
Model Checking a real-time Foveate Controller
using Timed Automata

Technical Report TR-05-56

Gary Holness
Computer Science Department

140 Governors Drive
University of Massachusetts
Amherst, MA 01003 USA

gholness@cs.umass.edu

Abstract

Research activity in the area of smart spaces strives to endow an envi-
ronment with a myriad of sensory-motor and computational devices which,
together with, various learning algorithms may discern useful information
about activity within the environment. Computer vision has proved an
important sensory mode for uncovering features and dynamics associated
with the events that occur. Tracking is an important task in visual sens-
ing. The literature is full of many examples of real-time trackers.

The proliferation of embedded computation grounded in physical sys-
tems will continue for the foreseeable future. Helping to increase the
correctness of such systems means provable validation of real-time con-
straints. In this paper we present a system that employs the Timed Au-
tomata formalism to verify a foveate controller designed as a processing
pipeline.

1 Introduction

In the human visual system, there exists a small pit-like area in the center of
the retina called the fovea centralis. In a healthy adult, image information from
this region is most sharp and detailed. Biologically, this makes sense as objects
right in front of you are within arm’s reach and available for manipulation. More
information about an object allows a person to better manipulate it.

In computer vision, image acquisition begins with an array (image plane) of
picture elements (pixels) which produce measurable intensity levels in response
to various frequencies of light. Inspired by human vision, more complex image
processing can be devoted only to the central region of the image plane. In
doing so, we see a computational savings and are able to achieve higher effective

1

processing rates. When tracking a subject, the interesting object is the moving
target. Thus, it is the goal of a tracking system to maintain the moving subject
in the foveal region of the image plane.

2 Control

Getting physical systems to behave in stable ways is the domain of a control
system. In its most general form (figure 1), a feedback control system consists
of four components, namely a system under control, and input reference, a
measurement, and a decision process. The system under control is our plant.
This system has a set of controllable variables which can be manipulated by
injecting energy into the system. The input reference serves as a desired goal
for the plant to achieve. The measurement device (or sensor) supplies feedback
about the current state of the plant. The feedback is compared to the input
reference producing an error signal used as the basis for the decision process or
control law. The result of this computation is an output signal used to inject
energy (or actuate) the plant so as to manipulate its controllable variables.

Figure 1: General schematic of a feedback control system

Also affecting the state of the plant are external disturbances that add or
remove energy from the plant. It is the goal of the feedback (or closed loop) con-
troller to act in a fashion so as to reduce error to zero. By continually acting in
a sense/act/respond loop, a closed loop controller is able to reject disturbances.
An example closed loop controller is a thermostat heating system. In this ex-
ample the room is the plant, the controllable variable is ambient temperature,
we have a heat sensor providing feedback, and the thermostat set point is the
input reference. The controller actuates the plant using a furnace. Disturbances
in this system are thermal dissipation through walls, windows and doors as well
as thermal energy radiated by the bodies of the room’s inhabitants. Depending
on the application, the way in which a controller advances system state toward
the goal is important. For example, if some notion of comfort is a concern, a
successful controller will give rise to smooth trajectories. Controllers are catego-
rized based on what the decision process computes as a function of error [6]. For

2

example, in proportional (or P) control, the control law computes an actuation
signal fat+1(et) = ket at time t which is a constant function of the error signal
at time t. This actuation signal causes a change in plant state, ∆st. So, we
have st+1 = st + ∆st. The next state is some function st+1 = g(st, fat+1) of
the current state and actuation signal. The change in state of the plant is gov-
erned by its dynamics which arise from physical properties. Thus, the function
g describes the response of the plant when in a configuration st and injected
with energy fat+1 . Other types of control include proportional derivative (PD)
and proportional integral derivative (PID) control. From a dynamical systems
perspective [15, 12], the system response for the controller is a map. Plotting
the state of the plant for time steps in infinity results in a phase portrait through
state space that captures the behavior of our plant over time. The plant starts
in an initial configuration s0 with a goal reference of s0. A controller is charac-
terized by its map’s trajectories through phase space as ∆st settles to zero for
t = 0, 1, Given a n-dimensional phase space S = (s1, . . . , sn), the control
law becomes a map M : S !→ S. For positive integer, k, define map M (k) by
the k-fold iteration of M with itself. A class of fixed points (figure 2) Sa or
attractors are such that

lim
k→∞

(
M (k)(Si)

)
= Sa

Where Si is the set of initial configurations (neighborhood or basin of at-
traction) from which system state converges to Sa. A repeller Sr is a fixed point
from which system state diverges as we iterate a map.

Figure 2: Contour surface in phase space

Points along trajectories through phase space describe contour lines or a
potential surface (figure 3) defining the control objective. Control decisions
are made by gradient descent along the potential surface. A control system
that generates stable behavior is one for which system state converges to an

3

Figure 3: Potential surface for controller

attractor from initial conditions of interest. An example of this is the range of
safe operating temperatures for a climate control system.

Techniques such as Lyopanov’s method [12] formulate plant state in terms
of energy functions and their time based derivative. In this approach, if energy
dissipates over time to zero, then the system is stable. System response evolves
at a characteristic rate. For example, heat dissipates from a room depending
on the building materials and insulation. Thus, processes that measure and
respond in a control system must run at a characteristic rate in a real-time sys-
tem. Reasoning about stability does not imply the controller software actually
achieves its real-time guarantees as it moves system state toward the attractor.
With formal verification, a guarantee on real-time constraints while moving sys-
tem state from one level curve to the next is achieved. Moreover, by structuring
the software appropriately, such systems are more easily realizable.

3 Foveate Controller

Our system consists of a pan/tilt/zoom (PTZ) camera interfaced to a computer
host equipped with a frame grabber card. Acquired images are obtained from
the image plane from a special area in memory. The camera is trained on a
scene in an in-door laboratory environment. We have a moving object in a
scene that we find interesting and wish to track. Raw data from the image
plane is processed to extract pixels belonging to the object of interest. This
processing involves classifying and extracting foreground pixels from background
pixels, segmenting pixels into objects and computing the centroid of the objects.
Simple background subtraction is used to compute the foreground pixels.

From the camera we get a sequence of frames (image plane data). For each
pixel pij , we maintain a window of n observations < pij1 , . . . , pijn >. Define
a function Sig which measures variability across a window of data. For each

4

pixel, if Sig(< pij1 , . . . , pijn >) ≤ ε for some acceptable level ε , then any
change in pij from frame 1 to frame n is considered noise. This being the case,
we can build an up to date model of the background B where Bij = {pijn |Sig(<
pij1 , . . . , pijn >) ≤ ε}. The function Sig can be computed many ways. A very
simple approach measures, diff(Bij , pij), how much a pixel changed between
the current background and the most recent frame. If this is below a threshold,
then the new pixel is considered a noisy background pixel. Another approach
measures whether or not the most recent pixel’s value falls outside, X̄+kσ̂, some
multiple of the sample standard deviation outside of the sample mean. Given a
current background model B, we compute the foreground F by Fij = pij −Bij .
Given an array of foreground pixels, the next problem is to classify pixels as
belonging to a particular object. One approach is using connected components
analysis [8]. By this approach, each pixel pij is considered a node. A pixel pij

shares an edge with a pixel pkl if pij and pkl satisfy some spatial relationship.
Two popular relationships are the FourNeighbor and EightNeighbor operators
where. . .

FourNeighbhor(pij , pkl) = North(pij , pkl) ∨ South(pij , pkl)
∨East(pij , pkl) ∨ West(pij , pkl)

EightNeighbor(pij, pkl) = FourNeighbor(pij , pkl) ∨
NorthEast(pij , pkl) ∨
SouthEast(pij , pkl) ∨
NorthWest(pij , pkl) ∨
SouthWest(pij , pkl)

By connected components analysis, we iterate over the pixels in the image
and label them as belonging to the same object if they are in the same con-
nected component. Once the object has been segmented, a bounding box is
circumscribed with corner points (xmin, ymin), (xmax, ymin), (xmax, ymax), and
(xmin, ymax) where xmin = minx−coord{pij ∈ F} likewise for xmax, ymin, and
ymax. The centroid (cx, cy) is computed as cx = xmin + 1

2 (xmax − xmin) and
cy = ymin + 1

2 (ymax − ymin).
The goal of the foveate controller is to maintain the foreground object of

interest in the center of the image plane. In our control system, the plant is the
room containing the target and the camera. The sensor is the image plane from
which we extract the centroid of the moving object. The plant is actuated by
sending commands to the motors in the camera causing it to pan or tilt. The
input reference is the coordinate of the center of the image plane (Icx , Icy). The
vector valued error signal (ex, ey) is computed (figure 4) by taking the difference
ex = Icx − cx and ey = Icy − cy.

The cameras are actuated using position control. That is, given a posi-
tion error the control law computes an actuation signal for velocity to pan/tilt
the camera as quickly as possible. The control law implemented uses propor-
tional derivative (PD)control where the control law computes an actuation sig-

5

Figure 4: Tracking error in foveate controller

nal fat+1(et) = kd
∂et
∂t + kpet. The constants kp and kd are the proportional and

derivative gains respectively.

4 Programming Paradigm: Event Listener Pipeline

We wanted to formulate the design in a way that lends itself well to formal
verification. Borrowing from how the Java programming language [9] imple-
ments structured event handling, we implemented control system components
in C++ using the EventListener pattern. In the EventListener pattern, there
are two roles, namely the EventListener (or listener) and the EventGenerator
(or generator). In object oriented programming, a class specifies the layout of
an object. An object has instance data which comprise the object’s state and
methods which operate on that data. Methods fall into two categories, namely
accessors which examine data and mutators which modify that data. As a
computation proceeds and mutators on an object are called, the object’s state
sequences through a number of state changes d0, d1, d2, . . . (figure 5). Let dt

represent an object’s state at time-step t. One of the tenets of object oriented
programming is that all interaction with an object’s state is done through the
accessors and mutators.

Figure 5: State changes in event generator

Thus, an object’s instance data cannot be directly observed. There are cases

6

where a process should take some action in response to an object’s state changes.
Without ability to monitor the object’s state directly, another mechanism is
needed. In the EventListener pattern, a generator makes available a registration
interface which allows listeners to express interest in particular state changes
< di, dj >. A listener makes available an interface which allows generators to
contact it with an event. Interest is expressed by explicit registration by the
listener.

Figure 6: Listener registers with the generator

Figure 7: Generator notifies the listener

When a listener registers (figure 6), it specifies the state change or Event
< di, dj > of interest and a handle Lk by which it can be contacted. The gen-
erator maintains a map << di, dj >, Lk > of registrations. Whenever event
< di, dj > occurs in the generator, the appropriate set of listeners are notified
(figure 7). The interfaces for EventListeners and Generators and Events are as
follows. . .

class EventListener {
public:
EventListener();
virtual ~EventListener();
virtual bool notify(Event *event)

{return false;};

7

virtual bool equals(EventListener * listener)
{ return false;};

};

class EventGenerator {
public:
EventGenerator();
virtual ~EventGenerator();
virtual bool registerListener(EVENT_TYPE type,

EventListener *listener)
{return false;};

virtual bool equals(EventGenerator * generator)
{return false;};

};

class Event {
public:
Event();
virtual ~Event();
virtual EVENT_TYPE getType()

{return EVENT_NONE;};

virtual bool equals(Event *data){ return false;};
};

The entire control system was implemented by chaining together controller
components as a sequence of event generators and listeners in a pipeline. Such a
design allows for benchmarking of each component for its timing requirements.
Some components assume only the single role of a generator, while others as-
sume the dual role of both listener and generator. As a generator, an object
allows listeners to register for particular events. As a listener an object is able
to be notified of particular events. Objects implementing the event interface can
include additional data or methods. In our system, this data includes the result
of a processing stage. Table 1 lists each component, their overall function, and
their listener and or generator role.

5 Timed Automata

Timed automata, introduced by Alur and Dill [2], is the most widely studied
theoretical model for verification of real-time systems. A timed automaton is
a finite automaton augmented with real-valued clocks. The semantics are such
that transitions are instantaneous and time may elapse in a state (or location).
During a transition, some of the clocks may be reset. The value of a clock
may be read at any instant. A clock’s value represents the time which has

8

Component Generator Role Listener Role
MeteorFrameGrabber EVENT RGB DATA NONE
CroppingImagePlane EVENT RGB DATA EVENT RGB DATA

EVENT VIRTUAL SERVO
BackgroundSubtractor EVENT RGB DIFF DATA EVENT RGB DATA

DynamicBackgroundSubtractor EVENT RGB DIFF DATA EVENT RGB DATA
ObjectSegmenter EVENT BLOB DATA EVENT RGB DIFF DATA

CentroidComputer EVENT CENTROID DATA EVENT BLOB DATA
ErrorComputer EVENT POSITION ERROR DATA EVENT CENTROID DATA

ControlLaw EVENT SERVO EVENT POSITION ERROR DATA
EviCamera NONE EVENT SERVO

VirtualCamera EVENT SERVO EVENT POSITION ERROR DATA

Table 1: Software Components and their Generator/Listener Roles

lapsed since the last time the clock was reset. There are constraints on clocks
expressed in the form of an inequality. These constraints occur in two forms,
namely constraints on transitions and constraints on locations in the automaton.
he former are called guards and the latter are called invariants. A guard has
semantics such that the associated transition can only be taken if the current
clock values satisfy the guard. An invariant has semantics such that time can
elapse in the location as long as the current clock values satisfy the invariant.

5.1 Syntax

Let X be a set of clock variables ranging over R+. We have constraints C(X)
are inequalities of the form x ≺ c ∈ C where. . .

- ≺=
{

<
≤

- c is a non-negative rational

- If φ1,φ2 ∈ C
then φ1 ∧ φ2 ∈ C

Define a timed automaton A = (Σ, S, S0, X, I, T) where. . .

- Σ is finite alphabet

- S is finite set of locations

- S0 is finite set of starting locations

- X is set of clocks

- I : S → C(X)
is a labeling function assigning invariants to locations

- T ⊆ S × Σ× C(X) × 2|X| × S
are transitions < s, a,φ,λ, s′ > from state s to s′,
labeled a, with guard φ and reset clock set λ.

9

5.2 Semantics

The model for A is an infinite transition graph T (A). Define T (A) = (Σ, Q, Q0, R)
where. . .

- Q the set of states (s, ν)
where s ∈ S is a location and ν : X → R+ is a clock interpretation.

- Q0 = {(s, ν)|s ∈ S0 ∧ ∀x ∈ X(ν(x) = 0)}
is the set if initial states.

- R is the transition relation

Given λ ⊆ X , define ν[λ = 0] as

• clock assignment which agrees with ν for X − λ

• maps clocks in λ to 0.

and for d ∈ R, we have

• For d ∈ R, ν + d is a clock assignment mapping x ∈ X to ν(x) + d

• For d ∈ R, ν − d is a clock assignment mapping x ∈ X to ν(x) − d

We have transitions of two types, namely delay and action transitions. Delay
transitions correspond to the elapse of time in some location. Define a delay
transition. . .

- (s, ν) →d (s, ν + d) where d ∈ R+

- ∀e s.t. 0 ≤ e ≤ d, I(s) holds true for ν + e.

This means an invariant holds throughout the delay. Action transitions corre-
spond to taking a transition in T . Define an action transition. . .

- (s, v) →a (s′, ν′) for a ∈ Σ.

- Given there is a transition < s, a,φ,λ, s′ > where ν |= φ and

- ν′ = ν[λ = 0] or ν′ agrees with ν on X − λ

A transition relation R of T (A) is built by combining delay and action tran-
sitions. We have that (s, ν)R(s′, ν′) or (s, ν) →d (s′, ν′) if ∃s”,v”s.t(s, ν) →d

(s”, ν”) →a (s′, ν′) for some d ∈ R+. The transition relation R is an association
of two states in T (A) separated by a delay transition and an action transition.

10

5.3 Model Checking

Given a set of constraints on clock variables in X we get a multidimensional
shape representing a set of clock assignments or clock zone. Verification of a
system means testing if the infinite transition graph T (A) gets to a situation
where there is no possible clock interpretation which satisfies it. In other words,
the clock zone becomes empty as we take transitions in T (A). This reduces to
doing reachability analysis on T (A) [1]. By this technique, a check is done by
starting in an initial state of T (A) and following transitions. This results in a
path or execution trace through the infinite transition graph. If a step along an
execution trace results in an empty clock zone, it means there is a flaw in the
model. If a previously encountered state (s, ν) is uncovered while following an
execution trace, it means that execution has cycled back to a valid state. When
this happens, it means the model is satisfiable and, thus validated.

Operations on clock zones include intersection, reset (or projection) and
time lapse [10]. Given that we have two clock zones φ,ψ we have that their
intersection φ ∧ ψ is also a clock zone. Given that we have a clock zone φ and
clocks λ ⊆ X , we have that their projection φ[λ = 0] is also a clock zone. Given
that we have a clock zone φ, we have that, for clock interpretation ν, ν ∈ φ⇑ if
ν satisfies ν |= ∃t≥0 [(ν − t) ∈ φ] ∨ ∃t≥0 [(ν + t) ∈ φ].

States are represented by zones (s,φ) where s is a location of A and φ is
a clock zone. If we consider the transition e = (s, a,ψ,λ, s′), the current zone
is (s,φ). Define the zone suc(φ, e) as the set of assignments ν′ s.t. for some
ν ∈ φ, (s′, ν′) can be reached from (s, ν) by letting time lapse and executing a
transition e. The pair (s′, succ(φ, e)) is the set of successors of (s, e) obtained
by. . .

- Intersect current zone φ with invariant I(s) of location s to find the set of
possible clock interpretations for the current state.

- Let time lapse in location s via φ⇑

- Intersecting with I(s) again to find clock interpretations still satisfying
I(s).

- Intersect with guard ψ of transition to find clock interpretations permitted
by the transition.

- Set clocks in λ to 0 to project the clock interpretations onto clocks in λ.

To perform verification, on the fly, we compute transitions (s,φ) →a (s′, succ(φ, e))
continually until we either encounter a repeated state or the clock zone is empty.
This gives us an algorithm for determining reachability.

5.4 Difference Bound Matrix

A representation for clock zones is the difference bound matrix (DBM) [5]. A
DBM is a square matrix indexed by clock variables in X . Included is a spe-
cial clock x0 whose value is always 0. We have Dij = (dij ,≺ij) represents the

11

inequality xi − xj ≺ij dij . There are many DBMs for the same clock zone.
We produce a normal form of a DBM by tightening it using the O(n3) Floyd-
Warshall Algorithm. By this approach, we have Dik bound by dik ≺ik dij +djk.
If this does not hold for some j, then we replace Dik by (d′ik,≺′

ik) where. . .

d′ik = dij + djk

≺′
ik=

{
≤ if ≺ij is ≤ and ≺jk is ≤
< otherwise

Once converted to normal (or canonical) form, we can determine if the clock
zone represented by the DBM is empty by examining the main diagonal. If
the clock zone is empty or unsatisfiable, then at least 1 entry along the main
diagonal -= (0,≤).

6 System Implementation

Our system consists of a tool written in Java called TACreator (figure 8). Using
this system, we draw or capture event listener pipeline designs expressed as
a timed automaton. By this approach, a node represents a component that
implements either a generator or listener role. An edge represents the throwing
of an event. Invariants and guards are used to describe the amount of processing
time spent in a component and sending events. We label each location and edge
with a string. Labels on locations and edges describe component names in the
pipeline and events respectively.

The tool is comprised of a drawing palette, and toolbar. In the toolbar,
appear three buttons for drawing a final state, non-final state or transition.
Selecting one of these sets the context for what will happen in the drawing area.
If a non-terminal state is selected, TACreator assumes the first non-terminal
state to be drawn is the start state. To draw an edge, the mouse cursor must
be clicked in the outbound state and dragged inside the state at the inbound
side of the edge. A state is drawn by clicking the mouse in the drawing area.
The fundamental unit of rendering in the drawing area is a TASelectable. Start
states, final-states, non-final states, and edges all implement a TASelectable
interface. A TASelectable interface supports basic methods which allow an
object to participate as a renderable object in the drawing region. This includes
features such as hi-lighting, mousing over and selecting.

When the mouse cursor is moved over screen real-estate occupied by the
shape, it is drawn more bold to connote that it can be selected. When the
mouse is clicked on a shape, it is identified as being selected so that information
associated with it can be easily obtained. When a shape is selected, visual
feedback is given by hi-lighting it yellow. Associated with each TASelectable
is a TAPropertySheet. A TAPropertySheet supports all of the information
contained in a TASelectable. This includes a TASelectable’s associated name,
clock constraint etc. In addition to holding data attached to a TASelectable, a
TAPropertySheet also supplies the user interface necessary for interacting with

12

Figure 8: A timed automata specified using TACreator

this data. In the tool bar at the left side of TACreator, at the bottom, the
property sheet for the currently selected TASelectable is displayed. With this,
a context dependent interface is achieved. As the timed automaton is drawn,
new TASelectables are added to a list. Whenever a mouse event occurs, the
list is consulted to see who owns the screen real-estate where the mouse event
occurred. The owner is then updated appropriately. Key to a timed automaton
are clock variables which take on values from non-negative rationals. The tool
bar contains an interface for entering new clock variables by typing the clock
variable name, hitting enter, and clicking the create button.

For a selected edge in the timed automaton, its name, guard (clock con-
straint) and reset clock set are entered using the edge’s TAPropertySheet UI
(figure 9). Likewise, for a selected location in the timed automaton, its name
and invariant (clock constraint) are entered using the location’s TAProper-
tySheet UI (figure 10). In these examples, the edge ”EventName” has guard
c2 ≤ 3 ∧ c3 < 6 and reset clock set λ = {c2, c3}. Also, location ”State” has
invariant c1 ≤ 1∧ c2 < 3. In both cases, clock constraints and names are repre-
sented as strings. A reset clock set is represented as a pick list. The list on the
left of figure 9c is initialized with the set of available clocks.

This set is produced from the union of all added clocks and the special zero

13

(a) Name (b) Guard

(c) Reset clock set

Figure 9: Name, guard and reset clock set for an edge

(a) Name (b) Invariant

Figure 10: Name and invariant for a location

clock. With the exception of the zero clock, all clocks in this list can be moved
between the list on the left and the list on the right. The set of clocks in the
list on the right is the reset clock set.

The strings representing clock constraints are parsed into a DBM represen-
tation. An LALR1 grammar [11] was defined for clock constraints. . .

14

Formula --> CompoundFormula

CompoundFormula --> SingleFormula |
SingleFormula Conjunction CompoundFormula

SingleFormula --> SimpleFormula |
ComplexFormula

SimpleFormula --> Variable Inequality Number

ComplexFormula -->
Variable Minus Variable Inequality Number

where Variable, Inequality, Number, Minus, and Conjunction are ter-
minals and Formula, CompoundFormula, SingleFormula, SimpleFormula, and
ComplexFormula are non-terminals. Borrowing from a technique used in the
compiler construction tools Lex and Yacc [13], an expanded rule results in a
stack of tokens. The two rules of importance are SimpleFormula and Complex-
Formula. A SimpleFormula results in the following token stack. . .

0: Variable
1: Inequality
2: Number

and a ComplexFormula results in the following token stack. . .

0: Variable
1: Minus
2: Variable
3: Inequality
4: Number

These token stacks are passed to a semantics routine which build the appro-
priate difference bound matrix (DBM) representation for the clock constraint.
All of the DBM operations, canonicalize, intersect, elapse time, and reset clocks
were implemented such that the parameters are not modified and the result is
returned by allocating space for a new DBM. This was done rather than pro-
ducing results in-place because a DBM may need to be re-used when performing
reachability search. An additional operation called isValid was added. This
method tests whether or not a DBM represents an empty clock zone.

Once a controller’s timed automata is constructed, this design is captured
by clicking the capture button in the tool palette. Capturing a design means
it is unavailable for modification as it is necessary to have a static design for
verification. Verification is performed by clicking the verify button in the tool
palette. A design is verified by computing (s′, succ(φ, e)) from (s,φ) continually
from the start node. This reduces to search. Three versions of depth first

15

search were implemented with varying assumptions. The first assumes the timed
automaton has final states and performs DFS up to the terminal states. The
second assumes the control loop has a single cycle and performs DFS until it
reaches an empty clock zone, a repeated node (s′,φ) in the model or reaches
a maximum depth. The third assumes the control loop has multiple cycles
and performs DFS until it reaches an empty clock zone, a repeated node or a
maximum depth. Bounding search depth to some maximum was done to avoid
running into system limitations. In the case where maximum search depth
is reached, the system prompts the user appropriately. In the case where an
empty clock zone is reached or the design is successfully verified, the user is also
prompted appropriately.

7 Results

The system was tested for its ability to find empty clock zones. An example test
case is the timed automaton of figure 11(a). The data output for this test case
appears in the full technical report [7]. As can be seen in figure 11(b), the system
is correctly verified as safe. In this example, the model consists of three states
S0, S1, S2 and edges E01, E12, E20 labeled with invariants and guards involving
a single clock variable. The invariants allow time to elapse for up to 6ms and
the guards allow transitions to be taken within a deadline of 4ms. This example
was chosen for its very tight timing constraints.

(a) A working test TA

(b) Correct TA veri-
fied

Figure 11: Example of a correct design

An example test case is the timed automaton of Figure 12(a). In this ex-
ample, S2’s invariant was made incompatible with C1’s value after reset due to
E12. The data output for this test case also appears in the technical report [7].
As can be seen (Figure 12(b)), the system is verified as unsafe. Moreover, the
system has identified the offending location in the timed automaton. This state
is drawn as darkened by the TACreator tool (Figure 12(b)).

16

(a) An incorrect TA

(b) Incorrect TA
failed

Figure 12: Example of an incorrect design

A foveate controller was modeled using TACreator 13(a). Each component
of the controller was modeled as a state and data flow was modeled as an edge.
Each component (Table 1) was benchmarked on randomly generated images
to determine its timing constraint. Because a component passes data after
processing is done, the model needed a measurement of elapsed time by which
a message must be sent. This was done using two clock variables. In each
component time elapses for C2

A foveate controller was constructed by wiring together an event listener
pipeline that is modeled with timing constraints (Figure 13(a)). In this system,
a rectangular region of the real image plane is cropped and treated as if it
were the camera. This virtual camera can be panned or tilted by adjusting
the location of the rectangle. This was done because low level access to the
the motors in the P/T/Z cameras for the purpose of velocity control was not
possible. The raw data output for this test case also appears the full technical
report [7]. As can be seen (Figure 13(b)), the system is verified as safe.

The verified foveate controller is demonstrated (Figures 14, 15, and 16).
In figure 14, the scene viewed by the camera initially has no moving objects.
In figure 15, the author appears in the field of view of the virtual camera.
His motion is detected by the background subtraction algorithm, his pixels are
segmented and an error is computed between the center of the image plane in
the virtual camera (cross-hairs) and the centroid of the moving object. The PID
control law computes the appropriate servo command and the virtual camera
pans and tilts the camera to bring the center of the image plane to the object
centroid (Figure 15). Once the center of the image plane is coincident with the
centroid of the moving object, error goes to zero and the system comes to rest
(Figure 16).

By structuring control system software as an event generator pipeline, a
foveate controller can be modeled as a timed automaton and its real-time con-
straints analyzed using formal verification. Given a verified system, each com-

17

ponent can be run at its characteristic rate as a real-time task. Using a pipeline
design, we are able to design, benchmark, and verify individual components of a
real world system. While the systems presented here are relatively modest, the
real benefit of automated verification happens for non-trivial control systems.
In particular, how the components interact with respect to real-time timing
guarantees becomes difficult as complexity grows.

8 Future Work

The pipeline design lent it self to methodical design and implementation of a
computer vision controller. Next steps include code generation from system
model. Systems generated from verified specifications can then be targeted
for specific real-time OS run-times by encapsulating each component with the
necessary code required to make them real-time tasks.

This investigation into applications of model checking has also opened many
questions. Very quickly, in implementing TACreator we ran up against the curse
of dimensionality. One area for future investigation is to apply AI techniques
to the search problem. In the literature, there are examples where transitions
in the timed automata are augmented with costs and search is treated as an
optimization problem. In other research, the authors suggest bounding the
explosion of states using iterative deepening A∗ (IDA∗). An interesting area
for future research would be to investigate stochastic search. By this approach,
at each node, a probabilistic choice is made to determine which transition to
take during search. As we continue searching in the infinite transition graph,
we encounter nodes (s′, succ(φ, e)). Statistics on transitions, (s, s′) in the timed
automaton, can be kept and used to bias probabilities used in searching the
infinite transition graph. In doing so, the goal is to learn and verify the notion
of most likely execution traces. Over many execution runs, if we can verify likely
execution traces and compute their probabilities, an approximation can be made
that verifies a system is correct with some degree of probability. Moreover, we
can also compute the probabilistic bounds on these likely execution traces.

9 Acknowledgements

Thanks and gratitude go out to Prof. Neil Immerman for his encouragement
and support in allowing me to undertake this research. Most importantly, I
thank him for opening my eyes to the interesting field of model checking and
its applications.

References

[1] Luca Aceto, Augusto Burgueño, and Kim G. Larsen. Model checking
via reachability testing for timed automata. In Bernhard Steffen, editor,

18

TACAS’98, volume 1384 of Lecture Notes in Computer Science, pages 263–
280. Springer-Verlag, 1998.

[2] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical
Computer Science, 126(2):183–235, 1994.

[3] Gerd Behrmann, Thomas Hune, and Frits W. Vaandrager. Distributing
timed model checking - how the search order matters. In Computer Aided
Verification, pages 216–231, 2000.

[4] Michael H. Cohen. Design principles for intelligent environments. In
Proceedings of the National Conference on Artificial Intelligence (AAAI),
Madison, Wisconsin, July 1998.

[5] D. Dill. Timing assumptions and verification of finite-state concurrent
systems, 1989.

[6] K. Dutton, S. Thompson, and B. Barraclough. The Art of Control Engi-
neering. Addison Wesley, 1997.

[7] Witheld for review. Witheld for review. Technical report, Witheld for
review, 2005.

[8] D.A. Forsyth and J. Ponce. Computer Vision A Modern Approach. Prentice
Hall, 2003.

[9] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language Specifi-
cation, Second Edition. Addision Wesley, 2000.

[10] O. Grumberg, D. Peled, and E. Clarke. Model checking. In Model Checking,
Cambridge, Massachusetts, January 2000.

[11] J.D. Ullman J.E. Hopcroft, R. Motwani. Introduction to Automata Theory,
Languages, and Computation (2nd Ed). Addison Wesley, 2000.

[12] J.A. Yorke K.T. Alligood, T.D. Sauer. Chaos: An Introduction to Dynam-
ical Systems. Springer Verlag, 1996.

[13] J. Levine, T. Mason, and D. Brown. Lex and Yacc. O’Reilly and Associates,
1992.

[14] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach (2nd
edition). Prentice Hall, 2003.

[15] S.H. Strogatz. Nonlinear Dynamics and Chaos: With Applications to
Physics, Biology, Chemistry and Engineering. Perseus, 2001.

19

(a) Timing constraints on foveate controller

(b) Foveate controller verified

Figure 13: Verifying a Foveate Controller
20

Figure 14: Initially no target

Figure 15: The author appears

Figure 16: Foveated on the target

21

