per week. Laboratory exercises, homework exercises, in-class quizzes, two midterm exams, and a final exam. Prerequisite: CMPSCI 187 or ECE 242 or equivalent. 4 credits.

CMPSCI 250: Introduction to Computation (E)

Professor: Barto

Lecture, discussion. Basic concepts of discrete mathematics useful to computer science: set theory, strings and formal languages, propositional and predicate calculus, relations and functions, basic number theory. Induction and recursion: interplay of inductive definition, inductive proof, and recursive algorithms. Elementary combinatorics. Finite-state machines, regular languages, nondeterministic finite automata, Kleene's Theorem. Problem sets, 2-3 midterm exams, timed final. Corequisite: MATH 132/136 or equivalent. Prerequisite: MATH 131 and (CMPSCI 187 or ECE 242). 4 credits.

CMPSCI 287: Programming Language Paradigms

Professor: Lehnert

Lecture, discussion, programming projects. Programming language paradigms provide a basic philosophy to support the construction of reliable large-scale systems. This course discusses four such paradigms. In the functional paradigm, software is constructed in such a way as to minimize the use of side-effects, thereby simplifying the conceptual structure of programs and making them easier to analyze and understand. The logic paradigm supports the development of software in which the concept of relation (e.g. a relation between people) is more important than the concept of function. In the imperative paradigm we are concerned with principled ways in which software that is state-dependent can be constructed. Finally, in the object-oriented paradigm we are concerned with combining data with code to create "objects" which exhibit behavior. Prerequisite: CMPSCI 187 or ECE 242. Corequisites: CMPSCI 250 and MATH 132. 4 credits.

CMPSCI 305: Social Issues in Computing

Professor: Constantine

Designed to satisfy the Junior Year writing requirement, CMPSCI 305 introduces the student to technical writing and editing, scientific journalism and the social essay. The course combines practical, scientific writing as found in industry and business with explorative essays that focus attention upon the technological and humanistic concerns inherent in society. Ten written assignments-two longer papers, eight shorter ones and one oral presentation. Prerequisite: ENGLWP 112 or CW. 3 credits.

CMPSCI 311: Introduction to Algorithms

Professor: Barrington

This course will introduce you to algorithms in a variety of areas of interest, such as sorting, searching, string-processing, and graph algorithms. You will learn to study the performance of various algorithms within a formal, mathematical framework. You will also learn how to design very efficient algorithms for many kinds of problems. There will be a few programming assignments as well to help you relate the empirical performance of an algorithm to theoretical predictions. Mathematical experience (as provided by CMPSCI 250) is required. You should also be able to program in Java (or some other closely related language). Prerequisite: CMPSCI 250 or MATH 455. 4 credits.

CMPSCI 320: Introduction to Software Engineering

Professor: Fisher

In this course, students learn and gain practical experience with software engineering principles and techniques. The practical experience centers on a semester-long team project in which a software development project is carried through all the stages of the software life cycle. Topics in this course include requirements analysis, specification, design, abstraction, programming style, testing, maintenance, communication, teamwork, and software project management. Particular emphasis is placed on communication and negotiation skills and on designing and developing mintainable software. Use of computer reuired. Several written assignments, in-class presentations, major term project. Prerequisite: CMPSCI 287. 4 credits.

CMPSCI 377: Operating Systems

Professor: Corner

In this course we examine the important problems in operating system design and implementation. The operating system provides a well-known, convenient, and efficient interface between user programs and the bare hardware of the computer on which they run. The operating system is responsible for allowing resources (e.g., disks, networks, and processors) to be shared, providing common services needed by many different programs (e.g., file service, the ability to start or stop processes, and access to the printer), and protecting individual programs from one another. The course will start with a brief historical perspective of the evolution of operating systems over the last fifty years, and then cover the major components of most operating systems. This discussion will cover the tradeoffs that can be made between performance and functionality during the design and implementation of an operating system. Particular emphasis will be given to three major OS subsystems: process management (processes, threads, CPU scheduling, synchronization, and deadlock), memory management (segmentation, paging, swapping), file systems, and operating system support for distributed systems. Prerequisites: CMPSCI 187 and (CMPSCI 201 or ECE 232). 4 credits.

CMPSCI 383: Artificial Intelligence

Professor: Jensen

This course explores key concepts of artificial intelligence, including knowledge representation, state-space search, and reasoning under uncertainty. We will examine how these concepts are applied in game playing and adaptive systems, two areas where AI concepts have proven to be extraordinarily successful. Prerequisites: CMPSCI 250, CMPSCI 287, and CMPSCI 311. 3 credits.

CMPSCI 391F: Seminar - Fundamentals of Graphic Communication

Professor: Woolf

This course provides an understanding of computer-based design and multimedia production. Basic concepts in the areas of graphic design, animation, video editing and object-oriented programming will be covered preparing students for more advanced studies in 2D and 3D animation and in multimedia programming. Course work consists mainly of several student projects, built incrementally as several smaller sub-projects. Each student s project will be presented via the World Wide Web and discussed in class. Students interaction is encouraged through peer reviews and in-class exercises. Topics include HTML, Cascading Style Sheets (CSS), file transfer, designing and drawing characters, image formats/image compression for the web, modeling and animation.

CMPSCI 397B: Three-Dimensional Modeling and Digital Editing

Professor: Woolf

This seminar is dedicated to the production of high quality 3-dimensional computer modles using graphics technology. For example, color 3-D objects are defined and manipulated, digitized images created and altered, and photo-realistic effects and animated sequences produced. Techniques are used to bend and twist shapes around objects or lines, to provide a variety of light and texture, and to trace over images including digitized pictures. We focus on development of humanoid characters. Each student will design his/her own character and lectures and homework will support students to model faces and bodies. Modeling topics include designing, joints, creating chains with constraints and producing realistic facial movement. 3 credits.

CMPSCI 397C: Interactive Multimedia Production

Professor: ** Section Deleted

This course explores the potential of high quality interactive authoring tools to develop presentation and training systems. Programming languages within professional presentation and editing packages will be used to create systems capable of presenting graphics, animation, text, sound and music, based on the users requests. Students will learn how to define and manipulate classical techniques such as storyboarding, staging, and interactivity. The course will concentrate on state-of-the-art multimedia composition and presentation techniques and developing small individual projects. The class does not have lab facilities for all students interested in this material and thus we limit the class to students who do well on the first assignment. This assignment will be graded and returned to students before the end of the Add/Drop period. Students are cordially invited to attend the first class, the first Tuesday/Thursday of the semester. At that time we will explain the course, what is expected of students and the entry condition. Prerequisite: CMPSCI 551 (591x) - 3D Computer Animation and Digital Editing. Permission of the instructor required; contact: Beverly Woolf 545-4265. 3 credits.

CMPSCI 397D: Interactive Web Animation

Professor: Woolf

This course teaches basic animation for the Web, interactivity, color theory, design, action scripting, and transitions. Students maintain their own web sites and submit projects every 2 weeks in Flash. Individual as well as, a final project are required. Knowledge of basic Web development, e.g., HTML, Java Script. Prerequisite: CMPSCI 391F or 391S; CMPSCI 551 and CMPSCI 552 preferred. Permission of instructor is required. 3 credits.

CMPSCI 397E: Seminar - Character Animation

Professor: Woolf

This class focuses exclusively on character animation techniques. Animation topics include action andpose, timing, overlap, pacing, and simulating and exaggerating physical laws. Constraints will be used to create animation and lipsync. Voice tracks will be used to simulate speech. Student will create their own final project or work in a small team. 3 credits.

CMPSCI 403: Introduction to Robotics: Mechanics, Dynamics, and Control

Professor: ** Section Deleted

This course covers the fundamentals of robotics from the perspective of a computer scientist. We will model robotic systems to understand their motion form a physical perspective, discuss methods of controlling a robotic system using a computer to perform a desired motion, and present a variety of methods to compute the motion necessary to accomplish a given task. The experimental section of this class will give students the opportunity to apply the material learned in class by programming small mobile robots. Prerequisites: calculus, linear algebra, and programming skills. 3 credits.

CMPSCI 410: Compiler Techniques

Professor: Moss

This course explores the basic problems in the translation of programming languages focusing on theory and common implementation techniques for compiling traditional block structured programming languages to produce assembly or object code for typical machines. The course involves a substantial laboratory project in which the student constructs a working compiler for a considerable subset of a realistic programming language. The lectures are augmented by an optional discussion section that covers details of the programming language used to build the compiler, the operating system, the source language, and various tools. Use of computer required. Text: Crafting a Compiler in C, by Fischer and LeBlanc. Prerequisites: (CMPSCI 250 or MATH 455) and CMPSCI 377. 3 credits.

CMPSCI 415(491S): Introduction to Computer and Network Security

Professor: Misra, Levine

This course provides an introduction to the principles and practice of system and network security. A focus on both fundamentals and practical information will be stressed. The three key topics of this course are cryptography, system security, and network security. Subtopics include ciphers, hashes, key exchange, security services (integrity, availability, confidentiality, etc.), security attacks, vulnerabilities, exploits, countermeasures. Students will make extensive use of a lab for experimenting with security countermeasures. Grades will be determined by class participation, lab work, homework, and exams. Prerequisites include 377 and a familiarity with Unix. 3 credits.

CMPSCI 445: Information Systems

Professor: Miklau

Introduction to database management. Relational database topics include data modeling, query languages, database design, and query optimization. Alternative data management approaches will be covered, including semi-structured data, XML, and text retrieval. Application topics will include web data management, integration of data sources, security and privacy. Prerequisite: CMPSCI 287. 3 credits.

CMPSCI 453: Computer Networks

Professor: Venkataramani

This course provides an introduction to fundamental concepts in the design and implementation of computer communication networks, their protocols, and applications. Topics to be covered include: layered network architectures, applications, network programming interfaces (e.g., sockets), transport, congestion, routing, and data link protocols, local area networks, emerging high-speed networks, network management, and network security. Examples will be drawn primarily from the Internet (e.g., TCP, UDP, and IP) protocol suite. There will be written assignments, programming assignments (in C), one midterm, and a final exam. Prerequisites: A rudimentary understanding of computer architecture and operating systems, while not required, would be helpful. 3 credits.

CMPSCI 491M: S-Introduction to Systems Engineering

Professor: Zink

The goal of this course is to introduce senior undergraduates from several Engineering departments and the Computer Science department to the principles of systems engineering. In industry, the systems engineering process has gained importance in recent years to a point that almost all of the engineers a company employs have to go through some systems engineering training. Companies that build complex systems have realized that a well established systems engineering process improves not only the quality of the product to be build, but also makes the whole product life cycle more efficient. The main focus of systems engineering is on establishing and managing a process that leads to a successful development and production of a system/product. This course will introduce the main components of the systems engineering process. Since good systems engineers gained their experience not only be knowing the theoretic aspects of systems engineering very well but by also being involved in a real process, this course will also contain a practical part at which the participants will build a low cost radar node for the usage in an off-the-grid radar network. This project will be accompanied by a systems engineering process, which will be established by the students. The practical part is of high importance since theory can only impart the basics. Good understanding of the systems engineering process can only be obtained by actually executing and managing the whole process.

CMPSCI 491O: Seminar-Outdoor Mobile Network Environment

Professor: Levine

Students in this class will work in teams to deploy one of several federated projects that provide pervasive and mobile networking in the Amherst area. The projects involve either Cisco mesh networking in downtown Amherst, PVTA buses equipped with computers and networking, custom-built solar powered throwbox nodes, and modified meraki network devices. Students will design new or modify existing software and operating systems that run on each platform to provide novel networking services.

CMPSCI 503(591C): Embedded Systems

Professor: Grupen

Embedded computing applications do not require the same specifications as general purpose computational platforms, but are instead intimately related to a particular physical process. This course introduces tools necessary to design embedded computational applications. We will explore these applications by building autonomous mobile robots from scratch to accomplish a task that the class will design. Each student will design and build a project as part of a team that will be demonstrated at the end of the semester. The course is heavily project-oriented (with a required lab) and discussions will include topics such as; (1) mechanisms, sensors, actuators and feedback systems, (2) analog and digital circuits, power amplifiers, signal processing, operational amplifiers, multiplexing, (3) I/O - A/D, D/A, and latching, serial and parallel interfaces, (4) signal processing/conditioning and (5) an introduction to real-time programming. There will be a 3 credit lecture and a 1 credit lab (required).

CMPSCI 521: Software Engineering: Analysis and Evaluation

Professor: Adrion

Software systems have become an integral part of our societal infrastructure. Software controls life-critical applications, such as air traffic control and medical devices, and is of central importance in telecommunication and electronic commerce. In this course, we will examine state of the art practices for testing and analyzing software systems that require high assurance. We will initially look at techniques developed for sequential systems but then examine the complexity that arises from distributed systems. Laboratory requirements: students will be required to carry out an individual or group project that applies or extends some of the techniques described in class. Text: course material will be drawn from the software engineering literature.Prerequisites: CMPSCI 320, Introduction to Software Engineering (or equivalent course). 3 credits.

CMPSCI 535: Computer Architecture

Professor: Weems

The structure of digital computers is studied at several levels, from the basic logic level, to the component level, to the system level. Topics include: the design of basic components such as arithmetic units and registers from logic gates; the organization of basic subsystems such as the memory and I/O subsystems; the interplay between hardware and software in a computer system; the von Neumann architecture and its performance enhancements such as cache memory, instruction and data pipelines, coprocessors, and parallelism. Weekly assignments, semester project, 2 hours exams, final. Prerequisites: (CMPSCI 250 or MATH 455) and CMPSCI 377. 3 credits.

CMPSCI 551: Three-Dimensional Modeling and Digital Editing

Professor: Woolf

This seminar is dedicated to the production of high quality 3-dimensional computer modles using graphics technology. For example, color 3-D objects are defined and manipulated, digitized images created and altered, and photo-realistic effects and animated sequences produced. Techniques are used to bend and twist shapes around objects or lines, to provide a variety of light and texture, and to trace over images including digitized pictures. We focus on development of humanoid characters. Each student will design his/her own character and lectures and homework will support students to model faces and bodies. Modeling topics include designing, joints, creating chains with constraints and producing realistic facial movement. 3 credits.

CMPSCI 553(591U): Interactive Web Animation

Professor: Woolf

This course teaches basic animation for the Web, interactivity, color theory, design, action scripting, and transitions. Students maintain their own web sites and submit projects every 2 weeks in Flash. Individual as well as, a final project are required. Knowledge of basic Web development, e.g., HTML, Java Script. Prerequisite: CMPSCI 391F or permission of instructor. 3 credits.

CMPSCI 554(591V): Multimedia Production Management

Professor: Woolf

This course involves developing a large group 3D animation, beginning with a storyboard, developing models, lighting, background, sound and music. It involves team management, group dynamics, and production techniques. The final project will be demonstrated on the last day of class, to over 100 people. Prerequisite: CMPSCI 551. Permission of instructor is required. 3 credits.

CMPSCI 575: Combinatorics and Graph Theory

Professor: Moll

This course is a basic introduction to combinatorics and graph theory for advanced undergraduates in computer science, mathematics, engineering and science. Topics covered include: elements of graph theory; Euler and Hamiltonian circuits; graph coloring; matching; basic counting methods; generating functions; recurrences; inclusion-exclusion; and Polya's theory of counting. Prerequisites: mathematical maturity; calculus; linear algebra; strong performance in some discrete mathematics class, such as CMPSCI250 or MATH 455. Modern Algebra - MATH 411 - is helpful but not required. 3 credits.

CMPSCI 577(591EE): Operating Systems Implementation

Professor: Shenoy

This course will expose students to the internals of an operating system kernel. The course will be based on Linux and will consist of a series of programming exercises involving implementation of kernel modules, system calls, CPU schedulers, memory management and file systems. Since the Linux kernel is written in C, proficiency in the C programming language is a must. An undergraduate course on operating systems (equivalent to CMPSCI 377) is also a prerequisite for this course.

CMPSCI 591F: Seminar - Software Engineering Management Practicum

Professor: Fisher

The purpose of this course is to provide students with practical experience in the management of software development projects. Students in this course will gain this experience by serving as software development team technical managers for teams of software engineering students in CMPSCI 320. As project managers, the students in CMPSCI 591F will be responsible for: supervising and managing the work of teams of CMPSCI 320 students; interfacing with the other CMPSCI 591F students managing other teams in the course; interfacing with the course instructor, course TA, and course customer. CMPSCI 591F students will be assigned readings in software engineering project management to provide a theoretical basis for their work in this course. But the majority of work in the course will be related to the actual management of assigned development teams. As team managers, CMPSCI 591F students will set goals and schedules for their teams, track and report team progress, negotiate with leaders of other teams and the course customer, and evaluate the work of members of their teams. CMPSCI 591F course assignments may include: written team goals, plans and schedules; periodic reports on team progress; documentation of agreements reached with other team leaders and customers; evaluations of the applicability of theoretical papers to the work of this course. This course will meet at the same times and places as CMPSCI 320. Additional meetings with team members and other students in CMPSCI 591F are also expected to be arranged by mutual agreement. Enrollment in this course is only by permission of the instructor, and is restricted to students who have previously taken CMPSCI 320, and received a grade of A or A-. 3 credits.

CMPSCI 591G: Seminar - Computer Networking Lab

Professor: Towsley

In this course, students will learn how to put "principles into practice," in a hands-on-networking lab course. The course will cover router and end-system labs in the areas of Single Segment IP Networks, Multiple Segment IP Networks and Static Routing, Dynamic Routing Protocols (RIP and OSPF) LAN switching, Transport Layer Protocols: UDP and TCP, IP Multicast, NAT, DHCP, DNS, SNMP and Network Security. These labs will be done in a networked lab setting consisting of 4 routers, 4 hubs, and 4 end systems. See http://www-net.cs.umass.edu/cs591_spring06 for specific lab content. Prerequisites: Successful completion of CMPSCI 453 and permission of instructor.

CMPSCI 591O: Seminar - Character Animation

Professor: Woolf

This class focuses exclusively on character animation techniques. Animation topics include action andpose, timing, overlap, pacing, and simulating and exaggerating physical laws. Constraints will be used to create animation and lipsync. Voice tracks will be used to simulate speech. Student will create their own final project or work in a small team. 3 credits.

CMPSCI 596A: Independent Study - TA for CMPSCI 551 3D Animation

Professor: Woolf

TAs are responsible for developing student assignments weekly and for group grading assignments every two weeks. They typically give one lecture per semester and also spend 6 hours/week in the Animation Lab assisting students. TAs setup and maintain hardware and software needed for lectures - 3 or 4 commercial graphics packages. TAs take a lead role in the final course production, a group effort of 6-8 weeks work. Each TA manages 4-5 students organized in groups for 1) character animation, 2) lighting, 3) special effects, 4) surfaces, and 5) editing. The TA creates weekly tasks for each student in his/her group and makes sure that the work is complete and passed along to the next group on time. Prerequisite: CMPSCI 551 with grade of B or better. 3 credits.

CMPSCI 596C: Independent Study - TA for CMPSCI 591O Seminar-Character Animation

Professor: Woolf

TAs are responsible for providing assistance to the instructor and students of CMPSCI 591O Seminar-Character Animation. Activities will include critiquing students work and providing useful feedback. Grading the class projects and homework assignments, and spending at least 6 hours each week in the laboratory to help the students with their daily work for the class. Evaluation will be done by the instructor based upon the quality of assistance to the students, attendance at the lectures and hours spent in the animation laboratory. Grading will also be based on advanced projects by the student and presented at the end of the semester. Prerequisite: CMPSCI 591O with grade of B or better. 3 credits.

CMPSCI 596D: Independent Study - Advanced Computer Modeling

Professor: Woolf

This course focuses on production of high quality models, beginning with simple vases, desks, lamps and moving to character and humanoids. Students will model organic shapes, such as fruit, using splines, lathes, and extrudes. Surfacing topics such as specularity, reflection, trasparency, glow, decals and image maps will be discussed and modeled. Texture and advanced lighting techniques will be developed. Students will develop humanoid characters, modeling torso, shoulders, pelvis, arms, legs and hands feet and eyeballs. Geometry bones will be added to the final characters along with kinematic constraints and Euler Limits. The character's face will "lip sync" to speak or sing. Students will also create low patch proxy models of their characters to be used for blocking and simple motion within a final animation. These characters will be rigged for animation and the models given to students in the Animation Class for creation of the final project. Students will complete five independent modeling assignments and a final project in which their characters are animated by the Animation Class. 3 credits.

CMPSCI 610: Compiler Techniques

Professor: Moss

This course explores the basic problems in the translation of programming languages focusing on theory and common implementation techniques for compiling traditional block structured programming languages to produce assembly or object code for typical machines. The course involves a substantial laboratory project in which the student constructs a working compiler for a considerable subset of a realistic programming language. The lectures are augmented by an optional discussion section that covers details of the programming language used to build the compiler, the operating system, the source language, and various tools. Use of computer required. Text: Crafting a Compiler in C, by Fischer and LeBlanc. Prerequisite: (CMPSCI 250 or MATH 455) and CMPSCI 377. 3 credits.

CMPSCI 611: Advanced Algorithms

Professor: Sitaraman

Principles underlying the design and analysis of efficient algorithms. Topics to be covered include: divide-and-conquer algorithms, graph algorithms, matroids and greedy algorithms, randomized algorithms, NP-completeness, approximation algorithms, linear programming. Prerequisites: The mathematical maturity expected of incoming Computer Science graduate students, knowledge of algorithms at the level of CMPSCI 311. 3 credits.

CMPSCI 615(691CC): Seminar- Advanced Information Assurance

Professor: Fu, Corner

This course provides an in-depth examination of the fundamental principles of information assurance. While the companion course for undergraduates is focused on practical issues, the syllabus of this course is influenced strictly by the latest research. We will cover a range of topics, including authentication, integrity, confidentiality of distributed systems, network security, malware, privacy, intrusion detection, intellectual property protection, and more. Prerequisites: undergraduate background in computer science or 415.

CMPSCI 621: Advanced Software Engineering: Analysis and Evaluation

Professor: Adrion

Software systems have become an integral part of our societal infrastructure. Software controls life-critical applications, such as air traffic control and medical devices, and is of central importance in telecommunication and electronic commerce. In this course, we will examine state of the art practices for testing and analyzing software systems that require high assurance. We will initially look at techniques developed for sequential systems but then examine the complexity that arises from distributed systems. Laboratory requirements: students will be required to carry out an individual or group project that applies or extends some of the techniques described in class. Text: course material will be drawn from the software engineering literature.Prerequisites: CMPSCI 320, Introduction to Software Engineering (or equivalent course). This course is taught concurrently with CMPSCI 521, but students taking CMPSCI 621 are expected to do additional and more challenging homework problems and projects. 3 credits.

CMPSCI 646: Information Retrieval

Professor: Allan

The course will cover basic and advanced techniques for text-based information systems. Topics covered include retrieval models, indexing and text representation, browsing and query formulation, routing, distributed information retrieval, and integration with database systems. The course will include implementation of major elements of an information retrieval system. Prerequisite: CMPSCI 445 or equivalent. 3 credits.

CMPSCI 653: Advanced Computer Networking

Professor: Towsley

This course covers advanced fundamental principles of computer networks, studying foundational material in the field. Topics include protocol mechanisms and implementation principles, protocol specification/verification techniques, network algorithmics, advanced network architecture, network simulation, performance analysis, and measurement. Prerequisites: introductory (undergraduate level) courses in computer networks (e.g., CMPSCI 453/591,), operating systems (e.g., CMPSCI 377), and algorithms (e.g., CMPSCI 311). Some familiarity with probability will also be needed. 3 Credits.

CMPSCI 683: Artificial Intelligence

Professor: Lesser

In-depth introduction to Artificial Intelligence focusing on techniques that allow intelligent systems to operate in real-time and cope with missing information, uncertainty, and limited computational resources. Topics include: advanced search and problem-solving techniques, resource-bounded search, principles of knowledge representation and reasoning, meta-reasoning, reasoning under uncertainty, Bayesian networks and influence diagrams, decision theory and the value of information, planning and scheduling, intelligent agents architectures, and learning. Prerequisites: Undergraduate background in Computer Science, and an undergraduate Artificial Intelligence course (CMPSCI 383 or equivalent). 3 credits.

CMPSCI 689: Machine Learning: Pattern Classification

Professor: Mahadevan

Machine learning is the computational study of methods for making statistically reliable inferences combining observed data and prior knowledge (models). This is a mathematically rigorous introduction to two major strands of research in machine learning: parametric approaches based on probabilistic graphical models, and nonparametric approaches based on kernel methods. Graphical models are a compact way of representing probability distributions over a large set of discrete and continuous variables. "Learning" in parametric models corresponds to maximum likelihood estimation, i.e. find the parameters that maximize the likelihood of the data. By contrast, "learning" in nonparametric kernel-based models corresponds to finding a weighted sum of kernel functions applied to the data. Detailed course topics: mathematical foundations, Bayesian classifiers, maximum likelihood and maximum a posteriori (MAP) estimation, missing data and expectation maximization (EM), mixture models and hidden-Markov models, logistic regression and generalized linear models, maximum entropy and undirected graphical models, nonparametric models for density estimation, reproducing kernel Hilbert spaces and the Representer theorem, margin classifiers and support vector machines, dimensionality reduction methods (PCA and LDA), computational learning theory, VC-dimension theory. State-of-the-art applications including bioinformatics, information retrieval, robotics, sensor networks and vision, will be used to illustrate the theory. There will be extensive homework exercises including mini-projects, a midterm, a final exam, and a group project. Prerequisites: undergraduate level probability and statistics, linear algebra, calculus, AI; computer programming in some high level language. 3 credits.

CMPSCI 691AA: Seminar - Wireless Sensor Networks

Professor: Ganesan

An important class of distributed networks are those that support monitoring and manipulation of physical spaces through low-power wireless sensor networks. Because of their capability for pervasive, low-cost, large-scale sensing and actuation, sensor networks have the potential to transform a wide range of application domains including natural science, engineering, and social sciences. This course is intended to provide students with an in-depth understanding of systems and algorithmic issues in wireless sensor networks and networked embedded systems. Topics that this course will cover include: a) design implications of energy (hardware and software), and otherwise resource-constrained nodes; b) network self-configuration; c) services such as routing under network dynamics, localization, time-synchronization and calibration; d) distributed data management, in-network aggregation and collaborative signal processing, e) programming tools and language support. The course will involve programming assignments in sensor network programming environments (TinyOS/Emstar), reading a large number of research papers, writing critiques, presentations, and a significant group research project. Pre-requisites: proficiency in C, familiarity with networking and operating system concepts undergraduate networking and OS courses)

CMPSCI 691FF: Seminar - Algorithmics for Modern Computing Platforms

Professor: Rosenberg

Technological advances have led, over the past 25 or so years, to a wide variety of modern computing platforms that provide multiple computing agents to solve individual computational problems. We, have thus, seen multiple processors in a single box multiprocessors, or "parallel computers"), multiple processors that coexist in relative proximity and intercommunicate using a "local area" network (clusters, or "networks of workstations"), and a broad range of platforms that involve geographically dispersed computers that intercommunicate using an intra-net, or even the Internet (often referred to by terms containing the word "grid"). Each new genre of platform creates new challenges for the algorithm designer. Older "parallel" algorithmic devices no longer work on the newer computing platforms (at least in their original forms) and/or do not address critical problems engendered by the new platforms' characteristics. In this course, we divide the field of "collaborative algorithmics" into four epochs, representing (one view of) the major evolutionary eras of collaborative computing platforms. Using selected research papers, we survey the changing challenges encountered in devising algorithms for each epoch, and we discuss some notable sophisticated responses to the challenges. Every student will present at least one lecture and write a report on a major topic selected in consultation with the instructor.

CMPSCI 691GG: Seminar - Applied Information Theory

Professor: Learned-Miller

This course will introduce the basic concepts of Information Theory: entropy, relative entropy, mutual information, channel capacity, and rate distortion. Applications, rather than proofs, will be emphasized. In addition, the statistical problem of computing information theoretic quantities from data will be emphasized. Non-parametric and semi-parametric statistical models will also be covered. Although this course is listed as a seminar, it will be taught as a regular lecture course with homework assignments and exams.

CMPSCI 691K: Bioinformatics

Professor: Kulp

Bio-informatics includes the use of computational and mathematical techniques (e.g., algorithms, statistics, machine learning, AI, complexity theory, dynamical systems) to decipher complicated information in biological structures, gene sequences, and cellular networks. This interdisciplinary field is of critical importance for understanding information from large biological databases, as well as for the design and construction of new computational methods. This course is cross-listed in statistics, microbiology, and computer science and will serve as an introductory course in bioinformatics with main topics being DNA and protein sequence analysis, genetic mapping, pathway inference, and gene expression using microarrays. A programming project may be required. 3 credits.

CMPSCI 691LL: Seminar - Advanced Database Systems

Professor: Diao

This course covers advanced database systems and data management issues in a number of emerging network-connected environments. The first half of the course addresses the design and implementation of advanced database systems including spatial databases, sequence databases, XML databases, data warehousing, data mining, parallel databases, and distributed databases. The second half of the course explores various topics in networked data management including data integration, stream systems, publish/subscribe systems, sensor databases, and RFID data management. This is a graduate-level database course. The prerequisite is an introductory course in database systems at either undergraduate or graduate level. 3 credits.

CMPSCI 691O: Seminar - Tools for Explanatory and Tutoring Systems

Professor: Woolf

This seminar examines recent work in explanatory and tutoring systems. We will explore research issues in: Collaboratory Environments, Dialogue Systems, Machine Learning, Teaching Strategies Simulators, Authoring Tools and User Models. The objective of the course is to stimulate awareness of research issues and to promote sound analytic and design skills as they pertain to building knowledge representations and control strategies. Relevant topics and applications will be presented through readings in the recent literature. Each student will prepare written critiques of each paper, lead several in-class discussions and prepare appropriate questions about the research. Several working systems will be available for hands-on critique. Readings for the course are contained in several bound volumes of articles and technical reports available in the main CMPSCI office. 3 credits.

CMPSCI 691Q: Seminar - Mobile and Pervasive Computing

Professor: ** Section Deleted

Wireless communication has brought us to a new era: mobile and pervasive computing. This world is not without complications: oases of connectivity, highly variable bandwidth and latency, dynamic network topologies, limited battery power, and easily snooped communications. It has also opened vast arenas of new applications such as sensor networks and location-based services. This seminar will examine these topics from a software systems perspective. It will contain components of networking, however it will mostly deal with the broader aspects of mobile and pervasive computing. Students will critically examine classic and cutting edge papers from Mobicom, SOSP, OSDI, and others. A moderate sized group project will be required. 3 Credits.

CMPSCI 701: Advanced Computer Science Topics

Professor: Allan

This is a 6 credit reading course corresponding to the master s project. The official instructor is the GPD although the student does the work with and is evaluated by the readers of his or her master s project.

CMPSCI 741: Complexity Theory

Professor: Barrington

The study of the resources required to solve different problems in various abstract models of computation. Sequential computation: Turing machines, non-determinism, alternation, algebraic automaton theory. Parallel computation: Boolean circuits, branching programs, uniformity. Lower bounds for circuit models. Descriptive Complexity. Possible optional topics depending on student interest: Approximation of NP-complete problems, interactive proofs, non-uniform finite automata, dynamic complexity. Prerequisite: CMPSCI 601 or permission of instructor. Intended for interested general graduate students as well as those concentrating in theory. Course format: Probably 2-3 problem sets, class presentation (may be survey or actual research, might lead to a synthesis paper). Textbook: Xeroxed notes and research papers. 3 credits.

CMPSCI 791FF: Seminar -Component-based Software Development

Professor: ** Section Deleted

CMPSCI 791GG: Seminar - GPU s, CMP S and Cells

Professor: Weems

As mainstream processor architectures have hit a pause in advancing clock rate beyond 4 GHz, computer architects and users of high performance computing have started casting about for new opportunities to boost performance. The manufacturers have followed the expected path of implementing existing bus-based shared-memory signs as chip multiprocessors, with varying degrees of sophistication and success. Some architecture researchers are proposing more novel configurations that cluster heterogeneous processing resources to exploit locality of data and control dependence. These may also offer greater tolerance to anticipated process variation problems in future chips. Meanwhile, IBM has been working with Sony to develop a highly parallelstreaming architecture, called the Cell. While initial Cell implementations are intended for use in game consoles, IBM is actively exploring other application areas and seeking users to experiment with this new architecture. Back at the ranch (as in Skywalker Ranch), graphics processors have been pushing floating point performance well beyond their more traditional host systems, and users have been squeezing information out of these proprietary designs to enable their use for more general applications. This seminar will explore these novel attempts to gain a performance advantage over traditional processors through reading and discussion of a series of papers on the topics. Participants will also write a term paper that seeks to define an open area of researchin the field, and outline a program to carry out that research. The paper will be in the form of a mock NSF grant proposal. A technical preproposal will be due about 2/3 of the way through the semester, with a panel review by the class.

CMPSCI 891M: Theory of Computation

Professor: Sitaraman

The theory seminar is a weekly meeting in which topics of interest in the theory of computation - broadly construed - are presented. This is sometimes new research by visitors or local people. It is sometimes work in progress, and it is sometimes recent material of others that some of us present in order to learn and share.

CMPSCI 899: PhD Dissertation

Professor: Staff

CMPSCI H01: Honors Colloquium for CMPSCI 201

Professor: Verts

Several topics are explored in more depth than is possible in the CMPSCI 201 lectures and discussions. Assigned readings are explored in the colloquium's weekly meeting. Students do one or more projects using an Intel I86 based computer, such as the IBM PC. These projects require application of the material discussed in both CMPSCI 201 and the colloquium. Students can choose their own projects, with the instructor's approval. A significant degree of independent effort on the students part is expected. Grades are based on written reports, participation in H01 discussions, and the application of the concepts studied by colloquium in the design and implementaion of the projects. Registration in CMPSCI 201 is required. 1 credit

CMPSCI H02: Honors Colloquium for CMPSCI 445

Professor: Miklau

Practical issues of database design, implementation or application. Students will complete a project that complements or substantially extends the project that is part of the CMPSCI 445 class. Where appropriate, students will browse and discuss current related research. Individual projects and group discussion are the criteria for grading/evaluation. 1 credit.

CMPSCI H03: Honors Colloquium for CMPSCI 320

Professor: Fisher

In this course, students learn and gain practical experience with software engineering principles and techniques. The practical experience centers on a semester-long team project in which a software development project is carried through all the stages of the software life cycle. Honors students will be expected to assume responsibility for some of the more complex aspects of the project as well as to study more advanced concepts. 1 credit.

CMPSCI H04: Honors Colloquium for CMPSCI 311

Professor: Barrington

Students will meet weekly with the instructor to discuss additional topics related to the study of algorithms. These might include lower bound arguments, dynamic complexity, or parallel algorithms. There will be a few additional problem sets and an in-class presentation by each student. 1 credit.

CMPSCI H06: Honors Colloquium for CMPSCI 521

Professor: Adrion

This course explores testing and analysis techniques for software systems, particularly large, complex systems used in safety applications such as medical devices and air traffic control. Honors students will work with the instructor on special projects, depending on their individual interests and opportunities that arise. For example, students might help implement or enhance a specific technique, conduct an experimental study using a small number of techniques, or design a quality assurance plan for a company or project. Recommended for Juniors and Seniors; Majors. 1 credit.

CMPSCI H08: Honors Colloquium for CMPSCI 383

Professor: Jensen

Honors section will involve advanced study and implementation of one of the AI techniques covered in CMPSCI 383. The particular application will be determined based on student interest. Possible projects include game playing, automated information gathering over the internet, software agents, hierarchical planning systems, satisficing reasoning techniques. Recommended for Juniors and Seniors; Majors and Non-majors. 1 credit.

CMPSCI H13: Honors Colloquium for CMPSCI 535

Professor: Weems

The honors section of CMPSCI 535 provides an opportunity for University Honors students enrolled in the class to take a deeper look at some aspect of computer architecture or its underlying technology. The specific choice of topics is agreed upon by the instructor and student on an individual basis. Students may choose to explore the history of some aspect of architecture or technology, look at market influences on the science and engineering of computer hardware, experiment with a novel computer design through simulation, conduct a series of in-depth readings leading to a semester thesis, or other suitable work done under regular consultation with the instructor. Recommended for Juniors, Seniors; Majors. 1 credit.

CMPSCI H15: Honors Colloquium for CMPSCI 121

Professor: McCallum

CMPSCI 121 Honors Section will cover special topics covering some major ideas and applications of computer science, including: bioinformatics, natural language processing, computational complexity, compilers, security, privacy, cryptography, robotics, and search. There will be six homework assignments (some written exercises, some programming), plus a final paper. No previous program experience required.


Last automatic generation: 6/22/2007 at 1:39:10 PM


Comments:
www-admin@cs.umass.edu

© 2008 University of Massachusetts Amherst. Site Policies.
This site is maintained by the Department of Computer Science.