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ABSTRACT
A number of Hausdorff-based algorithms have been proposed for finding objects in
images. We evaluate different measures and argue that the Hausdorff Average distance
measure outperforms other variants for model detection. This method has improved
robustness properties with respect to noise. We discuss the algorithms with respect
to typical classes of noise, and we illustrate their relative performances through an
example edge-based matching task. We show that this method produces a maximum a
posteriori estimate. Furthermore, we argue for improved computational efficiency by
tree-like subdivisions of the model and transformation spaces.
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1 Introduction
Object detection often relies on metrics that describe the degree of difference between
two shapes. The one-sided Hausdorff distance, h A B , in this context is a measure
between the set of feature points defining a model, A, and the set of points defining a
target image, B, where

h A B max
a A

min
b B

a b

and is a norm of the points of A and B. Image matching using Hausdorff-based
distances has been applied to many domains including astronomy [10], face detec-
tion [5][13], and word matching [8].

Several variations of this set metric have been proposed as alternatives to the max
of the min approach in traditional Hausdorff matching that are less prone to outliers in
the data. These include Hausdorff fraction, Hausdorff quantile [4], Spatially Coherent
Matching [1], and Hausdorff average [3]. We analyze the form of these metrics and
argue about their behavior under several classes of noise. Specifically, we determine
whether there are discontinuities of the measure with respect to minor perturbations



of the point sets. We show analytically and experimentally that Hausdorff average has
superior performance under these conditions as in [12].

2 A General Schema
Our general schema is as follows. We have an image I and a model M. We wish
to discover if the object represented by M occurs in I, and if so where. Our concept
of “where” is encapsulated in a set of transformations T which we think of
as positioning a copy T M of M in I. For each such position, we compute a score
s T M . Among all transformations, we pick the one T̂ with the “best” score. If this
score is sufficiently “good”, we announce that M is at position T in I. Otherwise, we
announce thatM is not in I.

3 Notation
Let us fix notation. Our modelM consists of a vector of features,

M S1 SNM

After application of a transformation T each feature S i acquires a position

xi yi T x y T Si

We will drop the T subscript when this is clear from context. Strictly speaking S i
itself does not have a position. It acquires one if we imagine an identity transformation
placing it at some predetermined position in I. In general, need not act on the image
plane. For example, ifM is a three-dimensionalmodel, may consist of rigid motions
followed by projection. We will be interested in the case where the transformations are
translations in the plane. Then

x y T Si T x y Si

If we like, we may assume that I consists of a similar vector of features, but this
is not necessary. We only need to enquire whether a feature S i of M is matched at a
position x y in I. When I and M are both sets of edge pixels, every feature of M is
matched at every feature of I.

For each feature Si, the match locus, I Si is the set of positions at which Si is
matched in I.

I Si x y Si is matched at x y

We will drop the subscript I when there is no ambiguity and that neither I nor M is
empty.

When I andM are point sets (for example, pixels found by an edge detector), S i
consists of all points of I. However, there may be more than one type of feature. For
example, one type may consist of edge pixels, whereas another type may consist of
points where a filter exceeds some threshold. If the features S i and S j are both edge
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pixels, then Si S j . Likewise if Sp and Sq are features for the same filter
then Sp Sq . However, we should not expect that Si Sp . Thus
we may build different aspects of the object into our model and attempt to match them
in the image.

We choose a distance function d x1 y1 x2 y2 in the plane. Then the match set
induces a distance for each translated feature,

dT i d T Si min d xi yi T x y x y Si

For each T this gives us a vector of distances,

dT dT 1 dT NM d T S1 d T SNM

Each dT i tells us how far the feature Si is from its nearest match whenM is placed
at position T . Each instance of our schema can be described in terms of this vector. In
each instance, we assume a fixed model and image.

4 Distance measures
4.1 One-sided Hausdorff distance
For each T , the Hausdorff score, sH T , is maxi dT i . We pick T̂ to minimize this
score. We accept it if sH T̂ is less than some threshold value, s0.

4.2 Hausdorff fraction
We fix a minimum acceptable distance k. For each T , Hausdorff fraction score, sHF T
is cardinality

sHF T
# Si dT i k

NM
We pick T̂ to maximize sHF T . We accept T̂ if the fraction sHF T̂ exceeds a threshold
value s0.

4.3 Hausdorff quantile
We fix a quantile q. For each T , theHausdorff quantile score, sHQ T is the qth quantile
value of distances in dT . We choose T̂ to minimize sHQ T and accept T̂ if sHQ T̂ is
less than some fixed value s0.

4.4 Spatially Coherent Matching
To define Spatially Coherent Matching, we need to define a neighbor relation on the
features of M. We take the features of M to be the vertices of a graph. Two features
are neighbors if there is an edge between them in this graph. We are interested in the
case where the features are edge pixels. We will consider pixels to be neighbors if they
are adjacent, horizontally or vertically. We fix a minimum acceptable distance k. For
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each T , the Spatially Coherent Matching score, sSCM T is defined as follows. We take
G T Si dT i k . We take B T to be the set of edges with one vertex in G T
and one vertex not in G T . This counts the number of edges on the “boundary” of
G T . We take

sSCM T
#G T #B T

NM
We choose T̂ to maximize sSCM T . We accept T̂ if sSCM T̂ exceeds some fixed

value s0.

4.5 Hausdorff Average
For each T , the Hausdorff average score, sHA T is

sHA T !i dT i
NM

We choose T̂ to minimize sHA T . We accept T if sHA T̂ is less than some fixed value
s0.

We will want to generalize this a little bit. Given a function f , we will want to
consider a Hausdorff functional average score, sHA f T ,

sHA f T
1
NM !i

f dT i

Note that Hausdorff average score is a special case of Hausdorff functional average
score with f dT i dT i.

5 Maximum a Posteriori Estimate
The Hausdorff functional average algorithm has a simple justification as a maximum
a posteriori estimate. We follow the argument of [1] in a simplified form. We have a
collection of hypotheses and must choose the one which maximizes the probability

p h I
p h p I h

p I

Since I is fixed, we seek
h argmax

h
p h p I h

We take as our hypothesis space /0 where each hypothesis T corresponds
to the assertion that the object modeled byM occurs at position T in I, and the hypoth-
esis /0 is the assertion that the object does not occur in I. Our prior knowledge consists
of the assumption that p /0 " and that all positions T have equal probabilityC 1. We
assume that given a position T , the likelihood of I given T is

p I T C2#
i
e f dT i
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We assume that when the object is not there, all images have equal probability,C 3. This
gives

p h p I h 1 " C1C2#i e f dT i if h T
"C3 if h /0

In order for the presence of the object at position T to be more likely than the absence
of the object, we need

1 " C1C2#
i
e f dT i "C3

Since logarithms are monotonic, the argmax of this function is the argmax of its loga-
rithm. Taking negative logarithms reverses the inequality, turns the argmax into argmin,
and yields the inequality

ln 1 " ln C1 ln C2 !
i
f dT i ln " ln C3

The best position T̂ is the one minimizing sHA f T , and this represents the best hy-
pothesis if that value is less than

s0
ln 1 " ln C1 ln C2 ln " ln C3

NM

6 Noise and stability:
We would like to investigate the behavior of these measures when there is noise. We
will deal with two classes of noise, distortion and stray features, typically, stray pixels.

By distortion we mean disturbance of the coordinates of a feature or the points of
its match set. Thus, we may have M with features S1 SNM and M with features
S1 SNM . The distortion is captured in the fact that for each T , we have x i yi
x y T Si and xi yi x y T Si . We capture distortion between images I and
I by assuming that there is a function g so that for each i I Si g I Si .

Stray pixels show up as extra features in themodel or the image. Thus, we may have
M with features S1 SNM and M with features S1 SNM SNM 1 SNM n .
We assume that for each j NM there is i NM so that S j Si . Thus we are
not throwing in any new types of features, and none of these have empty match sets.

Stray pixels in the image show up as extra points in the match set. Thus, we may
have an image I with I Si and an image I with match set I Si I Si Xi.

We would like to know how robust our scores are with respect to noise. A robust
score should only change a small amount if we introduce a small amount of noise.
What we want is for the score to be a continuous function of noise. Since position is
typically discrete, we will take a less purist approach to this. We will act as if noise
can be made arbitrarily small, though this may not be the case. What is a small amount
of noise? A distortion is small when for each pair of points x y and x y as above,
the distance d x y x y is small. One might choose a stricter definition here. One
might ask that the support of the distortion is small, that is, that only a small number of
pairs of points have d x y x y 0. We will argue that this is too restrictive. We
will say that the set of stray pixels is small when they are few in number compared to
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the total number of features or pixels in the match set. We will restrict to stray pixels
lying a fixed bounded distance from the remaining pixels. This is another way of saying
that our image has a fixed size and the stray pixels lie in that image.

These are realistic classes of noise. If the model is derived from measurements,
these are subject to inaccuracy. If the model comes from a photograph, distortion could
result from inaccuracy of the photographic setup, for example, as to angle or distance to
the object. This sort of difference corresponds to taking a photograph, applying a rigid
motion to the object and taking a second photograph. When that motion is small, the
resulting difference between the two photographs is a small distortion. This distortion
extends to the entire model. This is why we reject restricting the support of a distortion
as a requirement for it being small.

Differing edge detectors are likely to disagree about exact placement of edge, pro-
ducing another source of distortion. Likewise a model that is the result of extracting
edges from an image can easily acquire stray pixels.

Stability with respect to distortion carries over to stability with respect to change
of transformation T . If T and T are close then so are x y T Si and x y T Si ,
and thus, so are dT and dT .

7 Stability results
Let us fix notation. We are given an image I,and a model M. Suppose that I and M
differ from these by distortion, and that I and M differ from these by stray pixels.
For each fixed T have

dT dT I M dT 1 dT NM
dT dT I M dT 1 dT NM
dT dT I M dT 1 dT NM dTNM 1

dTNM n
dT dT I M dT 1 dT NM

To investigate stability, we must observe how these vectors differ and the differing
results that our scores (and hence our algorithms) produce as a result.

There are several sources of instability that apply to all of our methods above. The
first is that even a small change in the score s T̂ can push it above or below the thresh-
old value s0. The second is that the operations argmax and argmin are discontinuous.
That is, if s T and s T are near optimal and close in value, then either can be pro-
moted to T̂ by a small change in s , even though T and T may be widely separated.

Third, all these scores are highly sensitive to stray pixels in the image. The reason
here is that the addition of a single point to I may cause dT to differ from dT by a large
amount in a large number of coordinates. This occurs when there are many features S i
so that x y T Si is closer to the new point than any of the points of I. This happens
when T fails to match many features of I in M. Since every pixel which is not part
of the object is in some sense a stray pixel, we must hope that this does not occur too
often for optimal values of T .

However, the requirement that we have a small amount of noise does place mean-
ingful restrictions on the differences between dT , dT and dT and we can trace these to
their potential impact on our algorithms. The restriction that we have a small amount of
distortion ensures that dT and dT differ at most by a small amount in each coordinate.

6



The requirement that we have a small number of stray pixels in M ensures that n
NM is

small.

7.1 One-sided Hausdorff distance
The score sH T is stable with respect to distortion. This is because a small distortion
results in small differences in the coordinates of dT and dT , and thus a small difference
between maxi dT i and maxi dT i .

One-sided Hausdorff distance is unstable with respect to stray pixels in the model.
This is because a single stray pixel SNM 1 may produce dT NM 1 maxi dT i .

7.2 Hausdorff fraction
The score sHF is unstable with respect to distortion. This is because of the discontinuity
involved in thresholding. Here is a simple example. Suppose that M is the boundary
of a square of side n and I is the boundary of a square of side n 2k 2. Suppose that
T places M squarely in the center of I. Then all of T M is within k of I. If M is the
boundary of a square of side n 2, then none of T M is within k of I. Indeed, for the
optimal transformation T̂ only half of T̂ M is within k of I.

Hausdorff fraction is stable with respect to stray pixels in the model. Assume we
have matched m pixels, so that sHF T m

NM . After the addition of stray pixels, we
have the score m j

NM n with j n. Since n
NM is small, so is the difference between these

two scores.

7.3 Hausdorff quantile
The score SHQ is stable with respect to distortion. This follows from the fact that the
coordinates of dT and dT are close and that the quantile operation is continuous when
restricted to a space of fixed dimension.

Hausdorff quantile is unstable with respect to stray pixels in the model. This is
because the quantile operator is discontinuous with respect to additional data points.
To see this, consider the situation in which there is a large gap in the values of our data.
Suppose also that the quantile we seek is represented by the datum at the bottom of
this gap. Adding an additional data point above this gap causes the quantile measure to
jump up to the top of this gap.

7.4 Spatially Coherent Matching
The score sSCM T is unstable with respect to distortion for the same reasons as Haus-
dorff fraction.

Spatially coherent matching is stable with respect to stray pixels. To see this, apply
the argument for Hausdorff fraction separately to both the matching set G T and the
boundary set B T .
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7.5 Hausdorff average
The score sHA T is stable with respect to distortion. To see this observe that dT and
dT are close and the operation of taking the average is continuous.

Hausdorff average is stable with respect to stray pixels in the model. To see this,
recall that we have bounded the distance of our stray pixels. This ensures that for
i NM we have dT i dmax for some fixed bound dmax. Before the addition of the stray
pixels, our score is

!NMi 1 dT i
NM

After the addition of the stray pixels, the score is now

!NM
i 1 dT i !NM k

i NM 1 dT i
NM n

The latter summands are bounded, so when n
NM is sufficiently small, these scores are

as close as we like.
These theoretical results can be seen experimentally as the presence or absence of

noise in the measure. See figures 9-14 and the explanation in section 9 below.

8 Algorithmic advantages of stability
All of the previous methods search for an optimum value T̂ . The most naive
implementation of this search would iterate through all values of T . For each
such T , it would iterate through each feature Si of M to compute x y T Si . For
each Si it must then compute the distance from x y T Si to Si for which it
would iterate through the points of Si . Thus, if M consists of NM edge pixels,
consist of NT transformations and I consists of NI edge pixels, this requires NMNTNI
individual distance computations. What is worse, the images are two-dimensional and
is at least two-dimensions (and could easily be four or five dimensional). This

contemplates a computation which is at least n6 . Fortunately, we need not be so
naive!

8.1 Efficiencies in the image
As Huttenlocher points out [4], the iteration over the points of I can be done once and
recorded in the Voronoi function. If I represents an image of width w I and height hI , the
Voronoi function is the map from 0 wI 1 0 hI 1 which gives the distance from
each pixel in the domain of I to the nearest (actual) pixel of I. If M has f M different
types of features, then there are fM different match loci in I and we need fM different
Voronoi functions.

8.2 Efficiencies in
For sH , Huttenlocher shows that one can improve the efficiency of the search for T̂
by subdividing into regions. Given a region R, one picks TR R (perhaps at its
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center) and computes sH TR . One is also able to compute a bound, $R so that if T R,
sH T sH TR $R. Thus, if sH TR is sufficiently bad (say sH TR s0 $R),
one can remove from further consideration not only TR, but all transformations T R.
If we are seeking T̂ and we have already computed sH TR , then we can reject all
T R if sH T sH TR $R. Regions which are not eliminated from consideration
are subdivided and the process repeats. The process ends by either discovering that all
transformations have been eliminated (in which case there is no transformation T with
sH T s0) or by finding T̂ with sH T̂ s0.

This process depends on the existence $R. The existence of this bound is guaranteed
by stability with respect to distortion. To see this in general, chose the region R to be
compact. For each feature, Si, x y T Si is continuous with respect to T . Hence, the
vector dT is continuous with respect to T . Finally, stability with respect to distortion
ensures that s T is continuous with respect to T . This ensures that transformations T
which are close to TR have scores s T which are close to s TR . In particular the set of
scores s T with T R is bounded.

In practice, of course, we need not only the existence of $R but an effective way to
compute it. This is feasible for many reasonable choices of and R. In the case that s
is sH , sHQ or sHA, consists of translations, R is a rectangle, and RT is its center, then
$R is one half the diagonal of R. The most natural way to subdivide in this case is
by using a quad tree [11].

8.3 Efficiencies in the model
To further speed up the computation, Huttenlocher suggests quick Monte Carlo elim-
ination of regions by computing the distance for randomly chosen points of M. This
may fail to eliminate a region which would have been eliminated if the distance were
computed for all points ofM. However, all of its sub-regions will eventually be elimi-
nated.

This works only in the case of sH . It works because sH T max dT i . Hence T
can be eliminated on the basis of a single coordinate of dT .

We propose an additional efficiency which applies to any measure which has sta-
bility with respect to distortion. It applies most easily to sH , sHQ and sHA where the
error bounds are once again the lengths of half-diagonals.

We require the additional assumption that each feature S i of M has a position
x y Si and that for each T , x y T Si is a continuous function of x y Si . (These
methods can be applied to three dimensional models undergoing out-of-plane rotation,
but we will exposit them in the case whereM is two dimensional.)

Suppose now, that we impose a quad tree TM on our modelM. At each level ,M is
composed into 4 regions, R 1 R 4 . Let c 1 c 4 be their centers. Suppose that
these regions contain n 1 n 4 features ofM. We may replace our modelM with an
approximationM consisting of the points c 1 c 4 with multiplicities n 1 n 4 .
Of course we will omit any points of multiplicity 0.

Now, for a given transformation T , we may compute the vector

d T d T c 1 d T c 1 d T c 4 d T c 4
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where each coordinate d T c i is repeated n i times. Now each of these coordinate is
within $ of the corresponding coordinate of dT . (Here $ is the half-diagonal these re-
gions.) Notice also that sH , sHQ and sHA are invariant under permutation of coordinates.
It follows that for each of these,

s T s d T $

This observation combines with that of the previous subsection, so that if R is a
region of the subdivision of and is a level of the subdivision of our model, and
T R then

s T s d TR $R $

Notice that computing s d T requires at most 4 distance lookups in the Voronoi
diagram rather than the full NM of them. In the case where we are computing sH d T
or sHA d T we need not even write out multiple copies of the value d T c i since
we are computing either the max of these or a weighted average of them.

8.4 Implementation issues
The tree-like nature of the decomposition of into regions raises questions as to what
is the best way to search this tree. Introducing the levels raises a question as to which
level is best for querying a given region R. We conjecture that the optimum strategy is
to keep $R and $ as similar in magnitude as possible once the regions R become small
enough.

9 Experimental results
For our experimentswe synthesized data using 11 arbitrary backgroundswith a cropped
object from the COIL 20 dataset [9] superimposed. We synthesized 100 target images
in total by randomly choosing a foreground object and randomly placing it within the
background. We then sampled 10 models for each target including the object known
to be in the scene. We used the results of matching these models to estimate Receiver
Operating Characteristic (ROC) curves for each measure as in [1].

Each target image was processed using the Canny edge detector with MatLab de-
fault parameters for threshold and sigma [2]. The COIL images were also processed
using the same edge detection algorithm. We refer to the results of edge detection on
the COIL images as the model set.

Detection consisted of selecting the maximum value and transform into a target
for a given model of the distance measure for the Hausdorff Fraction and Spatially
Coherent Matching algorithms, and of selecting the minimum value of the distance
measure for the One-sided Hausdorff, Hausdorff Quantile, Hausdorff Average, and
Hausdorff Functional Average distance measures. The transform space was limited in
these experiments to translation in x and y by one pixel increments. In the case that
there were multiple points in the transformation space that tied for the best match, we
detected 8-connected regions and took the centroid of the largest such region. In the
case that there were multiple regions with the same size, we chose one at random. Thus
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Figure 1: An example target image and the results of Canny edge detection

we arrive at a single maximally matching transform for which to evaluate a match in a
target, model pair.

ROC curves were constructed by varying the parameter s 0 and calculating tuples
of the form p d p f measuring the probability of detection vs. the probability of a
false positive. Detection is said to have taken place if the reported location of a known
object is within a radius of n pixels from its actual placement in the target. We report
results for n 5 in figures 2-8.

The Hausdorff fraction score requires the parameter for the minimal acceptable
distance, k to be set. It seems that a value of k 5 is reasonable given the scale of the
objects we are dealing with. We would not be happy if a match was determined based
on a match locus that is more than 5 pixels away from our model feature, but a 5 pixel
tolerance gives flexibility for noise from imaging, edge detection, and transformations
not accounted by our transformation space, such as minor rotation.

For the Hausdorff quantile distance, we used the 90th quantile. This is the case
where we can have approximately 10% occlusion. Hausdorff Quantile is particularly
useful in the case where a significant component of noise comes from occlusion. A
value of 10% noise is realistic for this experimental setup, as large portions of the
objects being detected are not occluded.

Spatially Coherent Matching requires a threshold for which to measure where the
neighbor relation crosses the boundary of a circle with that radius. This penalizes the
number of pixels that match within the radius by the number of edges to neighbors
outside the radius. We wish to select a value that allows for displacement of pixels
being matched up to a point, but penalizes for further distortion. We choose a radius
of 5 as this accounts for the noise in the edge detection process, but should eliminate
to a certain degree false positives from erroneous matching with pixels with a large
displacement.

For Hausdorff functional average matching, we chose a function of x 2 as this is
analogous to sum of squared distance correlation. We see in the results, however, that
this performed worse than Hausdorff Average matching. Hausdorff average was by far
the most accurate measure in terms of performance for the task of detecting models in
a set of target images as one can see in figure 6.

An interesting visualization of the measures is the surface formed by plotting the
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Figure 2: ROC curve for one-sided Hausdorff distance.
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Figure 3: ROC curve for Hausdorff fraction.
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Figure 4: ROC curve for Hausdorff quantile.
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Figure 5: ROC curve for Spatially Coherent Matching.
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Figure 6: ROC curve for Hausdorff average.
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Figure 7: ROC curve for Hausdorff functional average.
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Figure 8: ROC curves. From top to bottom: Hausdorff average is shown in red, Haus-
dorff quantile in magenta, Hausdorff functional average in green, Spatially Coherent
Matching in cyan, Hausdorff fraction in blue, and One-sided Hausdorff in black.
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Figure 9: This surface shows sH T as a function of the transformation space.

score as a function of the transformation space. Figures 9-14 show this surface for each
of the six measures for the matching task in the data of figure 1. Each measure correctly
shows an optimal point in the vicinity of 152 100 in the transformation space, which
indeed corresponds to the actual location of the object in the image. As we noted in
section 7, sH T , sHQ T , sHA T , and sHA f T all show local stability, as is shown in
figures 9, 11, 13, and 14, respectively. The plots of sHF T and sSCM T show noise
as predicted in sections 7.2 and 7.4. Hausdorff quantile (figure 11) appears to show
similar noise, but the score only differs by at most one between adjacent points in the
transformation space. This is an artifact of the scale at which the graph is displayed.

10 Conclusion
We have shown that Hausdorff Average distance measure outperforms other variants
for model detection in an edge matching experimental setup. As an additional ad-
vantage over other techniques, there are no other parameters than the match thresh-
old, unlike Hausdorff fraction, Hausdorff quantile, and Spatially Coherent Matching.
Hausdorff average has continuity with respect to noise in the form of both distortion
and stray pixels, a property not held by the other measures. We have also shown that
this method produces a maximum a posteriori estimate and described a scheme for
improved computational efficiency.
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Figure 10: This surface shows sHF T as a function of the transformation space.

Figure 11: This surface shows sHQ T as a function of the transformation space.
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Figure 12: This surface shows sSCM T as a function of the transformation space.

Figure 13: This surface shows sHA T as a function of the transformation space.
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Figure 14: This surface shows sHA f T as a function of the transformation space.

10.1 Future directions
We have only applied relatively simple features here. Any complete exploration of
image matching using a Hausdorff-based distance measure will likely include several
different feature detectors. Interest point detectors such as those described in [7] may
be promising.

There are situations where the nature of a feature in addition to its location is subject
to transformation. For example, the frequency or orientation of a texture often changes
with out of plane rotation thus making it more sensitive to a differentfilter. The stability
results of this paper do not necessarily hold in such a case.

In producing the results of this paper, we did not implement the results of section 8
because they do not apply to all the measures studied here. The usability of s HA T
depends on the increases in efficiency suggested by section 8. This deserves empirical
study.

The family of measures, sHA f T , invites the question: are there choices for f that
are appropriate to domain specific applications.

Finally, Ed Riseman has proposed that review of the existing literature on statistical
robustness may suggest newHausdorff-basedmeasures (personal communication). For
example, see [6].
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