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Abstract
Due to advances in low power sensors, energy har-

vesting, and disruption tolerant networking, we can now
build mobile systems that operate perpetually, sensing
and streaming data directly to scientists. However, fac-
tors such as energy harvesting variability and unpre-
dictable network connectivity, make building robust and
perpetual systems difficult. In this paper, we present a
system, Tula, that balances sensing with data delivery,
to allow perpetual and robust operation across highly
dynamic and mobile networks. This balance is impor-
tant, especially in an unpredictable environment; sensing
more data than can be delivered by the network is not
useful, while gathering less underutilizes the system’s
potential. Tula is decentralized, fair and automatically
adapts across different mobility patterns. We evaluate
Tula in the context of two mobile testbeds, TurtleNet and
UMass DieselNet. TurtleNet is a mobile sensor network
that we deployed to study Gopher tortoises. DieselNet
is a mobile network testbed consisting of 40 vehicles.
Our evaluations show that Tula senses and delivers data
within 80% of an optimal, oracular system that perfectly
replicates data and has foreknowledge of future energy
harvesting. We also demonstrate that Tula can be im-
plemented on a small microcontroller with modest code,
memory, and processing requirements.

1 Introduction

Due to three key innovations: small programmable sen-
sors; energy harvesting [28, 19]; and disruption toler-
ant networking, mobile systems are poised to answer
many questions about a wide range of natural and man-
made systems. Recent efforts focusing on zebras[33],
whales[14], turtles[28], people [17], and vehicles [4, 11]
have shown that in-situ monitoring using embedded de-
vices can provide unprecedented and transformational
data. When these systems harvest energy from their en-
vironment and gather data in a robust manner, they can

become perpetual and self managing, streaming data di-
rectly to scientists for decades.

However, a number of external factors make build-
ing robust and perpetual system difficult. Seasonality,
habitat disruption, changes in social networks and mo-
bility can drastically affect network connectivity and en-
ergy harvesting. Without basic parameters such as net-
work connectivity and energy availability, it is impos-
sible to tune power-management and routing. A key
premise of this problem domain is that: node mobility,
unpredictable network connectivity and uncertain energy
availability represent the greatest challenges for unteth-
ered systems.

Related work on perpetual systems either use local en-
ergy adaptation techniques without considering data de-
livery [28, 25] or use adaptation techniques for purely
static networks [13]. However, adapting to both energy
and network variations is considerably more difficult. In
particular, a node needs to adapt and balance both its
sensing and routing tasks. In a long-running system the
goal is to gather as much data from nodes as the lim-
ited resources of network bandwidth and energy permit.
Sensing more data than can be delivered by the network
is not useful, while gathering less underutilizes the sys-
tem’s potential. Similarly, systems that depend on coop-
erative, replicating routing protocols [2, 29], must bal-
ance the energy devoted to sensing and routing their own
data, with energy used for routing data from other nodes.

In this paper, we present a system, Tula , that ad-
dresses this challenge for mobile sensor networks. A
Tula node uses a distributed algorithm to balance en-
ergy allocation across three tasks— sensing, routing the
node’s own data and the routing data for other nodes. The
Tula energy allocation provides max-min fairness, which
allows data collection from all nodes including poorly
connected nodes. The key insight in Tula is that sens-
ing and routing are inherently dependent, and optimizing
only one or the other in an energy-constrained environ-
ment is futile.



Given the allocation for sensing and routing, Tula uses
an adaptive sensing system to collect data and a DTN
routing algorithm to deliver the data. We formulate the
Tula allocation problem as a miniature constraint satis-
faction problem (CSP). Each Tula node measures energy
consumption for sensing and communication and gath-
ers data about the environment through node meetings,
to distributively solve the CSP on an embedded device.
Tula is general, and automatically adapts across mobility
patterns, from static to highly mobile environments.

We evaluate Tula in the context of two systems. The
primary example is TurtleNet, a mobile sensor net-
work that we deployed to study Gopher tortoises. The
TurtleNet deployment consists of 17 tortoises and we
collect energy harvesting and mobility data. The deploy-
ment has been in operation since August 2008. In our
evaluation, we use traces from TurtleNet, combined with
an implementation of Tula on TinyNodes [9]. We also
evaluate Tula on traces obtained from the UMass Diesel-
Net, a network of forty vehicles [6].

Our evaluations over both TurtleNet and DieselNet
show that Tula senses and delivers data within 80% of
an optimal, oracular system that perfectly replicates data
and has foreknowledge of future energy harvesting. The
protocol is fair in terms of delivery rates across nodes,
and comes within 95% of the optimal in terms of the
max-min fairness objective. Tula not only works well
for sparse mobile networks, but also for static mesh net-
works. Our evaluations on a synthetically generated
mesh network shows that Tula adapts well to the static
environment and senses and delivers data within 95%
of the optimal. Finally, we show that Tula can be im-
plemented on a small microcontroller with modest code,
memory, and processing requirements.

2 Applications and Challenges

Devices that operate perpetually using harvested energy
represent a new class of mobile system that promises to
enable a wide and largely unexplored range of potential
applications. This vision includes significant advances
for scientists studying mobility in nature. In spite of
decades-worth of study, the movements and behaviors of
most animal species in the wild are completely unknown.
Current methods like trapping and manual radio teleme-
try are labor intensive, yield few data points, and sig-
nificantly increase the frequency of animal interactions
with humans. By using small in-situ sensor devices to
observe animal location, movement, and environmental
conditions, researchers will be able to collect more data
at higher temporal densities with minimal impact on be-
havior. This shift promises to answer long-debated ques-
tions about habitat usage, population trends, and com-
plex interactions between different species, including hu-

Figure 1: A gopher tortoise equipped with a TurtleNet
tracking device.

mans.

2.1 TurtleNet
In light of these potential benefits, we have deployed
TurtleNet, a mobile network with the goal of overcom-
ing many of the challenges faced by perpetual sensing
systems. Our deployment consists of 13 tracking devices
attached to Gopher Tortoises (Gopherus polyphemus),
shown in Figure 1. Each device consists of a Shockfish
TinyNode, a solar panel, a battery, multiple sensors, and
additional energy measurement hardware.

During operation, the devices record connection op-
portunities with neighboring nodes and periodic sensor
readings, including temperature, GPS coordinates, bat-
tery level, solar energy harvested and energy consump-
tion. Unlike traditional networks, these nodes rarely have
an end-to-end connection to one of the two deployed
GPRS-enabled base stations, and devices must oppor-
tunistically deliver collected data using mobile-to-mobile
routing [2, 29]. When two mobile nodes are within com-
munication range, called a connection opportunity, they
exchange data. This data is stored and then forwarded
during subsequent connection opportunities until it is
eventually delivered to the sink. The network has been
in operation since August 2008.

2.2 Challenges
On analyzing the deployment traces, we uncovered a
number of key challenges. The key difficulty in de-
signing TurtleNet—and generally any untethered mo-
bile network—is the continuous variation of both en-
ergy harvesting and network connectivity due to mobil-
ity. Figure 2 shows how a node’s daily harvested en-
ergy varied—experiencing both day-to-day and seasonal
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Figure 2: Daily solar energy is shown
for a TurtleNet node before and after
hibernation.
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Figure 3: The average daily energy
harvested by each TurtleNet node dur-
ing a 1-month trace.
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Figure 4: Scatterplot of number of
meetings and harvested energy for
each node. Nodes that gather more
energy are not necessarily better con-
nected and vice versa.

changes. Note that within a 10-day, daily harvesting
ranged from less than 0.1kJ to more than 1.7kJ. In or-
der to support perpetual operation, a device must adapt
its behavior over time.

In addition to temporal variation, energy harvesting
also varies considerably across the network. Figure 3
shows the average daily energy harvested by all nodes
in the network over a 1 month period of time, sorted to
show the energy distribution. The figure shows that there
is significant variation in energy harvesting across nodes.
With diverse energy budgets in the network, each node
needs to balance its available energy between sensing
and delivering data.

Recall that nodes rely on other well connected nodes
to store and forward their data to the destination. Un-
fortunately, there is very little correlation between how
connected a node is and the energy it gathers, as shown
in Figure 4. The well-connected hubs that are best po-
sitioned to route data may not have sufficient energy to
support network demand. Routing decisions in perpetual
networks must depend on not only topology, but also the
available energy.

Finally, in TurtleNet—and most mobile systems—
connections between mobile nodes often exhibit patterns
due to social habitats as shown in Figure 5. The figure
shows that 40% of node meetings repeat more than 10
times a month. The meeting patterns are not completely
random and can be leveraged to combat the network’s
uncertainty. In other words, if two peers have a connec-
tion opportunity, we can expect that the peers will have
future connection opportunities.

2.3 Design Goals
In this paper, we describe Tula, a system that addresses
the above challenges by supporting perpetual operation
and ensuring fair and efficient data collection. The goal
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Figure 5: CDF of the pair-wise meeting frequency during
1 month of TurtleNet operation. While some meetings
occur too infrequently to be very useful, 50% of the node
pairs meet 5 times or more.

of perpetual operation entails that energy spent sens-
ing, storing, processing, and communicating must be
matched with harvested energy. In addition, data sensing
rates must be matched with that of delivery. For exam-
ple, a node should not sense more data than can be de-
livered. In addition, Tula must operate in environments
with sparse network connectivity and on platforms that
are limited in energy and computational resources.

Finally, fairness is a critical function of Tula. Tula op-
erates in networks with significant variation in available
energy and network connectivity between nodes. Maxi-
mizing network throughput or minimizing delay, with-
out enforcing fairness, will likely result in well con-
nected and energy-rich nodes collecting and delivering
their own data at much higher rate, while starving nodes
that are further away. Well connected nodes may also
have their energy budgets depleted by high network de-
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Figure 6: The Tula architecture

mand.
Different models have been proposed for sharing re-

sources among nodes and flows within a network. For
Tula we have adopted the goal of max-min fairness,
which requires that a nodes’ sending rate be improved
only after all lower rates have already been maximized.
This model is one of the most well-known network fair-
ness models and it fits well with wildlife tracking appli-
cations, including TurtleNet. Without fairness, perpetual
operation is still possible, but a poorly connected node
may deliver very little data. Wildlife tracking applica-
tions typically seek to characterize animal behaviour and
their interactions with the environment by collecting as
much data from as many nodes as possible. This em-
phasis on sensing “breadth” rather than “depth” can be
achieved using max-min fairness. Adapting Tula to other
fairness models is left for future work.

3 Tula Architecture

The Tula architecture, shown in Figure 6, consists of
three main components: an Adaptive Sensing system for
collecting sensor data, a DTN routing algorithm for op-
portunistically delivering that data, and a Rate Allocator
that coordinates both sensing and routing activities by
appropriately allocating resources.

Adaptive sensing systems adjusts application sensing
rates alone in response to changes in a device’s en-
ergy budget. Existing systems, including Eon [28], Pix-
ieOS [25], and Levels [22], estimate or measure the en-
ergy costs of various application tasks and automatically
adjust application behavior to match a device’s changing
energy budget.

In sparse networks, DTN routing systems opportunis-
tically routes network packets from source to destination
using sporadic and uncertain device-to-device meetings.

Many systems have been designed, including Rapid [2]
and Spray and Wait [29] effectively deliver data over in-
termittent links while responding to changing network
conditions.

Unfortunately, these systems are not designed to work
together. Existing adaptive sensing systems consider
only local energy constraints, ignoring the impact of
sensed data on the network. Similarly, DTN routing sys-
tems assume unlimited energy and consider only band-
width restrictions. Tula’s core function is to overcome
this challenge by combining the benefits of adaptive
sensing and DTN routing into a single coordinated sys-
tem. Rather than build a complete system from scratch,
Tula abstracts the sensing and the routing systems and
controls these systems using an allocator that balances
energy for sensing with that of data delivery. The Tula
energy allocation is most easily understood in terms of
rate: the number of packets, or bytes, that can be gener-
ated by sensing and delivered by routing, over some time
period.

The allocator’s objective is to maximize the rate at
which sensor data is collected and delivered, while en-
suring that the allocated rates are fair to all nodes. To
this end, Tula must appropriately adjust (i) the rate of
sensing, (ii) the routing rate for the node’s own data, and
(iii) the maximum routing rate for each neighbor’s data.
Given the sensing rate, Tula leverages existing sensing
mechanisms that adapt the local sensing task according
to available energy. Given a routing rate, Tula adapts
existing DTN routing protocols to route data within the
given rate.

3.1 Adapting Sensing
Adaptive sensing systems change their sensing rates ac-
cording to energy conditions. Adapting the sensing rate
is especially important for perpetual operation in sensor
nodes that have multiple sensors or have high variability
in harvest energy. Eon, an adaptive sensing system that
we have developed and which we use in Tula, uses hard-
ware support to measure energy consumption and har-
vesting. Eon then combines the measurements with run-
time information about the application to estimate the en-
ergy cost of various program tasks. Finally, Eon uses this
information to determine how much energy is required to
sense data at a given rate. This relationship is communi-
cated to the rate allocator, which uses the information to
solve the allocation problem (Section 4).

3.2 Adapting Routing
The Tula rate allocator only assigns the maximum rate
at which a node can route data for each of its neighbors.
The actual routing decision involves other tasks includ-

4



ing estimating routes, tracking acknowledgements and
adapting the route to changing network connectivity. In
Tula, we leverage our past work in DTN routing called
Rapid [2] and adapt it to the environment with energy
constraints.

Rapid estimates a distance metric between each node
and the sink, where distance is the expected delivery de-
lay. Rapid then replicates data through multiple routes
based on the marginal utility heuristic; in other words,
replicate data whose distance decreases by the most.
Rapid estimates network parameters including the ex-
pected delay and bandwidth by averaging over a sliding
window; it then communicates the estimates to the allo-
cator.

The routing rate assigned by the allocator is only an
upper bound. The actual data that is routed through the
path depends on the quality of the route. For example,
let nodes A and B be peers and let A’s allocator assign a
maximum rate at which it can route data for B. Because
of changes in the network (due to mobility, interference
etc), B may send data at a much lower rate through A;
in turn A will reduce its rate allocation for B and bal-
ance the sensing rates appropriately. In other words, the
routing protocol adapts to changing network conditions,
that in turn affects the rate allocation. We discuss this in
more detail in Section 5.1.

4 Rate Allocation

We first describe the rate allocation algorithm by making
two simplifying assumptions: (i) A node routes its pack-
ets through only one neighbor, and (ii) data is only for-
warded, never replicated. Later, we describe how these
assumptions can be relaxed. The network, shown in Fig-
ure 7, illustrates this simplified scenario. The allocation
algorithm is described with respect to the node n, with
upstream nodes u1, · · ·uk routing data through n, and
a single downstream neighbor d, through which data is
routed toward a sink or base station.

Each node determines its set of upstream and down-
stream neighbors based on the routing protocols distance
estimate. In the Rapid routing protocol that we build
upon, the distance is the expected delivery delay. When
two peers meet, the peer with a lower delivery delay is
the downstream neighbor, and the one with the higher
delivery delay is the upstream neighbor. In Section 5.4,
we discuss the implications of relaxing the definition of
upstream and downstream neighbors.

Node n executes the Tula allocation algorithm in order
to determine its own sensing rate rn and the rate at which
it can route data for its neighbors, r1, r2 · · · rk. The allo-
cation problem is formulated as a Constraint Satisfaction
Problem (CSP) with the objective of finding a max-min
fair rate allocation, based on a set of input variables that

d

n

u1 u2 u3 uk

Figure 7: A simplified example to illustrate the Tula dis-
tributed allocation algorithm. The algorithm is executed
by node n, whose upstream neighbors are u1, u2, · · ·uk

are either estimated locally or exchanged between neigh-
bors during contact opportunities.

Locally measured values, shown in Table 2, include
the energy required to collect a packet of sensor data
(Es), the energy required to receive (Er) a data packet,
and the energy required to deliver (Ed) that packet to the
sink. P is the total energy harvested by the node. All of
these measurements can be obtained by the node through
hardware while the device is deployed.

The network variables, shown in Table 1, are ex-
changed either upstream or downstream through the net-
work whenever nodes meet. The direction for each vari-
able with respect to n is shown in the table. The network
variables are only exchanged with the immediate peers
and are not flooded across the network. These variables
are introduced and described along with the CSP formu-
lation in the following paragraphs.

Objective function: The objective of the rate alloca-
tion is to achieve max-min fairness in the data collected
across the nodes. A rate allocation is max-min fair if in-
creasing any rate, ri, requires the reduction of a lesser
rate, rj , (rj ≤ ri). The maximization described in
Equation 1 achieves this goal, as a result of its always-
decreasing first derivative. For simplicity, we assume
that rates can not be less than 1; however, this case is
easily supported.

max

(
k∑

i=1

log(ri) + log(rn)

)
(1)

Energy conservation constraint: Perpetual operation
requires that energy harvested by node n be sufficient for
all sensing and networking tasks. Equation 2 ensures that
n can sense and deliver its own data at a rate of rn and
receive and deliver data at a rate of ri from each upstream
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Fi (down) The fraction of node ui’s data that are
sent through n

Bi (down) The maximum rate at which ui can
forward data to n

Oj (up) The rate at which n can route packets
through its downstream neighbor, j

Table 1: List of inputs that are exchanged between n
and its neighbors to solve the CSP. Variables marked
(up) are exchanged from n’s upstream neighbors, and
variables marked (down) are exchanged with n’s down-
stream neighbors.

neighbor ui without exceeding the node’s power budget,
P . All variables are estimated locally using hardware
instrumentation.

k∑
i=1

ri(Er + Ed) + rn(Es + Ed) < P (2)

Downstream constraint The total data that n can
route is capped by its downstream neighbor, d. In the
same way that n assigns a maximum routing rate to its
upstream nodes, d likewise assigns a maximum data rate
to n. Equation 3 ensures that n will never accept or col-
lect (by sensing) data at a rate higher than the rate, O, at
which it can deliver data. Node n receives the value for
O from d each time they meet.

rn +
k∑

i=1

ri < O (3)

Upstream constraint The objective function and the
first two constraints alone will result in all upstream rout-
ing rates being assigned equal to the local sensing rate.
This equal division of resources is fair; however, the sys-
tem will be underutilized if some upstream neighbors are
unable—due to energy or bandwidth limitations—to take
advantage of the allocated rate. To avoid this condition,
each upstream node, ui provides node n with an addi-
tional value, Bi. Bi is the maximum amount of data
that an upstream node can send, given its energy limita-
tions. An upstream node ui can compute its value of Bi

by solving the CSP without the downstream constraint
(Equation 3)

ri ≤ Bi (∀ i ∈ [1, k]) (4)

The CSP can be solved using a well-known progres-
sive filling algorithm [5]. The algorithm evenly adds rate
to each upstream link. As rates reach their limits, they

Es Energy required to sense a packets
worth of data

Ed Energy to deliver a packet
Er Energy required to receive a packet
P Power available for sensing and rout-

ing

Table 2: Variables that are estimated locally by n to solve
the CSP

Objective

max

(
k∑

i=1

log

(
ri

Fi

)
+ log(rn)

)
(5)

Constraints
Energy conservation

k∑
i=1

ri(Er + Ed) + rn(Es + Ed) < P (6)

Downstream

rn +
k∑

i=1

ri ≤
m∑

j=1

Oj (7)

Upstream

ri ≤ Bi (∀i ∈ [1, k]) (8)

Figure 8: Energy allocation problem formulation solved
by node n. The goal is to estimate rn, the local sensing
rate and ri, the rate at which n can route packets for each
of its neighbors ui

are excluded from receiving additional rate, and the pro-
cess continues until either all peers are excluded or no
residual energy is available. This algorithm is fast, easy
to implement, and amenable to use on low-power plat-
forms as we show in Section 6.

5 Incorporating Routing

The simplified Tula rate allocation makes several as-
sumptions that do not hold in practice, especially when
using DTN routing to navigate a sparsely connected net-
work. In this section, we describe the effect of removing
these assumptions, resulting in the modified CSP, shown
in Figure 8.
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Figure 9: Scenarios that complicate the simple Tula allo-
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5.1 Routing through multiple nodes
A typical DTN routing algorithm relies on multiple
downstream nodes to route packets. When presented
with multiple downstream options, as shown in Fig-
ure 9(a), the DTN routing algorithm running on n deter-
mines which packets will be routed through d1 and which
will go through d2. These routing decisions are lim-
ited, however, by the routing rates allocated by the down-
stream nodes. Therefore, the total data that n can route
is now the sum of the routing rates allocated by each of
its downstream neighbors, d1, d2 · · · dm. We account for
this in the CSP by replacing the maximum downstream
rate, O, with the maximum downstream rates allocated
by m downstream neighbors, O1, O2 · · ·Om. The new
downstream constraint incorporating these variables is
shown in Equation 7.

This change also impacts downstream nodes, shown
in Figure 9(b), where n receives only a fraction, f of the
packets routed by u1. The remaining fraction, 1 − f , of
the packets are routed through another node n′. Using
the original CSP, both n and n′ would allocate resources
to u1 as though each were routing all of its data—clearly
defeating Tula’s efforts at fairness. Node n can avoid
this by allocating rate to u1, proportional to the fraction,
f . To accomplish this, we introduce a new variable, Fi,
which represents the fraction of all data routed by a node
ui through n. Equation 5 shows the modified objective
function using Fi to allocate rates fairly to fractional net-
work flows. Each node receives its Fi values from its

upstream neighbors, which keep track of these values by
maintaining a limited routing history.

In addition to preserving fairness, these Fi values also
provide a mechanism by which an upstream node’s rout-
ing protocol can express demand to a downstream node’s
rate allocator. For example, let the routing protocol on
u1 diverts packets from a less promising n to a more
promising n′. Therefore, the fraction of data routed by
u1 through n will decrease, signaling the rate allocator
at n to reduce its allocation. Alternatively, if u1 wants
to route more packets through n, it will communicate an
increased value of F1 to n. This will signal n to increase
its allocation, so long as it can do so without violating
the fairness model.

5.2 Replication
Network uncertainty can often be masked by replicating
the same data over different paths. Replication adds ro-
bustness to the network and has been shown to improve
delivery rates in disruption-prone environments [2, 29].
Replicating data, if not accounted for, will also unfairly
skew rate allocations in much the same way as routing
through multiple downstream nodes.

Consider the scenario illustrated in Figure 9(a). If n
sends all of its data to d and a duplicate copy of that data
to d′, n might be tempted to send Fn = 1.0 to both d1

and d2, since each downstream node routed all of its data.
In this case, n will receive twice its fair allocation.

Instead, a Tula node n incorporates the replication rate
in its estimation of the fraction Fn. To this end, n com-
putes Fn as the fraction of its total network transmissions
including replicas. In the previous example, n sends a
fraction Fn = 0.5 to both d1 and d2, assuming that both
the paths are favored equally.

5.3 Transitive routing
In sparse mobile networks, a node can be several hops
away from the sink. In the TurtleNet testbed, for exam-
ple, some devices were as much as 5 hops away from the
base station. In order to deliver data, these nodes will
have to route data transitively as shown in Figure 9(c).
In the example, nodes v1 and v2 route data through u1,
while nodes u1 and u2 route through n. Assuming en-
ergy and connectivity constraints are equal, and n only
considers u1 and u2 when allocating resources, n will
assign similar rates to u1 and u2, even though u1 is rout-
ing 3 nodes’ data and u2 only routes for itself.

Accounting for transitive routing requires no change
to the CSP. Rather the variable, Fi is extended to include
upstream traffic. u1 sends the total fraction of traffic that
it routes though n, including its own and all its upstream
nodes. In the example, if v1 and v2 route all their data
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through u1, and u1 in turn routes all its data through n,
it will communicate F1 = 3 to n. The value Fi needs
to only be communicated to the immediate downstream
neighbor. For example, v1 and v2 communicate their re-
spective fraction value to u1, and u1 aggregates the value
with its fraction to estimate F1.

To sum up, the variable Fi represents the fraction of
total packets, including its own packets as well as other’s
packets, that a node sends to its downstream neighbor.
This fraction takes into account the replicas.

5.4 Routing through an upstream neighbor
Under most conditions, data is routed toward the sink
through downstream nodes; however, there are times
when it makes sense to route data to a node that is far-
ther from the destination, as illustrated in Figure 9(d). In
the example, nodes n and u1 meet each other frequently,
but each rarely meets a shared downstream node, d. Fur-
ther, in terms of the routing algorithms distance metric,
let n be slightly closer to d compared to u1. Therefore n
is downstream to u1, and u1 will route its data through
n. Since u1 is nearly as likely to meet d as n, node n can
significantly increase the probability of delivering data in
a timely manner by routing data through u1 as well. Un-
fortunately, this is not permitted by our current definition
of upstream and downstream nodes. We have observed
this scenario often in TurtleNet, and we expect it to oc-
cur in any network with social groups and non-uniform
mixing.

Our initial attempt at solving this problem was to re-
lax our definition and allow nodes to be both upstream
and downstream peers of each other. This solution, how-
ever, suffers from the count-to-infinity problem, where
a node unknowingly becomes its own downstream peer.
Although the problem can be solved by exchanging link
information for all upstream paths, it significantly in-
creases Tula’s complexity—requiring, in the worst case,
that all nodes maintain rate information about all other
nodes in the network.

Therefore we use a simpler heuristic in Tula, which
has worked well in practice. We allow a node to only
replicate its own data to upstream peers when appropri-
ate, but disallow forwarding other nodes’ data. This sim-
ple heuristic helps avoid the count-to-infinity problem by
ensuring that data is never routed back down the path
from which it came.

6 Implementation

We developed two implementations of Tula: a NesC [16]
version that runs on a microcontroller platform and a
trace-based simulator for repeatable experimentation.

6.1 NesC implementation
The goal of the NesC implementation is two-folds. First,
it demonstrates that the Tula system can be implemented
in the memory and processor constrained microcontroller
platform. Second, it allows us to measure the energy
required for the various components of Tula—sensing,
routing data, solving the CSP and exchanging meta data
for the routing algorithm. We then instantiate the simu-
lator with real energy measurements. We plan to deploy
the full implementation of Tula in our TurtleNet testbed.

The NesC implementation is fully functioning im-
plementation running on the ShockFish Tinynode [9].
The implementation incorporates all of the design fea-
tures, including the energy/rate allocator, the Eon run-
time platform and the Rapid DTN layer. We adapt the
Rapid implementation to run on a memory constrained
platform. Rapid exchanges meta-data about the delay
of each packet. Instead, we reduce the meta-data and
only exchange the per-node delay and meta-data about a
short packet history. We refer to this reduced version as
RapidLite.

We implemented the allocator in 390 lines of NesC
code, and the RapidLite in 1172 lines of NesC code.
The Eon runtime computes the energy budget of a sensor
node by keeping track of the harvested energy and the
energy spent for sensing and communication.

6.2 Trace-based simulator
Simulation based on real data collected in-situ from de-
ployed systems is the most practical method for conduct-
ing realistic, fair, and reproducible comparisons between
different approaches. Our simulator can take mobility
and harvested energy traces from a variety of sources, in-
cluding traces from our TurtleNet deployment and from
UMass DieselNet [6].

The simulator periodically executes the Tula CSP and
performs sensing and routing based on the rates set by the
CSP. The simulator simulates connection opportunities
according to the mobility traces. Nodes exchange sensed
data as well as meta information during a connection op-
portunity. Sensed data is routed based on the RapidLite
algorithm. The simulator assigns energy to each node
according to the harvest energy trace. A node accounts
for energy consumption due to processing, sensing and
communication using measurements obtained from our
implementation.

The traces, simulator and the NesC source code will
be made available at publication time.
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Figure 10: Comparison of three static allocation policies, Tula and Optimal. The policies are compared across three
metrics: battery dead time, energy wasted since the battery was full and could not charge, and average delivery rate.
Tula avoids dead time and wasted energy successfully, and delivers within 8% of the oracle-based optimal policy.
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Figure 11: Comparison of two semi-adaptive allocation polices, Tula and Optimal. The comparison is performed for
different sensor applications with varying sensing to routing ratio.

7 Evaluation

Tula adapts sensing and routing rates to provide max-min
fairness in the network. We compare the performance of
Tula with three different kinds of approaches: (i) Opti-
mal, An optimal adaptive policy that is based on an ora-
cle (ii) Static policies that set static sensing and routing
rates, and (iii) Semi-adaptive policies that either adapt
their sensing rate or routing rate, but not both. Our eval-
uation compares these policies in terms of network per-
formance, energy management, and fairness.

7.1 Methodology
We evaluate Tula and alternate policies using the trace-
based simulator described in the pervious section. In the

Sensor Sense/Send ratio
GPS(Max) 2.0×104

GPS(Avg) 5.0×103

GPS(Min) 5.0×103

Accel. (ADXL330) 6.5×10−3

Mag.(HMC1053) 7.2×10−1

Table 3: Energy to sense vs. send for common sensors

simulations each node has 512kB of storage, a 250mAhr
battery, and the Tula allocator is run every 2 hours.
To evaluate alternate allocation policies, we replace the
Tula CSP with an allocator that enforces a static, semi-
adaptive or optimal allocation policy.
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Simulated nodes can be configured to use a variety of
sensors. Table 3 shows the ratio of sensing and sending
cost of three different sensors: GPS, Accelerometer and
Magnetometer.

7.1.1 Trace collection

We conduct the trace-based simulations using three
traces: TurtleNet, DieselNet and a synthetic mesh trace.
The TurtleNet traces includes 45 days of data from 17
tracking devices deployed over Gopher tortoises. The
data contains measured solar energy, connection oppor-
tunities and the bandwidth available during a connection
opportunity. The DieselNet traces are publicly available
traces from the UMass DieselNet vehicular network[6]
collected from 20 mobile nodes for 55 days in 2008.

The DieselNet bus traces do not contain energy har-
vesting information, however, we combine historical so-
lar energy traces [1] with the DieselNet bus schedules
to estimate the energy harvested at each bus over time.
Note that this approach is reasonable only because buses
are either parked in the garage (e.g. no energy harvested)
or driving on open roads with a clear view of the sky.

Finally, in order to assess the applicability of Tula to
stable fixed networks, we also simulate a synthetic mesh
network configuration of 16 nodes arranged in a 4x4 grid
topology. We randomly assign energy traces from our
TurtleNet data to these mesh nodes.

7.1.2 Optimal rate allocation using an oracle

In order to determine the optimal max-min fair rate as-
signment, we formulate each experimental scenario as
a linear program, which can be solved using a general
purpose LP solver. Our LP formulation extends the ap-
proach used by Fan et al [13] and we have added support
for temporal changes in network connectivity, rate adap-
tation, and storage limitations, by breaking up the linear
program into discrete time segments.

The solver has complete knowledge of future energy
harvesting, and connectivity for each time segment. The
solution from the LP formulation is the maximum max-
min fair rate assignment which does not sacrifice node
lifetimes or data deliveries. Achieving this rate, in prac-
tice, is not feasible since it requires global knowledge of
the entire network; however, it provides a useful refer-
ence by which to measure system performance.

7.2 Network Performance
While Tula adaptively allocates energy for both sens-
ing and routing, there is a wide range of alternative ap-
proaches that could be employed. In this section, we
compare the performance of Tula with two classes of al-
location policies: Static and Semi adaptive.

7.2.1 Static rate allocation policies

A challenge in designing a static allocation policy is de-
termining what sensing rate should be assigned to the
nodes. Due to variation in energy harvesting, setting one
sensing rate across all nodes will result in some nodes
dying and other nodes having surplus energy. To con-
duct a fair comparison, we examine a range of behaviors.
First, using the oracle-based optimal allocator, we deter-
mine the optimal rate allocation for each node. In a real
deployment scenario rate assignments would have to be
made based on system designer’s best guess.

We examine the performance of three static rates: con-
servative, a rate that is sustainable by 90% of the nodes
in the network; the median rate, sustainable by 50% of
the nodes; and the mean rate, which can be achieved by
only 25% of the nodes. For this experiment, nodes are
configured to use the GPS sensor.

The results of this comparison are shown in Figure 10.
We compare the performance with respect to three met-
rics: aggregate dead time, total wasted energy, and deliv-
ery rate. The aggregate dead time is the total time that
nodes in the network have no energy. The total wasted
energy is the energy that could not be stored due to lim-
ited battery size, even when solar energy was available
for harvesting. Dead time is typically a result of over-
utilizing energy, while wasted energy is a result of under-
utilizing the available energy.

Using the conservative rate, nodes are dead only
97% of the time, however, on average nearly 500J of
energy—enough to collect nearly 200 sensor readings—
are wasted daily per node. The mean rate wastes much
less energy, but on average nodes are dead for 25% of the
time. The median rate provides an unsatisfying tradeoff
between the two extremes, resulting in mediocre perfor-
mance across all three metrics.

The results show that in a network with wide vari-
ations in energy availability and connectivity, a static
scheme will perform poorly, regardless of the rate that is
assigned. In contrast, by adapting per-node sensing rates,
Tula is able to completely avoid dead time and wasted en-
ergy, and resulting in 11% more data collected than using
the mean rate, and within 8% of the optimal result.

7.2.2 Semi-adaptive rate allocation policies

Next, we make a similar comparison with two alternate
adaptive policies—a policy that adapts only the routing
rate or only the sensing rates.

In the adaptive sensing policy, routing decisions are
made without any energy restrictions. However, the node
adapts its sensing rates according to the remaining en-
ergy. In contrast, in the adaptive routing policy, sensing
rates are fixed, and routing decisions are made adaptively

10



using the energy that remains after sensing. The adap-
tive routing policy requires a fixed sensing rate, and we
set the rate to the conservative rate described previously.
Recall that the conservative rate is a rate sustainable by
90% of the nodes. Setting the static rate to other values
results in similar or worse trade-offs.

Unlike the static allocation, the performance of par-
tially adaptive rate allocation depends on the sensor. For
example, if nodes only obtain accelerometer readings,
the sensing cost is low enough that adapting the sensing
rate does not provide benefits. Alternatively, if the sen-
sor application obtains GPS reading, adapting the sens-
ing rate is important to ensure that a node does not ex-
haust its battery. Accordingly, we compare the perfor-
mance of the different allocation policies for a range of
sensors with varying energy requirements (as shown in
Table 3).

Figure 11, illustrate the chief shortcoming of these
partially adaptive approaches—their ability to adapt to
changes is limited by the consumption of the static tasks.
As the energy for sensing increases (left of the graph), the
dead time when using adaptive routing policy increases
from 0 to 12%. On the other hand, when the energy for
sensing is low, more packets are sensed and are routed.
As a result, the average dead time of the adaptive sensing
policy increases to 10%.

Both the adaptive sensing and adaptive routing pol-
icy waste between 200 J to 600 J daily depending on
the policy and the sensor. In contrast, Tula optimizes
both sensing and routing and the policy incurs 0 dead
time and 0 wasted energy. In terms of delivery rate, Tula
collects on an average 30-50% more data than both the
semi-adaptive techniques.

7.2.3 Network performance over DieselNet and
Mesh

Figure 12 shows the delivery rates achieved by Tula for
three different network configurations. Tula achieves a
delivery rate of within 80% of the Optimal policy over
TurtleNet and DieselNet even without future knowledge
of the harvest energy or node meeting schedules.

On a static mesh network, Tula is able to sense and
deliver data within 95% of the Optimal policy for a range
of sensors, showing that Tula can adapt well to different
topologies. More importantly, in the absence of mobility,
the rate set by the Tula allocation policy converges close
to the optimal rate.

7.3 Fairness
The objective of the Tula allocation policy is to set rates
such that data is sensed and delivered to the sink at a
max-min fair rate. In this section, we evaluate the fair-
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Figure 12: Delivery rate of Tula normalized to the op-
timal delivery rate over three networks configurations:
TurtleNet, a static 4x4 grid mesh network, and the
DieselNet vehicular traces.
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Figure 16: Max-min fairness metric for the TurtleNet
traces. Normalized to the fairness metric achieved by
the optimal allocator.

ness of Tula using two metrics. First, we compare the
per-node delivery rate of Tula with Optimal. Recall that
the optimal oracle-based rate allocator is also designed
to set max-min fair rates.

Figures 13, 14 and 15 shows the per-node delivery
rate of Tula compared to optimal for the three network
configurations: TurtleNet, DieselNet and Mesh, respec-
tively. For all three networks, the per-node delivery rate
of Tula is close to the optimal per-node rate. For exam-
ple, in TurtleNet, nearly all of the nodes achieve a deliv-
ery rate within 75% of the optimal. Similar performance
is seen for both Mesh and DieselNet.

The second fairness metric is a more abstract metric—
the sum of the logs of the data collected and delivered by
each node. This metric is inspired by the Tula objective
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Figure 13: TurtleNet traces: Average
per-node delivery rate
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per-node delivery rate
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Figure 15: Mesh: Average per-node
delivery rate

Tula Costs
Operation Energy Time
Solve CSP 0.9− 2.3mJ 0.5− 1.35s

Compute Energy Budget 1.4− 1.8mJ 0.8− 1.0ms
Memory Overhead

RAM overhead 1524B
Additional code size 22kB

Table 4: Measurements of Tula overhead.

function (Eq. 5). Figure 13 we show the max-min fair-
ness metric (the sum of the logs) for a range of sensors
for the TurtleNet traces. As a point of comparison, we
also show the same fairness metric for static policy that
sets a conservative rate; i.e., the rate that is sustainable
by 90% of the nodes. As the max-min metric is a unit-
less measure, we have normalized the results to the met-
ric achieved by optimal. The figure shows that in terms
of the max-min fairness metric, the Tula allocator comes
close to the optimal allocator.

7.4 Overhead
Finally, we quantify the overhead of Tula using mea-
surements from our implementation. Energy is measured
using a NI-PCI 6251 DAQ, measuring the voltage drop
across a low-tolerance sense resistor. The measurements
are shown in Table 4.

Apart from the core sensing and networking tasks,
energy is incurred when periodically solving the Tula
CSP and computing the devices energy budget. How-
ever, both tasks only consume energy comparable to
sending 2-3 radio packets. In addition to energy costs,
our implementation of Tula requires 1.5kB of RAM and
22kB of additional program space in addition to the
space requirements of the Eon runtime system. These
size requirements are easily met by nearly all current
microcontroller-based platforms.

8 Related Work

Tula builds on a large body of previous work in several
fields: challenged networking, rate allocation and fair-
ness, mobile sensor networks, and adaptation. In many
ways this synthesis is too large to cover here, so we pro-
vide the most relevant work.

8.1 Mobile sensor deployments
Previous mobile sensor deployments have shared many
of the same goals as Tula. ZebraNet [33], for example,
initially explored the use of in-situ sensing devices for
wildlife tracking. These first devices were large (>1lb)
and masked energy variations with large batteries and so-
lar panels—too large for most animals to carry; however,
they set the stage for future mobile sensing systems, like
Tula.

Of course, mobile sensor systems are not limited to
wildlife tracking. The Pothole Patrol [11] project used
mobile sensors in vehicles to provide cities with valu-
able road-qualtiy information. Like most vehicle-based
networks, these devices receive power from the vehicles.

8.2 Low power sensor networks
Energy scarcity is a first class design concern for wireless
sensor networks. Low-power hardware platforms with
energy harvesting support [23, 19, 28] as well as algo-
rithms for estimating and predicting energy harvesting
and consumption [20, 10, 28] are crucial components of
all perpetual systems. Additionally, a variety of energy-
aware networking techniques have been proposed for use
with low-power sensors, including energy-aware cluster-
ing [32], aggregation, and traffic shaping to extend de-
vice lifetimes [27]. However, previous research on en-
ergy aware sensor networks has focused on static net-
work topologies that improve node lifetime, but do not
focus on perpetual operation.
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8.3 Challenged networks
A wealth of previous research has focused on build-
ing disruption tolerant networks with sparse connectiv-
ity. Research in this area has provided a range of pro-
tocols [29, 3, 24, 18], which opportunistically forward
and replicate packets to mobile peers. Most DTN solu-
tions have targeted vehicular [7] and personal device net-
works [17]. Whether tapping into a vehicle’s battery or
relying on user-facilitated recharges, previous solutions
assume a steady and unlimited energy supply, and ne-
glect the challenge of energy scarcity which is central to
any untethered system.

8.4 Fair network rate allocation
A variety of fairness policies have been proposed [5, 21],
along with many techniques for enforcing those policies
in wireless networks [31, 15, 34]. Of these approaches,
the most closely related work provides both centralized
and distributed algorithms for enforcing max-min fair-
ness in networks that have rechargeable sensors [13].
However, the authors assume that the routes in the net-
work are static, and that the energy profile of a node is
known in advance. Tula enforces max-min fairness in
networks with unpredictable network connectivity and
dynamically changing energy constraints.

A myriad of techniques aim at improving performance
and enabling new applications by providing additional
coordination across traditionally independent network
layers [30, 8], when legacy abstractions fail to meet the
needs of emerging systems and environments. Tula is
also a cross-layer approach providing a tight link be-
tween the application and network in order to address
the combined challenges of mobility, heterogeneity and
perpetual operation.

9 Future work

The model we have used for sensing and routing is
straightforward, each node streams raw data to a sink.
There are other models used by sensor network applica-
tions including aggregation [12] and querying [26]. In-
corporating these alternative models in Tula, requires the
system to estimate the effect that aggregation and query-
ing have on network load. In the case of querying, net-
work load and the flexibility with which Tula can adapt
would also depend on the nature of the query itself. Sup-
porting aggregation, would require the system to esti-
mate the amount of compression acheived by aggrega-
tion at each hop in the network. These problems are
much too intricate to cover in this paper, and we leave
these as future work.

10 Conclusions

In this paper, we present Tula a system which balances
sensing with packet delivery for energy harvesting mo-
bile sensor networks. Tula represents a first step in man-
aging the resources of constrained nodes, balancing sens-
ing and communication, while maintaining a cooperative
system for delivering data. Our evaluation of Tula, us-
ing data traces from our TurtleNet deployment, shows
that Tula collects and delivers data within 80% of an
optimal oracular policy. In addition, we have shown
that Tula successfully enforces a max-min fairness policy
and is suitable for use on low power sensing platforms.
As the scale and complexity of mobile sensing systems
increases, proven techniques for estimating, predicting,
and efficiently sharing network and energy resources will
continue to be an essential key to their success.
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