Common Lisp Object Representation Strategies:
The Umass Concurrent & Common Lisp
Implementation

Kelly E. Murray
Daniel D. Corkill

COINS Technical Report No. 88-35
May 4, 1988

Department of Computer and Information Science
University of Massachusetts
Ambherst, Massachusetts 01003

Abstract

An appropriate Lisp object representation is an important aspect
of an efficient Common Lisp implementation. To be most effective, the
representation must be tailored to the characteristics of the computer
hardware and the characteristics of Common Lisp. In this paper we
review object representation strategies and present the object repre-
sentation for the Umass Concurrent & Common Lisp (C&CL) system
currently being implemented at the University of Massachusetts on
the Sequent Symmetry multiprocessor.

This research was sponsored in part by the National Science Foundation under CER Grant
DCR-8500332.

1 Data Types in Common Lisp

In contrast to a strongly-typed language such as Pascal, 2 Common Lisp
system uses latent data typing. Latent data typing allows a function to
delay until run-time the determination of the type of an argument, so it
can take different actions depending on the type of object supplied. Many
Common Lisp functions are defined to accept many different types of ob-
jects (such functions are termed polymorphic). For example, the + function
can add values of any numeric type.

Functions that manipulate pointers to Lisp objects, rather than the ob-
Jects themselves, do not need to know the objects’ data type. For example,
when fetching the element of a general vector, the object returned can be
of any data type. Conversely, any object (regardless of data type) can be
stored in a general vector. Only when the value of the Lisp object is oper-
ated on is its data type required. This characteristic allows a Lisp program
to manipulate “unknown-type” objects and is the basis for use of futures
[Halstead, 1985] for concurrent Lisp.

Typically, most functions perform some operation on their arguments
and therefore require the arguments to be a member of a set of data types.
Data type checking can consume a significant portion of computational re-
sources. While hard data is scarce, Shaw reports figures of 11% - 34%
of instructions on conventional hardware are spent performing type checks
[Shaw, 1988]. This is one reason why Lisp machines,! which perform these
tests as part of their normal instruction cycle, have a performance advan-
tage over “stock” hardware. This is also why compiler declarations for
eliminating run-time type checking can result in significant increases in
performance.

'In this paper, “Lisp machines” refers to specialized hardware for executing Lisp code.
The Symbolics 3600 series and Texas Instruments Explorer workstations are examples of
this class of hardware.

2 Data Type Checking and Lisp Ob ject Rep-
resentation

The techniques used to quickly determine the data type of a Lisp object
are a critical aspect of an implementation’s performance. We consider four
different techniques:

Object Direct: In the object direct scheme, the data type is encoded with
the object. The chief advantage of object direct encoding is that it
allows objects of varying sizes to be allocated from one contiguous
heap, simplifying heap management routines. A disadvantage of ob-
ject direct encoding is the extra space required in each object to hold
the data type information. When the size of objects is small, this can
significantly increase the memory needed. For example, cons objects
consist of only two pointers (typically, two machine words on stock
hardware). Encoding the cons data type information might require
the addition of another machine word to each cons object, a 50% in-
crease in memory requirements. Another important disadvantage 1s
that a memory reference is required to determine the data type of the
object when only a pointer to the object is available.

Pointer Indirect: The pointer indirect scheme reduces the storage over-
head associated with the object direct approach by dividing the heap
into regions.? Each region contains a single Lisp data type.® To de-
termine the type of an object, the pointer to the object is analyzed to
determine the region containing the object, and the data type infor-
mation associated with that region is retrieved. The pointer indirect
approach has characteristics similar to the object direct scheme, but
only requires data type information for each region instead of each
object. However, because it subdivides the heap, storage allocated
to a particular type can go unused while running out of storage for
other types.

Pointer Direct: This scheme encodes the type in the pointer directly. It
eliminates the need to access memory and hence can be faster. The

2This strategy has also been called BIBOP for Blg Bag Of Pages.
3Sometimes multiple regions are available for the same Lisp data type.

disadvantages depend on how the type is encoded in the pointer. We
discuss some possible encodings of Pointer Direct in the sections that
follow.

Tagged: The type is with the pointer, but separate from the address. This
requires a word length longer than the address field and is generally
only available with specialized hardware.

Combinations of the schemes are possible. For example, some types can
be represented directly in the pointer, with additional type information in
the object itself.

The number of distinguishable data types needed for a Common Lisp
system is fairly large. It includes at least 6 kinds of numbers, symbols,
conses, characters, compiled functions, hashtables, defstructs, streams, and
a host of array and vector types. Encoding some system types, such as
stack pointers, trap objects, etc., is necessary and adds to the count.

An important consideration in the type scheme is immediate objects.
For objects such as small integers (fixnums), small floats, and characters,
representing the object within the pointer itself eliminates having to al-
locate memory for them. Note that a pure Object Direct scheme cannot
support immediate objects.

An additional consideration in a Common Lisp system is how all the
numeric types are represented. The EQL function returns true if the two
pointers are identical OR the objects are numbers with the same type and
value. The EQL function is the default :TEST function for many Common
Lisp functions. To keep the EQL test fast, it is desirable to be able to
quickly determine that two objects are both numbers of the same type. By
having the type information encoded in the pointer itself, this test can be
made without forcing a2 memory reference.

Because type checking is critical to a Common Lisp system, whatever
scheme or combination of schemes is employed should be designed for op-
timal run-time performance. For stock hardware, Pointer Direct supports
immediate objects, can encode number types directly, and also gives the
best performance for heap allocated objects. Therefore, we have adopted a
Pointer Direct scheme for C&CL.

In the remainder of the paper, we review alternative methods of Pointer
Direct, and the performance implications for a 80386-based Common Lisp.

3 Shifted, High-bits Encoding

Given a Pointer Direct scheme, the method of encoding the type in the
pointer must be determined. A strategy similar to the Pointer Indirect
scheme is a straightforward method. The high address bits are used to
divide memory into regions, each with a pre-specified type. Thus each type
has its own contiguous space of memory.

To determine the type from the pointer, the type bits must be compared
with a given type code. This can be accomplished by either masking out
the lower bits or shifting the pointer and doing a compare. Shifting results
in a number representable with one byte, so it would reduce the immediate
data needed for the compare. If the pointer is not to be destroyed, the
result of the shift must be stored somewhere else, or the pointer must be
copied to another location. On the 386, shifting and masking operations
destroy the operand,* so the pointer must be copied.

For the 386, the following code would test for a CONS ob ject:®

mov Arg0 TempO ; Copy the pointer.
1lsr ptrsize TempO ; Shift it to get only type bits.
cmp TempO Cons-type ; Compare it with Cons-Type.
jne not-cons ; Branch out if not a Coms.
; Operate on the Cons.

When dispatching on more than one type, only the compare and branch
is necessary once the type code has been extracted. The time required
depends on the ordering of the type checks and the type of the argument.
When speed is more important than space, an indirect branch can be used
with the type code as the offset.

4The 386 has a double-shift instruction that could be used to shift into another register
without destroying the first operand, but to use it a zero must be stored into the result
register first to insure only the type bits would be seen, which would have the same
costs as the code presented. However, if the type code width is 8 bits, then a byte-
compare instruction could be used, which would ignore the unknown higher bits in the
result register, eliminating one instruction from the code presented.

5The assembly code presented is in our own syntax. In particular, the destination is
the second operand.

This would only be appropriate when most types are expected, since
it requires significant code space as well as a fixed overhead of referencing
memory for the initial branch. Because most type checking is for only one
type (or at most several) this would not be used often, if at all. For example,
the + function only tests for the numeric types, and often the argument is
a fixnum, which is tested for first.

The number of high bits used for the type determines both how many
types can be distinguished as well as the size of each region. Five bits of
type would yield 32 different types, which is adequate. For a 32 bit address,
this would leave a 128 megabyte region size, which should be sufficient for
most Common Lisp applications. If a full 32 bit address is not supported
by the operating system, the entire pointer representation must be shifted
down to the available size of the address, causing severe shrinkage in the
address space available for a single type. A 24 bit address with 5 type bits
yields only a one-half megabyte space for each type, leading to frequent
garbage collections, and an inability to support large applications. A 28
bit address yields an 8 megabyte segment size, which may still be too small
for some large applications.

One compromise is to decrease the type bits to 4 bits. This would double
the region size to 16 megabytes, which may be tolerable. This would reduce
the number of types to 16, which would force some objects to share the same
pointer type, forcing some alternative method for their type representation.

The Shifted, High-bits encoding also requires the operating system to
support a sparsely populated virtual address space, since segments are dis-
tributed throughout the entire address space, causing large “holes” of un-
allocated address space between regions.

3.1 Immediate Data Manipulation

For immediate data types, the non-type bits of the pointer bits contain the
immediate object. For small integers (fixnums), the data must be shifted
into the high bits to allow hardware detection of arithmetic overflow. Ad-
dition of two fixnums would look like:

1sl typesize Arg0 ; Put sign bits in place.
1sl typesize Argl

add Argl ArgO ; Add them.
bov needbignum ; Make a bignum if overflow.
lsr typesize Arg0 ; Get bits back in right place.

If overflow is not possible, then the three shift instructions can be elim-
inated. Similar manipulations are required for the other immediate data

types.

4 Low-bits Encoding

An alternative to using the high bits to encode the type is to use the low
bits. This stralegy has a number of advantages. It doesn’t place any
requirements on the operating system to handle a large or sparse address
space. In addition, the sign bits of fixnums do not need shifting to detect
overflow. Another advantage that is becoming more important in modern
Common Lisp systems is that it allows objects to be placed anywhere in the
address space. This includes the ability to allocate objects on the control
stack, which can be automatically deallocated upon function return. The
difficulty with this strategy is that there are not enough low bits available
for type encoding.

In a byte-addressed machine with a 4-byte word size, a word-aligned
address leaves the lower two bits zero. Thusit is possible to use these lower
two bits to encode type information. However, two bits only supports four
different types.

By enforcing an object size alignment of two words, a third bit becomes
available, allowing 8 different types to be represented. However, adopting
a two word allocation size has an impact on memory requirements. Cons
objects are 2 words, so it doesn’t effect these. Symbols use 5 words, and
hence would be forced to use 6 words. Symbols are generally static, though,
so the extra memory would be a relatively “fixed” cost.® Wasted space

6The extra word can be used for various things, making the extra memory required
less of a concern.

required for padding out strings is a concern.

The problem with low-bit encoding is the similar to a high-bit encoding.
The type code must either be shifted out of the pointer, or the address
portion masked out before a comparison can be made on the type.

mov Arg0 Temp ; Copy the pointer into a free register.
and #b111 Temp ; Mask out the address.

cmpb Temp Cons-Type ; Check the type.

bne not-coms ; Branch on Test

; DOperate on the coms.

A subtle complication with using the low-bit encoding is that the pointer
address may not be word aligned. Memory accesses can be slower with un-
aligned addresses, since additional bus cycles may be required. Alignment
can be maintained by adding a displacement to the pointer when perform-
ing a memory reference.

5 Shifted-Address, Low-Bits Encoding

Another variation of low-bit encoding is to use a full byte to encode the
type. The lower type byte must now be shifted out before the pointer is
used to reference memory. However, we now get 256 types represented
directly in the typed-pointer. A type check can test the low byte by using
a compare-byte instruction.

cmpb Cons-Type Arg0 ; Test for Cons-type.

bne not-cons ; Branch on Test.

1sr 8 Arg0 ; Shift out the type byte.
; Operate on the coms.

One disadvantage of this scheme is that the shifting destroys the type
information from the pointer. Very often the type is only checked once, so
this may not be a significant disadvantage.

Another problem with this scheme is that it limits the address space
available to 24 bits. However, if objects are word-aligned, it is possible to
have the 24 bit address extended to 26 by having the low two bits “hidden.”
By adopting two word alignment, we pick up yet a third bit, giving us a
27 bit address. Using this strategy the top 3 bits of the type code become
the low 3 bits of address. We can deal with any non-alignment this causes
using the same alternatives as the previous strategy.

The major problem with this scheme is that the pointer must always
be shifted before a memory reference, even when type checks are not being
performed.

6 Pointer-direct, Bit-assignment Encoding

An alternative to using a bit pattern as a type code is to assign individual
bits of the type data to particular data types. To check for a particular
type, code only needs to test for the presence of a particular bit. When
validating an argument is of a particular type, only two instructions are
needed:

tst ArgO,Cons—Bit ; Test for Cons-type
beq not-cons ; Branch if bit wasn’t on.
; Operate on the coms.

An advantage of this scheme is that it doesn’t require the use of an

additional register, which is important given the relatively small number

of registers on the 386.” A push and pop would be necessary to free up a
register if none were free for a type test, adding to the cost.

This technique can be used with either low or high-bit type encoding.

In a high-bit encoding, a disadvantage is that a large part of the possible

address space is not usable. Since objects can only be of one type, only

7The 386 has only 8 general registers, used for both data and addresses. Four of those
are allocated to dedicated purposes in the C&CL system (the stack-pointer, frame-pointer,
binding-pointer, and the active-function), leaving only 4 for general use.

one bit can be set. Thus, using § type bits allows only 6 of the 32 possible
combinations to be used.®

The more problematic difficulty with this scheme is there are only a
limited number of bits available. In the shift scheme 5 type bits allowed 32
types, whereas in the bit scheme, it only allows 6. In the low bits case, 3
bits yields 8 different types, whereas a bit scheme yields only 4.

7 The Umass C&CL Type Implementation

The type representation currently in use in C&CL is a hybrid of the previ-
ously discussed strategies. We have attempted to exploit the advantages of
each scheme while avoiding their disadvantages. We combine both Object
Direct and Pointer Direct, using a combination of Pointer Direct encoding
that is tailored to the characteristics of Common Lisp.

To reduce virtual memory requirements, and allow fast fixnum arith-
metic, the low bits are used for type encoding. By adopting two word
alignment of objects, the 3 low bits are available. We eliminate the need
to mask out the higher bits by assigning types to particular bits. Figure 1
shows their assignments.

7.1 Symbols, Lists, and NIL

Testing for either a symbol or a cons object is a simple bit test. For a
symbol, the two-word-aligned pointer is displaced by -7, which forces the 0
bit to be set. Cons pointers are similarly displaced, but use a displacement
of -6, which forces the 1 bit to be set. When accessing symbols or conses, a
corresponding positive displacement is added to align the pointers to word
boundaries. For example, taking the CDR with full type checking becomes:

tstb Cons-Bit Arg0 ; Test for Coms-type
beq not-coms ; Branch to error if not a coms.
mov (Arg0 6) Arg0 ; Replace Arg0 with its CDR (slot 0).

8The system could “cheat” and use the other regions for objects that have well-defined
characteristics (e.g., file buffers, assembly routines), but in general, they wouldn’t be
available for user-visible objects.

| Low Bits |

211101
- 0 Symbol
- 1 Cons

2 Dbject Direct Encoding

Figure 1: Low bit assignments.

Because NIL is both a symbol and a list, we should set both the 0 and
1 bits. However, this causes some complication since we add 6 for a cons
access and 7 for a symbol access, neither of which is appropriate for NIL.
When accessing the CDR slot of NIL, 6 is added to the pointer, which
yields a lower three bits of 001. Similarly, 10 is added to the pointer for a
CAR access. Thus, the CDR and CAR slots of NIL are unaligned by one
byte, forcing a shift of the slot contents (NIL itself) forward one byte.

This works fine for Cons access, but what about Symbol accesses? Per-
forming a Symbol-Value access on NIL must return NIL as well as the
CAR and CDR. When accessing the first slot in a symbol, 7 is added to
the pointer, yielding a lower three bits of 010, which is two bytes forward.
Therefore, the shifted contents that work properly for Cons access are not
correct for a Symbol access. One solution to this problem is to always check
for NIL before a symbol access, but clearly this is undesirable. Fortunately,
this problem only exists for the first two symbol slots, since symbol slots
greater than two don’t overlap with the CONS slots. Therefore, we layout a
symbol with the two most infrequently accessed slots (Package and Pname)
as the first two slots. Before accessing a Pname or Package slot, a check for
NIL must be made, but accesses to the Plist, Value, and Function slots do
not require the check, since we are free to store two byte shifted contents
in these slots for NIL. Figure 2 shows the details.

10

NIL == #x0002101B

Address Contents

21021 1B <== CDR [0002101B]

21022 10 <-- Would be Symbol Slot O (Pname)
21023 02

21024 00

21025 1B <== CAR [0002101B]

21026 10 <-- Would be Symbol Slot 1 (Package)
21027 02

21028 00

21029 00 (not accessed)

21024 1B <-- Symbol Plist (User Writeable)
2102B 10

2102C 02

2102D 00

2102E 1B <-- Symbol Value [0002101B]

2102F 10

21030 02

21031 00

21032 44 <-- Symbol Function [00021044] (Undefined)
21033 10

21034 02

21035 00

Figure 2: Memory layout for NIL.

11

| F I N | All Zeros |

I = Immediate (except Fixnums)
N = Allocated Number
F = Future

0: 00000000 Fixnum
8: 00001000 Bignum
24 : 00011000 Ratio
40 : 00101000 Single Float
56 : 00111000 Complex
64 : 01000000 Character
80 : 01010000 Short Float
96 : 01100000 System Immediate
128 : 100000 00 Future

Figure 3: Low Byte Encodings.

In addition, notice that only a NIL pointer has the low two bits set.
Thus, checking for NIL requires only comparing the low byte of a pointer,
reducing a NIL test by 3 bytes.

We delay discussing the Object Direct bit until later.

7.2 Low Byte Encoding

If all 3 lower bits are zero, then the full lower byte contains the type of the
object. Figure 3 shows their assignments.

For these objects, a simple compare byte is a sufficient check. Note that
a fixnum does not have the immediate bit set. Fixnums are discussed in a
later section.

12

7.3 Allocated Number Types

All the non-immediate numeric types have their type encoded in the low
byte of the pointer, and furthermore, bit 3 is set for them all. Thus, an
EQL test can quickly determine two objects are not EQL without requiring
a memory reference. An EQL test becomes:

cmp Argl Arg0 i EQ?
beq equal ; Yep.
cmpdb Argl Arg0O ; Same Byte Type?

bne not-equal

tstb Number-type-bit Arg0 ; Maybe Numbers?

bne not-equal

tstb Low-byte-Mask Arg0 ; Really Low Byte type?
; Full number comparison.

A disadvantage with this strategy is that the pointers to these non-
immediate numbers must be shifted before accessing their values. Fur-
thermore, the address space available to them is reduced to only 27 bits
(shifting by 5, leaving the high three type bits as the low address bits).
However, these type of numbers were not designed for “high performance,”
nor are they used heavily by most applications. Furthermore, time spent
manipulating their values overshadows the extra instruction needed to shift
the pointer.

7.4 Futures

For multiprocessing applications, C&CL supports futures as first class ob-
jects. This has an impact on the EQ test that forces it to behave similarly
to the EQL test for numeric types. Two objects are EQ if either they are
identical pointers OR if either or both of them is a future object which
has a determined value that is EQ to the other object. Thus, all EQ tests
must check for futures before failing. Because the Future type is encoded

13

directly in the pointer, a future test does not require a memory reference.
For a multiprocessing application, the EQ test becomes.®

cmp Argl ArgO0 ; Pointer-EQ?

beq equal ; Yep.

cmpb Arg0 future-type ; Argl a future?

beq get-argO-future ; Get the determined future value.
argO-determined ; Return here with arg0 value.

cmpb Argl future-type ; Argl a future?

beq get-argi-future ; Get the determined future value.

argl-determined ; Return here with argl value.
cmp Argl Arg0 ; Try again. Maybe still not EQ.
beq equal

Having the future type in the low byte has the same disadvantages as the
non-immediate numeric types; the pointer must be shifted before accessing
the future object. However, a large majority of the time the objects will
not be futures, making this an appropriate tradeoff.

7.5 Fixnums

Fixnums have their lower byte all zeros. This allows two fixnums to be
added or subtracted directly without any shifting, masking, or correction.
Thus adding two fixnums looks like:

add Argl Argo0 ; Add them.
bov needbignum ; Make a bignum if overflow.

If conversion to machine integers is required, only a simple shift is nec-
essary. This gives us a signed 23 bit value for fixnums, providing a range
of about plus or minus 8 million, which is reasonable.

9This is a large amount of code for what is considered the most simple of all operations
in Lisp. It demonstrates the important ability of the compiler to determine when future
objects are not possible.

14

7.6 Other Immediates

For Characters, the second byte contains the code. Their manipulation is
fairly straightforward. Short-Floats have only 24 bits of value, making the
precision fairly low. We are currently using a 1 bit sign, 6 bits of exponent,
and an 17 bit mantissa, yielding around 4 decimal digits of precision.

7.7 Object Direct Encoding

H bit 2 is set, then the object begins with a header word. The low byte
in the header word contains the type. These include all the array types,
as well as structures and compiled functions. Testing for these types will
require a memory reference to access the header. However, when accessing
or updating an array element, the index is generally validated before the
operation. Thus, the access to the header required for the index validation
is already performed by the type check.

The format of an array header is similar to a fixnum, except the lower
byte contains the array type, instead of zero, as with a fixnum. Thus
a general-vector array access with full type checking would look like the
following (Arg0 contains the index, and Argl contains the array):

cmpb Arg0 O ; Index a fixnum?

bne illegal-index

tstb #b100 Argl ; Is it an Object-Direct pointer?
beq not-vector

mov (Argl 4) Temp ; Get the header in Temp.

cmpb Temp Gvectortype ; Is it a general-vector?
bne not-vector

;; Clear the type byte for the index compare.
movb O temp

cmp arg0 temp ; A legal index?
bae illegal-index ; UNsigned test, so negatives fail.
lsr 6 arg0 ; Shift index into a WORD offset.

mov (Argl Arg0 header-offset) Arg0 ; Replace with element.

15

If no checks are performed at all, only the last two instructions would
be needed.

8 Summary

Type checking is an important component of all Lisp systems. We have re-
viewed some alternatives designs, and from them generated a hybrid strat-
egy that yields high performance for a 80386-based Common Lisp system.

9 References

Halstead, 1985 Robert H. Halstead, Jr, “Multilisp: A Language for Con-
current Symbolic Computation”, A CM Transactions on Programming
Languages and Systems, Vol 7, No. 4. 1985.

Shaw, 1988 Robert A. Shaw, Empirical Analysis of a Lisp System, Stan-
ford Technical Report CSL-TR-88-351, February, 1988.

16

