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ABSTRACT
Personal robotics is an area in which robot behavior is in
service to few (or single) clients. This paper argues that the
problems of human detection and recognition can be ap-
proached with simple yet efficient techniques that provide
useful information to personal robots. By combining and
taking advantage of coarse information such as motion, ac-
tivities, shape, and color attributes, simple probabilistic in-
ference algorithms can be applied to help a robot to become
aware of nearby humans and their identities. Experimental
results show that these simple models can be used to detect
human presence robustly against a naturally clutterd and
ambiguous background and perform well in a recognition
test consisting of 10 subjects. Since this approach does not
rely on the faces as crucial cue for detection or recognition, it
can function under situations where conventional techniques
would fail. Moreover, the simple model offers dramatic im-
provement in computation efficiency and can be used for
robots to engage real-time interaction with human.

Keywords
human detection, human recognition, human centric robotics,
learning

1. INTRODUCTION
Robotics research in recent years is beginning to shift to-

wards “human-centric”—in constrast to static, highly con-
strained environments such as factory floors, are more dy-
namic domains in homes or offices where the robot is re-
quired to assist and collaborate with humans. Although a
much more challenging goal, the interaction with humans
also offers many opportunities to simplify problems: a hu-
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man teacher/collaborator can provide on-line guidance and
structure environments such that learning can be simplified
interactively. This enables the robot to learn more compli-
cated tasks that are previously difficult when human is out
of the loop.

In previous work, Hart et al. have presented a hierar-
chical learning framework and shown that a bimaual robot
can learn a complex policy for picking up objects as the
trainer presents an increasingly challenging sequence of pick-
up tasks [7, 6]. Through human-guided structured learning,
the robot quickly learns a basic sequence of the pick-up be-
havior and then later adapts to cases of randomly placed
objects, different scale objects, and even moving objects.
However, in these experiments, guidance from the human
came in an offline manner. The goal of this project is to ex-
tend the behavioral learning framework with elements that
enables the our robot to become aware of nearby humans,
to identify them, and subsequently, to react to their move-
ments and instructions, or request human assistance. This
interaction leads to more effective learning on more compli-
cated tasks.

With this goal in mind, the approach of this paper dif-
fers from the conventional human detection and recognition
problems in computer vision literature. This work considers:

• in-door environments—they are generally well-lit, and
relatively static compared to out-door scenes. Han-
dling extreme lighting conditions and distraction of
moving background elements such as cars, bikes, birds
or tree leaves are not the target of this study.

• much smaller datasets—in a normal household, a robot
would only need to differentiate between two or three
human subjects. Even in business environments it is
reasonable to think a robot may only need to person-
alize its interaction behavior with no more than 20
people. The requirement for the recognition system
on such a robot is significantly simpler than for in-
stance a security face recognition system at an airport
checkpoint.

• whole-body activity recognition and human detection
in real-time—in cases where no facial features, it is
still possible for robots to distinguish human collabo-
rators from passers by and children from parents by



their distinctive appearance and behavior. Moreover,
for the robot to maintain natural interaction with a
human user, real-time performance is a necessary re-
quirement. However, most state-of-the-art human de-
tection and tracking algorithms are limited to offline
processing [21, 9, 19, 14, 20].

Under these conditions, this paper focuses on how the
combination of simple, multi-modal features, and activities
can help robot detect and recognize humans. Section 2 re-
views related work and contrasts the differences between
them and the approach taken by this work. Section 3.1
presents the vision architecture for simultaneous feature ex-
traction. Simple probabilistic human methods for both de-
tection and recognition are presented in Section 3. Section
4 provides proof-of-concept experiments to demonstrate the
feasibility of this approach in lab environments where the
robot learns to differentiate 10 subjects.

2. RELATED WORK
Finding humans, tracking human motions and ultimately

identifying them in natural settings are the holy-grail of
computer vision. Many have worked on different aspects
of these problems for decades. Literature on this subject is
too exhaustively enumerate. In this section, a few examples
are described to illustrate the current prevalent approaches
for human detection and recognition:

Human detection is a difficult problem because humans
are dynamic in appearance and motion. Occlusion, varia-
tions in pose, clothing, and articulated motion all contribute
to the challenge. Currently, the most effective approaches
for human detection and tracking are part-based methods,
where the human is modeled as an assemblage of parts with
kinematic relationships between features can be modeled.
Earlier work in this line of research uses 3D kinematic mod-
els [8, 5, 13]. However, for these methods, stereo correspon-
dence is an issue and also 3D models have many parameters
and degrees of freedom that introduce computational com-
plexity.

As a simpler alternative, there have been approaches where
the human body is modeled as a tree of 2D parts [21, 9,
19] where a generative probabilistic model of humans is
learned using labeled training data. Inference (using Non-
parametric Belief Propagation) is performed on the graph
structure for the detection of humans and estimation of hu-
man poses. For implementation simplicity, some researchers
do not rely on a complex generative graphic model approach.
Instead they define a number of constraints using prior knowl-
edge about the human body and then either use brute force
search [14] or dynamic programming to solve the assignment
problem [20].

For human recognition, the majority of the effort has been
put on face recognition as a face is a distinctive part of the
human body. As described in several recent surveys [22,
10], face recognition methods can be categorized into holis-
tic methods (Eigenfaces [11], Fisherfaces [1] and LDA [3]
etc..), feature-based methods (e.g. pure geometry[2], HMM
[15]) and hybrid methods (e.g. modular eigenfaces [18] and
hybrid LFA [17]). However, these methods are engineered
specifically for the task of face recognition and do not lend
insights to handling cases when faces are not visible and how
to rely on other cues for human recognition.

The common issue with all of the above mentioned meth-

ods is that the design goal is to have them function in the
most general settings, e.g. a single image, and under ar-
bitrary lighting conditions. As a result, only the most re-
liable features are used, such as edges, corners, or texture
features. Texture features are computationally intensive to
extract. Simple features such as edges however are ubiq-
uitous in the environment and often large number of such
features are detected (Figure 2). With a large N , the compu-
tational complexity has restricted these methods to off-line
video processing. Our approach is hierarchical: first sim-
ple but coarse features are used to reduce N , and allow the
system to quickly focus on candidate regions. Then, if the
coarse features are not sufficient to make an distinction, then
texture features can be computed on the candidate regions
instead of the entire image to improve efficiency.

Secondly, due to the standard evaluation method, e.g. for
face recognition algorithms, classification using a single im-
age selected the database, effective elements that humans
often take advantage of, such as motion, activity, posture
or even clothing habits, are not taken into account in these
algorithms.

3. PROPOSED APPROACH
The following are the key points of the proposed approach:

1. A set of simple features is used to both simplify the
feature extraction process and reduce the number of
features (N) extracted in each frame. Motion is used
extensively in early stages of learning.

2. A simplified version of the constellation of feature ap-
proach by Fergus et al. [4] is proposed in this work for
human detection.

3. The detection algorithm functions as a pre-processing
step for the recognition algorithm to reduce the num-
ber of outlier features used for learning and classifica-
tion.

4. A simple belief network is proposed for human recog-
nition. Multi-sensor features extracted from previous
steps, including feature blob position, scale, and color,
and activity pattern (likely-to-visit locations encoded
in Cartesian coordinates) are taken into account for
subject classification.

Details of each of these steps are described in the following
sections.

3.1 Feature Extraction Architecture
As shown in Figure 1, the robot perceives the world through

a broad range of features extracted from visual, propriocep-
tive, and force signals.

Each channel of sensory signal feedback is passed through
a signal processing pipeline (Figure 1 left) where raw sen-
sory input is filtered using a feature mask, e.g. hue values
within a certain range. For visual inputs, connected com-
ponents are used to segment contiguous regions that share
a feature. A Kalman filter is used to provide optimal, least
squares position (ũ) and scale (Σu) estimates of the feature
as well as its first order dynamics (f ′(u, t)) in the presence of
noise. Thus, a summary of discrete events and the first order
dynamics of each type of feature in space and time is deliv-
ered as a perceptual basis for the subsequent object/human
modeling and behavioral learning.
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Figure 1: The sensory input processing pipeline: the robot perceives the world through a broad range of
features, in visual, proprioceptive and force signals

For this work, only the visual channels are used. The hue,
saturation and intensity (HSI) color space is discretized into
18 channels of hue (value ranges from 0 ∼ 180), 10 chan-
nels of saturation and 10 channels of intensity. An exam-
ple output of these channels through the sensory processing
pipeline is shown in Figure 2. These features are coarse
and independently produce an ambiguous summary of the
scene. However, in combination, we demonstrate that they
effectively discriminate between separable individuals in a
small data set. When the simple color, motion, and struc-
tural features are not sufficient to make the distinction, then
texture features can be computed in the ambiguous regions
to improve discriminative power. For this paper, only the
coarse features are studied as a first step.

Figure 2: Feature comparison. (a) extracted edge
features (b) extracted color features proposed in this
work.

3.2 A Constellation of Features Model for Hu-
man Detection

Primitive features from the sensory processing pipeline
can be combined to form constellations of features and ag-
gregated into abstract features. As the abstraction process
continues, feature hierarchy is formed such that complex
objects can be modeled. For instance, to model a human,
the lowest level of abstract features are modeled as rigid
body parts of the human (e.g. lower arm, upper arm), while
the next level up is the kinematic multi-body segments of
the human (e.g. arm), and finally these kinematic segments
form the highest level “human” abstract feature. To aggre-
gate lower level features into an abstract feature, this work
employs a probabilistic constellation of features approach
proposed by Fergus et al. [4].

In Fergus’s approach, objects are modeled as P parts,
and for each part, shape (X), appearance (A) and rela-
tive scale (S) models are learned. For a given object model
with parameters Θ, to determine object presence/absence,
a Bayesian decision R is made, s.t.

R =
Pr(Object|X, S, A)

Pr(NoObject|X, S, A)

≈ Pr(X, S, A|θ)Pr(Object)

Pr(X, S, A|θbg)Pr(Noobject)

where Θbg is the background model The likelihoods are fac-
tored into appearance (A), shape (X) and relative scale (S)
components, and assuming variables A, X and S are statis-
tically independent from each other:

Pr(X, S, A|Θ)

=
∑
h∈H

Pr(X, S, A, h|Θ)

=
∑
h∈H

Pr(A|X, S, h, Θ)Pr(X|S, h, Θ)Pr(S|h, Θ)Pr(hΘ)

=
∑
h∈H

Pr(A|h, Θ)Pr(X|h, Θ)Pr(S|h, Θ)Pr(h|Θ)

where each of the factored components is modeled as Gaus-
sian distributions, and h is a hypothesis vector (length P )



regarding whether a detected feature belong to a certain
part. Given the observed N (maximum) features, each en-
try in h is between 0 and N that locates a feature to a model
part. The set H is all valid combinations of features to the
parts, and therefore |H| is O(NP ). For large N , the pro-
cess of evaluating all possible combinations of H to compute
probability Pr(X, S, A|Θ) is expensive.

All Possible Combination Model Star Model

Right Arm and Torso Feature
Relative Position Distribution

Left Arm and Torso Feature
Relative Position Distribution

Figure 3: Using the star model (right), in which
the position and scale distribution of each feature
is encoded with respect to a reference feature. For
instance, relative position distributions between an
arm feature and the torso feature is illustrated in the
figure. This distribution is a curve because the arms
often move up and down during training. Such dis-
tribution is not Gaussians. Therefore, distributions
in this work are represented using discretized accu-
mulator arrays. With this approach, the number of
hypothesis H can be de reduced to O(N2P ) instead
O(NP ) in the case of the all pairs model (left) used
in the original Fergus paper.

For this work, several simplifications are made to achieve
a real-time implementation. First, the use of simple fea-
tures such as color blobs that reduces N . To further reduce
computational complexity, instead of considering all possi-
ble combinations (Figure 3), a star model is used where a
reference feature is selected (the most stable invariant fea-
ture) such that only hypotheses with respect to the reference
feature are considered. This is similar to Fergus’s later work
where his analysis shows that the computation complexity
of this approach is reduced to O(N2P ). Lastly, instead of
learning Gaussian mixture models, which is computationally
expensive, a discretized nonparametric modeling approach
is employed (Figure 3).

3.3 A Bayesian Belief Network Approach for
Recognition

After a human has been identified from the scene, the
corresponding set of blobs are found. Assuming the pres-
ence of one human at a time, the robot with a stereo pair
of cameras can triangulate and compute the human’s posi-
tion (x, y, z) in Cartesian coordinates. Figures 4 shows the
graphical model of the proposed belief network for human
recognition. The leaf nodes in the network consist of the
observations: i.e. (x, y, z) Cartesian position of the human,
relative scale of the observed blobs. Note that more blob
properties such as relative distance between blobs and ID

of the color features can also be added as leaf nodes to in-
crease the discriminative power of the network. However,
for simplicity, only scale is included in this version of the
network.

Name

x-pos y-pos z-pos blob 1
scale

blob n
scale

. . .

n = number of parts 
in a human model

Figure 4: Bayesian network for human recognition.
The root node of the network is the class labels of
each subject, and the leaf nodes correspond to ob-
servation features include (x, y, z) Cartesian position
of the human, and scale values of the observed blobs

The Cartesian position nodes encode activity information,
in terms of frequently visited locations by a particular hu-
man. The relative scale and position of the observed blobs
encodes specific shape information of a human, i.e., some
subjects are taller than others, while some are larger. Fi-
nally, blob’s color IDs can also encode clothing habit in-
formation of a subject human. These features are often ig-
nored by conventional human recognition techniques as they
are not discriminative enough when the database consists of
thousands of individuals. However, for the purpose of the
domain proposed by this work, they are particularly use-
ful for coarse classification of a small set of humans whose
faces may not be visible, but they have distinctive clothing
preferences in color distributions.

The network is trained using a standard belief propaga-
tion technique as described in Pearl’s book [16]. First, a
conditional probability table, that stores the probabilities
of each value of the leaf nodes (Y ) of the network given the
value of its parent (X), is computed. Evidence enters the
network through each leaf node’s λ vector. A root node, X,
receives this information in a λ message transmitted by its
children, Y , where

λY (x) =
∑

y

λ(y)P (y|x),where,x ∈ X.

The root node calculates the product of its π messages,
whose components correspond to the prior probabilities of
each x, and every λ message from its children. The result-
ing vector is the network’s belief, which corresponds to the
“believability” of an event x occurring. This belief network
crudely attempts to take into account past evidence by us-
ing the belief calculated at previous time steps to weight the
belief vector caulated for the current time step.

4. RESULTS

4.1 Detection



For training, humans walk in front of the robot, some-
times wave arms up and down to allow the robot perceive
their kinematic range. For this process, a single camera is
needed, and features are extracted through the signal pro-
cessing pipeline. Motion is used to allow the robot focus on
blobs on the human body as the background objects do not
move during training.

After training, the learned human model is tested in a
naturally cluttered scene, without relying on background
subtraction. In this case, the robot is exposed to features
from the background as well as features on the human, the
noisy data introduces a great deal of ambiguity and there
can be many blobs that are potential torso features (Figure
5(a)).

Figure 5: Human detection test. (a) Features
extracted in a natural scene with cluttered back-
ground, (b) current most probable location (white
circle) of a human, though probability is low
(0.01192), (c) with presence of a human, a proper
estimate is made with a higher confidence(0.288129).

As shown in Figure 5(b), the object on the table con-
tains the relevant set of features that makes it a possible
candidate as a human (indicated by the white circle). How-
ever, since the features’ spatial arrangements do not match
the kinematic structure of a human, the match probabil-
ity is low. When the human subject walks in, the estimate
quickly responds to the human. The red circles are features
that are found to match the part-based kinematic human
model. Each feature found adds support to the overall hu-

man model match probabilistically. As a result, the match
probability is much higher (Figure 5(c)).

Due to the use of simple approach for modeling and in-
ference, this human detection module runs in real-time at
frame-rate (15 fps), and is used as a pre-processing step for
the recognition component, to discard outlier features in the
background and resolve correspondence issue during trian-
gulation.

4.2 Recognition
Experiments of recognition are carried out in a 10-by-5

meter space in front of the robot. To simulate humans daily
activities in a lab environment in this small and confined
space, 10 subjects of convenience are drafted from the de-
partment, and they are asked to walk in one of three patterns
over a span of 2 meters in front of the robot. These pat-
terns, include straight back and forth between two points,
figure-eight and zigzag, are used to simulate idiosyncrasies
of human behavior on a small scale. Although the system
can run in real-time, for qualitative analysis, a data set of
10 subjects walking in different patterns is collected. 10%
of the collected data is used for offline cross validation while
the rest is used for training.

Figure 6 shows the learned conditional probability distri-
butions of position and scale features for 10 subjects. The
less overlap between the distributions, the more distinguish-
able the subjects are. However inference does not rely on any
particular feature alone. Results show that in this particular
dataset, x position does not contribute much in distinguish-
ing between the subjects as there is a significant amount
of overlap in the feature distributions. However, y posi-
tions and scale features are distinctive in many situations.
Even for subjects that are not distinctive in one feature, dis-
tinction can be found through other features. For instance,
subject 10 is not distinguishable in both the x-position and
scale in one dimension, but is much more so in the other
dimension of scale and in the y-position.

Table 1 shows the confusion matrix from the evaluation re-
sults. The columns correspond to the identification ground
truth, and the rows correspond to prediction made by the
network. High value in the diagonals of the matrix indicates
a correct match between the name label and observed fea-
tures. Results show that the network performs well on the
dataset collected such that 9 out 10 subjects are correctly
identified. We can see from Figure 6 that the reason why
subject 9 is mis-classified is because its conditional probabil-
ity distribution is dwarfed by other subjects in every feature.
This is to be expected due to the limitation of the resolution
of the features we used in the data collection process. With
higher resolution, or more features, classifications result can
be improved.

5. DISCUSSION AND CONCLUSION
This paper argues that the problems of human detec-

tion and recognition, for the purpose of robotics can be ap-
proached with simple yet efficient techniques. This comes
from the observation that in-home or office assistant robots
may only need to personalize its behavior to a handful of
people. By combining and taking advantage of coarse in-
formation such as motion, activities, shape and color at-
tributes, simple probabilistic inference algorithms can be
applied to help a robot to become aware of nearby humans
and their identities. Experimental results show that these



Table 1: Confusion matrix of belief distribution for 10 subjects
SubjectID 1 2 3 4 5 6 7 8 9 10

1 495.903 0.000 0.000 0.000 0.000 0.000 0.000 0.000 16.840 0.000
2 0.000 500.000 0.297 0.233 0.089 0.000 0.000 0.000 0.001 0.006
3 0.061 0.000 34.178 0.014 0.054 0.000 0.000 0.000 0.004 0.000
4 0.001 0.000 0.000 499.685 0.000 0.001 0.000 0.000 0.001 0.000
5 0.003 0.000 465.283 0.000 499.736 0.000 0.000 0.000 0.001 0.000
6 0.000 0.000 0.000 0.068 0.000 499.998 0.000 0.000 0.000 0.000
7 3.891 0.000 0.177 0.000 0.098 0.000 499.998 0.000 0.000 0.000
8 0.030 0.000 0.021 0.001 0.018 0.000 0.000 500.000 0.051 0.002
9 0.111 0.000 0.044 0.000 0.005 0.000 0.001 0.000 483.070 0.000
10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.029 499.992

simple human models can be used to detect human presence
robustly against a naturally clutterd and ambiguous back-
ground and perform well in a recognition test consisting of
10 subjects. Since this approach does not rely on the faces
for detection or recognition, it can function under situations
where conventional techniques would fail. Moreover, the
simple model offers dramatic improvement in computation
efficiency and can be used for robots to engage real-time
interaction with human.

For future work, several problems deserve attention: (1)
adding textures [12] to the robot’s feature set for extraction
as discussed in Section 3.1. Compared to previous methods,
we believe real-time performance can be achieved when these
texture features are computed within candidate regions se-
lected by the detection component proposed in this paper,
instead of over the entire image; (2) handling multiple hu-
mans during recognition: currently, it is assumed that only
1 human is present in the environment at any given time
during the recognition phase, due to the correspondence is-
sue when triangulating the human’s position. We anticipate
this issue can be resolved by performing a match procedure
on the candidate sets of human blobs such that the closely
matched ones from different cameras are paired up for trian-
gulation; (3) show examples of utilizing interaction to boot-
strap learning of more complicated tasks; (4) use interaction
to expand the robot’s knowledge regarding the humans be-
yond the visual percept, and learn the behavioral uniqueness
of humans in order to better distinguish humans from the
environment (detection) and from each other (recognition).
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