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Abstract
Cloud computing platforms allow application providers to
rent server capacity to run hosted applications and to dy-
namically vary the rented capacity to match demand. Today’s
cloud platforms offer a plethora of different server configura-
tions for rent and price them differently on a cost-per-core
basis. Furthermore, cloud platforms support different repli-
cation and migration mechanisms to support elastic provi-
sioning of servers. In this paper, we present Kingfisher a
cost-aware provisioning system for cloud applications that
can optimize either the rental cost for provisioning a certain
capacity or the transition cost of reconfiguring an applica-
tion’s current capacity. Our system exploits both replication
and migration to dynamically provision capacity and uses an
integer linear program formulation to optimize cost. We have
implemented a prototype of our Kingfisher cloud provision-
ing system and have evaluated its efficacy on a laboratory-
based private Xen cloud as well on the public Amazon EC2
cloud. Our experiments demonstrate the efficacy of King-
fisher in elastically provisioning servers within private and
public clouds that see varying application workloads. Our re-
sults demonstrate the ability of Kingfisher in reducing server
rental costs and reconfiguration overheads over prior cost-
oblivious approaches.

1 Introduction
Cloud computing has emerged as a new IT delivery model in
which an organization or individual can rent remote compute
and storage resources dynamically, using a credit card, to host
networked applications “in the cloud.” Fundamentally, cloud
computing enables application providers to allocate resources
purely on-demand – on an as-needed basis – and to adjust the
amount of resources to match workload demand. The appeal
of cloud computing lies in its usage-based pricing model – or-
ganizations only pay for the resources that are actually used,
and can flexibly increase or decrease the resource capacity
allocated to them at any time. This elasticity capability pro-
vided by Cloud computing can yield significant cost savings
when compared to the traditional approach of maintaining an
expensive IT infrastructure that is provisioned for peak usage

– organizations can instead simply rent capacity, and grow
and shrink it as the workload changes.

The IT consumption model in cloud environments enables
flexible and elastic provisioning; that is, it supports a vari-
ety of configurations and also provides mechanisms to add or
remove compute-capacity. This opens-up the opportunity to
efficiently manage ones resources, but, also brings new chal-
lenges for application providers. The two key ones being: (i)
given several available resource configurations for a particu-
lar workload, which one to choose, and (ii) how best to tran-
sition from one resource configuration to another to handle
changes in workload. The first decision arises from the avail-
ability of a number of server configurations, each with a dif-
ferent amount of virtual CPU cores, memory, and disk space
to satisfy the same resource requirements. This is compli-
cated by the fact that these server configurations are typically
not priced linearly with server capacity. For instance, a quad-
core server is not priced four times the price of four single-
core servers. As shown in Table 1, depending on the exact
configuration, the price per core of a server may be higher
or lower than the cost of a single-core system. The array of
available hardware configurations lead to a number of dif-
ferent ways to configure a typical multi-tier Web application
and a careful selection of final configuration can prove cost-
effective. Hence, application providers must take the cost into
account when determining a choice of the initial server con-
figuration for their applications. The application provider is
faced with the second decision when adding more server ca-
pacity to accommodate an increase in the application request
volume, for example. There is a similar array of choices in
determining the new resource configuration, as well as differ-
ent costs or overheads based on the mechanism used to make
the transition to the new target configuration.

In this paper, we present a new approach for dynamically
provisioning virtual server capacity that exploits cloud pric-
ing models and elasticity mechanisms to select resource con-
figurations and transition strategies that optimize the cost in-
curred by customers. Our paper makes the following contri-
butions:

Cost-aware provisioning. We present Kingfisher, a sys-
tem for cost-aware provisioning in the cloud that takes into
account the price differentials in the per-core cost of differ-
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ent server types to minimize the rental cost of provisioning a
certain capacity as well as the transition cost of reconfiguring
a deployed application when adding more capacity. We for-
mulate the provisioning problem as an integer linear program
(ILP) to account for both rental and transition cost for deriv-
ing appropriate elasticity decisions. Our ILP-based approach
integrates multiple mechanisms such as replication and mi-
gration into Kingfisher and computes both a cost-optimized
configuration for the desired capacity as well as plan for tran-
sitioning the application from its current setup to its new con-
figuration.

Prototype implementation and experimentation on
public and private clouds. We implement a prototype of our
Kingfisher cloud provisioning engine, using the OpenNeb-
ula cloud toolkit [10], that incorporates our optimizations,
and evaluate its efficacy on both a private laboratory-based
Xen cloud and the public Amazon EC2 cloud. Our results (i)
demonstrate the cost savings that can be realized using our ap-
proach over prior cost-oblivious provisioning approaches, (ii)
demonstrate the benefits of integrating multiple mechanisms
such as migration and replication into a unified approach, and
(iii) demonstrate how our transition-aware approach can be
employed to quickly provision capacity in scenarios where
an application workload surges unexpectedly.

While there has been significant research on dynamic ca-
pacity provisioning for data center applications, there are
three key differences between the prior work and capac-
ity provisioning in the cloud. First, some of prior work
on dynamic provisioning has been platform-centric, where
the approach attempts to maximize resource utilization from
the provider perspective by dynamically allocating a set of
servers across hosted applications with varying workload de-
mands (and attempting to statistically multiplex as many ap-
plications as possible on the platform). In contrast, the
problem articulated in this paper requires a customer-centric
view, where each customer (“application provider” ) individ-
ually optimizes their capacity usage by choosing the least-
cost server configuration that matches their needs. Platform-
centric approaches attempt to maximize revenue while meet-
ing an application’s SLA in the face of fluctuating workloads,
while a customer-centric approach attempts to minimize the
cost of renting servers while meeting the application’s SLA.

Second, the prior work on dynamic provisioning has not
been cost-aware. By being cost-oblivious, prior approaches
assume that so long as the desired capacity is allocated to
the application, the choice of exact hardware configuration is
immaterial. That is, the unit cost per core is assumed to be
identical, making a N -core system equivalent, from a provi-
sioning perspective, to a N systems with single cores. In the
cloud context, however, the choice of the configuration mat-
ters, since the pricing per core is not uniform. Thus, from a
pricing standpoint, a quad-core system is not the same as four
single-core systems, even though they may be roughly equiv-
alent from a capacity perspective. Hence, Kingfisher is de-
signed to be cost-aware, and takes the rental costs of servers

Table 1: Cloud server configurations and their prices. For
EC2, 1 ECU= 1.2 GHz Xeon or Optron circa 2007.

Amazon EC2 Cloud Platform
Server size Configuration Cost Cost

per
core

Small 1 ECU, 1.7GB RAM, 160GB disk $0.10 / hr $0.085
Large 4 ECUs, 7.5GB RAM, 850GB disk $0.4 / hr $0.34
Med-Fast 5 ECUs, 1.7GB RAM, 350GB disk $0.8 / hr $0.17
XLarge 8 ECUs, 15GB RAM, 1.7TB disk $0.2 / hr $0.0.68
XLarge-Fast 20 ECUs, 7GB RAM, 1.7TB disk $ 0.8 /hr $0.68

NS Cloud Platform
Small uni-core 2.8GHz, 1 GB RAM, 36GB disk $0.11 / hr $0.11
Medium dual 3.2 GHz, 2 GB RAM, 146GB disk $0.17 / hr $0.085
Large 4-core 2.0GHz, 4GB RAM, 250 GB disk $0.25 / hr $0.063
Jumbo 8 core 2.0GHz, 8GB RAM, 1TB disk $ 0.38 / hr $0.048
Fast 4 core 3.0 GHz, 4 GB RAM, 600GB disk $0.53 / hr $0.133

into account – by choosing the least cost configuration that
fulfills an application’s needs.

Third, much of the prior work on provisioning has em-
ployed replication as the primary means to increase an ap-
plication’s capacity. The application is assumed to be repli-
cable, and workload increases are handled by adding addi-
tional server instances to the application’s pool of servers.
An alternative method for capacity provisioning is to employ
migration, where an application and its data are migrated to
larger capacity server (e.g., a server with more cores) to han-
dle workload growth. As we will show in this paper, rely-
ing solely on replication or migration to provision capacity
is restrictive from cost-optimization standpoint. In order to
fully exploit the pricing differentials of different cloud server
configurations, Kingfisher considers both replication and mi-
gration when choosing the best method of transitioning the
application to its new configuration.

2 Problem Formulation
In this section, we present the system model assumed in our
work and formulate the problem of cost-aware provisioning
for the cloud that we address in this paper.

2.1 Cloud Platforms: System Model
Consider a cloud computing platform that offers compute
servers to run hosted applications. We assume that the plat-
form offers N heterogeneous server configurations for rent,
each with a different rental cost. The pricing of servers is
assumed to be arbitrary. Thus, the pricing can be convex,
where the cost per-core increases sub-linearly with the num-
ber of cores, or concave where more the cost of more capa-
ble servers increases super-linearly with the number of cores,
or arbitrary where some other pricing formula is employed,
causing some servers to be cheaper and others more expen-
sive on a per-core basis when compared to uni-core systems.
As noted in Table 1, both the EC2 cloud and the NewServer
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(NS) cloud platform employ a convex function for their most
popular choices (e.g., small, medium, large) and the pricing
model becomes arbitrary when the ’high-CPU’ or ’fast CPU’
configurations are taken into account.

Customers are assumed to be able to provision servers
using a self-service portal, allowing users to request and
terminate cloud servers without human intervention. The
cloud platform is assumed to have a virtually infinite pool of
servers, allows customers to request an arbitrary number of
servers for their applications; servers may be requested and
terminated at any time and billing is based on the amount of
time for which each servers was in use (e.g., based on the
number of hours for which each server was used).

We assume that the cloud platform employs
virtualization—each physical server is assumed to run a
hypervisor that control the allocation of physical resources
on the machine. One or more virtual machines may be
mapped on to each physical server, and the hypervisor is
used to allocate a certain number of CPU cores, memory
and disk to each VM. Thus, cloud platform allocates virtual
servers of different size to customers, where each virtual
server resembles a hardware configuration used in the pricing
model.

Because the cloud platform is virtualized, it offers the abil-
ity to flexibly provision capacity/resources to a customers.
This may be achieved in a number of different ways. In the
simplest case, an existing virtual server may be resized by
increasing (or decreasing) the number of CPU cores and/or
memory allocated to it. This can be done on-the-fly by sim-
ply modifying the resource allocation of the VM in the un-
derlying hypervisor. Instead of resizing locally on the current
server, it is also possible to migrate an existing VM to a larger
physical server and allocate it more resources on the new
server. Depending on the cloud platform, such migration-
based resizing can done in a live fashion, while the appli-
cation is running, or by shutting down the VM, copying the
disk state to the new server, and starting it up there. The cus-
tomer can also provision additional capacity by starting up
new virtual servers and replicating the application on these
new servers. In our work, we assume that the customer is
free to use any provisioning mechanism — resizing, migra-
tion or replication — that is exposed by the underlying cloud
platform. We note that a cloud platform may only expose
a subset of these mechanisms (e.g., the EC2 cloud does not
presently support live migration) and our approach must take
these constraints into account when provisioning resources on
behalf of the customer.

2.2 Problem Statement
We are broadly concerned with the problem of a customer
who wishes to deploy an application onto cloud servers and
vary the capacity allocated to the application to match its
workload demand. Unlike some statistical multiplexing ap-
proaches that perform application placement and dynamic re-
source provisioning to maximize revenue for the platform,

we take a customer-focused cost minimization view of the
problem. Thus, given certain cloud server configurations and
prices, our approach must choose, on behalf of the customer,
the least-cost configuration that provisions sufficient capacity
to satisfy the application’s workload and SLA needs.

We assume that an application is distributed with k inter-
acting components. A multi-tier web application is the most
common example of such an architecture. Components may
or may not be replicable. If a component is replicable, then
the capacity allocated to that component can be varied either
by migrating that component to a larger (or smaller) server
or by dynamically starting up additional replicas of that com-
ponent on new server. If a component is not replicable, then
its capacity can be varied only by resorting to local resizing
or migration to a different hardware configuration. In multi-
tier web applications, for instance, the front tiers are often
replicable, while the back-end database tier is not; thus either
replication or migration can be used to provision capacity to
front tiers, while only migration/resizing can be used for the
back-end database.

Given these assumptions, the provisioning problem can be
stated as follows.

Initial Deployment: Assume an application with k inde-
pendent components/tiers. Let λ denote the maximum incom-
ing workload for which capacity needs to be provisioned at
each tier. Assume that this peak incoming workload of λ re-
quest/s imposes a workload of λ1, λ2, . . . λk request/s at each
tier i.1 Then, the initial deployment problem is one of deter-
mining how many cloud servers to provision for each tier and
of what type such that the rental cost is minimized and a peak
workload of λi can be sustained at each tier while meeting
per-tier response time SLAs.

Since the desired capacity can be satisfied using multiple
hardware configurations (e.g., by picking 8 uni-core servers,
4 dual-core or two quad-cores—all of which provision 8 cores
for a tier), the goal is to choose the cheapest configuration
that meets the needs of each tier. Thus, the pricing model
for different cloud servers will drive the choices made by the
provisioning approach.

Subsequent provisioning: Once an application has been
deployed on the cloud, its workload demands may change
over time—due to incremental growth or sudden change
in popularity. In such cases, the application will need to
be reconfigured by dynamically increasing (or decreasing)
the capacity at each tier. The problem of subsequent re-
provisioning is one where, given a certain hardware config-
uration that is already in use, we must determine a new con-
figuration that specifies how many cloud servers and of what
types to use for each tier to sustain workloads of λ′1, λ

′
2, ..λ

′
k.

Furthermore, we must also specify a plan for morphing each
tier from its current configuration to the new configuration

1In the simplest case where each incoming request triggers a single re-
quest at each tier, λ1 = λ2 = λk = λ. However, this need not be the case,
for instance if caching is employed at tiers, or when a request triggers multi-
ple requests at a downstream tier (e.g., database queries). For generality, we
assume that λi’s can be different.
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using mechanisms such as resizing, migration or replication.
We are interested in minimizing two types of costs: (i) the
rental cost of the servers, and (ii) the transition cost, defined
as the latency, to move the current to the new configuration.

Depending on the scenario, a customer may be interested
in optimizing the rental cost, the transition cost or some com-
bination of the two. For instance, steady growth in work-
load volume can be handled by computing a new configu-
ration that minimizes the rental cost of servers. In contrast,
a sudden surge in workload—caused by a flash crowd—will
require additional capacity to be brought online as quickly as
possible. In this scenario, it is more important to reduce the
latency to bring additional capacity online even if it implies
choosing a configuration that incurs a somewhat higher rental
cost. Such a transition cost aware approach must consider dif-
ferent configurations that offer the same capacities and pick
the one that offers the fastest migration path.

3 Cost-aware Provisioning In the
Cloud

Any dynamic provisioning algorithm involves three steps: (i)
determining when to invoke the provisioning algorithm, (ii)
determining how much capacity to provision, and (iii) deter-
mining how to choose a configuration that minimizes rental
or transition cost. We discuss each issue in turn.

When to provision? The provisioning algorithm can be
triggered in a proactive or a reactive manner. A proac-
tive approach uses workload forecasting techniques to deter-
mine when the future workload will exceed currently provi-
sioned capacity and invokes the algorithm to allocate addi-
tional servers before this capacity is exceeded . In contrast
a reactive approach uses thresholds on resource utilization or
on SLA violations to trigger the need for additional capacity.
The issue of proactive or reactive invocation is orthogonal to
that of cost-aware provisioning, and hence, we choose a sim-
ple threshold-driven reactive approach in this paper.

How much to Provision? The problem of how much ca-
pacity to provision involves estimating how much peak work-
load will be seen by the application in the future. Workload
forecasting techniques can be employed to derive these esti-
mates. Specifically, the rate of workload growth over time can
be used to estimate the overall workload volume that will be
seen in the future. In this paper, we employ a simple ARIMA
time-series predictor to capture workload trends and estimate
the future workload; however, any workload forecasting tech-
nique is compatible with our provisioning approach that we
present next.

3.1 Rental Cost-aware Provisioning

Given the estimated peak workload λ1, λ2, λk that must be
sustained at each tier, the goal of our approach is to compute
which type of cloud server to use and how many at each tier

so as to minimize rental cost; the provisioned servers must
have the collective capacity to service at least λi request/s at
tier i while meeting the tier’s response time SLAs.

Our cost-aware provisioning algorithm involves two steps:
(1) for each type of cloud server, compute the maximum re-
quest rate that the server can service at a tier, and (2) given
these server capacities, compute a least-cost combination of
servers that have an aggregate capacity of at least λi.

Step 1. Determining Server Capacities. For each server
configuration supported by the cloud platform (e.g., small,
medium, large), we must first determine the maximum re-
quest rate that each configuration can sustain for this appli-
cation. This information is used in the subsequent step by
our provisioning algorithm to determine how many servers
of a particular type will needed to service the peak workload
λi. Clearly, the maximum request rate (i.e., the server capac-
ity) depends on the nature of the application and its work-
load mix. While faster processors and/or more cores allow a
server to service higher request rates, the increase in capac-
ity is not linear with the number of cores or processor speed.
For example, a server with four cores will typically not be
able to service four times the requests serviced by a single
core system. This non linear scaling occurs due to software
artifacts (e.g., threading, locking, configuration thresholds)
in the application and also due to I/O activity. Further dif-
ferences in the processor families across server configuration
can also yield non-linear increases in capacity. For example,
the small, medium and large server configurations depicted in
Table 1 all have different processor speeds, and consequently,
will not scale linearly with the number of cores.

There are two possible approaches for estimating the max-
imum workload that can be serviced by a particular server
type: queuing-based and empirical. In the queuing approach,
a server is modeled as a queuing system (e.g., a G/G/1 sys-
tem) and queuing theoretic results are used to derive a rela-
tionship between the request rate, service times of requests,
and the response time SLA. For instance, for a G/G/1 single
core server, the Kingman’s approximation [9] yields such a

relationship ( C <
[
s̄ + σa

2+σs
2

2(r/3−s̄)

]−1

), where C denotes the
maximum request rate, s̄ denotes the mean service time of
a request; σ2

a and σ2
s denote the variance in the inter-arrival

times and the service time, and r denotes the desired response
time SLA of the tier. The advantage of this approach is that
the capacities for different server types can be derived by
measuring some simple workload characteristics. The limi-
tation though is that queuing theory can not account for soft-
ware artifacts that limit the application capacity from scaling
with the number of cores, causing the queuing-based model
to overestimate the capacity of multi-core systems.

To overcome this drawback, we employ an alternate em-
pirical approach that estimates server capacity by actually
running the application on different hardware configurations
and subjecting them to a gradually increasing synthetic work-
load and determining the point where the server saturates (and
begins violating SLAs or dropping requests). Such an empir-
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ical approach is more accurate since capacities are computed
using actual measurements on real hardware and can account
for software artifacts since the actual application behavior is
used when estimating capacities. The approach, however, re-
quires an application provider to carefully set up and profile
the application on various hardware configurations supported
by the cloud platform, and such profiling is more involved
that the simple measurements required by the queuing ap-
proach. We note, however, that a system such as JustRunIt
[17] that can clone virtual machines and run the cloned appli-
cation on a sandboxed server can be exploited to reduce the
overheads of such an empirical approach.

Once the maximum request rates of the various servers
supported by the cloud platform have been determined, this
information is subsequently used by the provisioning algo-
rithm when determine how many servers of each type are
needed for the application.

Step 2. Determining Server Configurations.
Consider a cloud platform with M different types servers

(e.g., small, medium, large). Let Ci and pi denote that ca-
pacity (maximum request rate) and the rental cost of server
type i. Let λ denote the peak workload request rate for which
capacity needs to be provisioned at a tier. Then the problem
of rental cost-aware provisioning is stated as

minimize
M∑
i=1

nipi s.t.

M∑
i=1

niCi ≥ λ (1)

where ni denotes the number of servers of each type that
is chosen. The goal of our approach is to determine
(n1, n2, . . . , nM ) — which tells the application provider how
many servers of each type should be chosen for the applica-
tion tier.

Before presenting our provisioning algorithm, we present
the intuition for how the rental cost can be minimized. We
note that there are many different ways to provision for the
desired capacity λ. For example, if the application scaled
perfectly with cores, and if we wanted to provision 8 cores,
we could do so by using 8 uni-core (small) servers, 4 dual-
core (medium), 2 quad-core (large), or one oct-core (jumbo)
server. While all of these configurations are identical in
terms of capacity, the cost of renting these servers is different;
hence, the cost-optimal solution is to choose the server type
that yields that highest capacity per unit rental cost. Since
cloud providers have currently priced their offering using a
convex pricing function—where the cost per core falls for
larger systems—the cheapest solution in this simple example
is to pick an oct-core system.

In the more general case, applications don’t scale linearly
with capacity, and the pricing model can be arbitrary. We
have assumed that Ci is the empirically measured capacity of
server type i and pi is its rental cost. The ratio Ci

pi
yields the

capacity per unit rental cost for server type i— larger ratios
indicate that the server yields a higher capacity for a lower
rental cost. Thus, a cost-aware provisioning approach should
prefer server configurations with the highest Ci

pi
values.

A simple greedy approach then is to order cloud servers
by their Ci

pi
ratios, and then choose as many servers with the

highest Ci

pi
as possible and then provision in the “residual” ca-

pacity with the next best server with a capacity that is at least
equal to the residual capacity and so on. To illustrate, sup-
pose the cloud platform supported quad-, dual- and uni-core
systems and used a convex pricing model such as indicated in
Table 1. If we then wanted to provision 7 cores for an appli-
cation, the approach would first pick a quad-core system, and
use one dual and one uni-core system to fill the residual ca-
pacity, yielding 7 cores in total. This is the basic intuition be-
hind our approach. We note, however, that this simple greedy
approach is not optimal. For example, in the above example,
it is cheaper (and optimal) to pick two quad-core servers, a
solution that over-provisions by one core but is still cheaper
than renting one quad, one dual and one uni-core server.

Our cost-aware algorithm uses an integer linear program
(ILP) that uses the above Ci

pi
intuition when computing a so-

lution. The ILP formulation can consider alternatives, in ad-
dition to those chosen by the above greedy approach, when
determining a solution, and thereby account for scenarios
such as those in the above example (where over-provisioning
slightly yields a cheaper solution).

ILP: Our cost-aware provisioning problem can be stated
using the following integer linear program (ILP). Let M de-
note the number of server types supported by the cloud plat-
form; Let pi denote the rental cost for server type i and let
Ci denotes its maximum capacity. Let λ denote the peak
workload for which the application needs to be provisioned,
and let N denote the maximum number of servers that could
be needed to satisfy λ (any large number can be chosen as
N). Let T denote the number of the provisioning mechanisms
supported by the platforms (e.g., replication, migration, resiz-
ing). Then the objective function for minimizing rental cost
is

min
N∑

i=1

M∑
j=1

T∑
k=1

p(j)xijk (2)

subject to the constraints

N∑
i=1

M∑
j=1

T∑
k=1

xijkCj ≥ λ (3)

M∑
j=1

T∑
k=1

xijk = 1,∀i (4)

T∑
k=1

xijk = 1,∀i, j (5)

The terms xijk is an integer variable in the ILP that can take
values of of 0 or 1; A value of 1 indicates that server type i
is transformed into server type j using a provisioning mecha-
nism k (e.g., replicate or migrate); a value of 0 indicates that
that option was not chosen by the ILP. The output of the ILP
is set of values xijk that denotes which server types are cho-
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sen and also specifies a plan for transitioning from the cur-
rent configuration i to the new server type j using method k
(replicate. migrate etc). If this the first time the application
is being deployed onto the cloud, the current configuration
is empty; for subsequent (re)provisioning, the plan specifies
how the current configuration is to be morphed into the new
configuration (e.g., using replication, migration etc).

Since ILP is a NP-hard problem, we use the “standard ap-
proach” of approximating it as a linear program and solving
the resulting LP using a linear programming library. A linear
program will yield non-integral values of xijk, which we then
round up or down to the closest integer (here 0 or 1), while
satisfying the ILP constraints in Eq. 4 and 5.

3.2 Transition Cost-aware Provisioning
Our rental cost-aware provisioning algorithm computes both
a new configuration for the application as well as a plan to
transition the application from its current to the new configu-
ration. A certain latency will be incurred for this transition—
due to the large amounts of data that must be copied during a
replication or a migration. Depending on the size of the appli-
cation’s disk and/or memory state, such transitions can take
on the order of tens of seconds to tens of minutes. In many
cases, this latency is tolerable if the transition to a higher ca-
pacity configuration is implemented during a planned main-
tenance down-time for the application. However, there can
be scenarios where this transition latency incurred to move
the application to the new configuration is important, espe-
cially when additional capacity needs to be added to the ap-
plication quickly. The application provider may even be will-
ing to pay a higher rental cost if the transition latency can be
minimized—by choosing a configuration that minimizes the
transition latency rather than the rental cost.

Our transition cost-aware provisioning method is designed
to address such a scenario. The goal is to determine a config-
uration that can service the workload surge and to transition
to that configuration as quickly as possible. Thus a configu-
ration that has the least transition latency rather than the least
rental cost must be computed.

To do so, our provisioning approach must be able to esti-
mate the latency of using different provisioning mechanisms,
such as replication, migration and resizing. By taking into
account the latency of such mechanisms, a configuration that
minimizes such overheads is chosen (e.g., if it is faster to live
migrate a particular application than to start a new replica,
then configuration that involves migration from the existing
setup is chosen). The overhead of these mechanisms can be
estimated as follows:
Local resizing: Local resizing involves using the hypervisor
API on a machine to modify the resource allocation of a vir-
tual machine (e.g., to give it more RAM or to allocate it ad-
ditional cores or CPU shares). Since this is akin to using OS
system calls to modify resource allocations, this can be done
efficiently with minimal overheads (the latency is on the or-
der of tens of milliseconds). Hence, local resizing is always

the most desirable option to scale a VM’s capacity. However,
since the physical server may lack sufficient idle capacity to
permit such resizing, the algorithm must frequently resort to
other options.

Replication: Starting up a new instance (replica) of an
application tier involves copying the machine image of the
OS/application from central storage to the disk on the new
server, starting up the OS and the application replica, and
reconfiguring the application to make it aware of the new
replica. The latency of these operations is dominated by the
overhead of copying the disk image, which can be several
gigabytes in size, to the local disk of the new server. The
latency can be estimated as D

r + b, where D is the size of
the disk image, r is the network bandwidth available for the
copy operation and b is a constant representing the OS and
application startup time.

Live migration: Live migration of a virtual machine from
one server to another involves copying the memory state of
the VM to the new server while the application is running
(memory pages that are dirtied during the copy phase are iter-
atively resent). Typically live migration mechanisms assume
that the disk state of the VM is maintained on a shared file
system and need not be copied. Hence, the latency of the live
migration is w · R

r , where R is the size of the VM’s RAM,
r is the network bandwidth available for the copy operation,
and w is a constant that captures the mean number of times a
memory page is (re)sent over the network (due to dirtying of
pages during the migration process).

Shutdown-migrate. While live migration is a implemented
in most popular hypervisors such as Xen and VMware, some
public clouds such as Amazon’s EC2 do not currently expose
this option (private clouds such as those constructed using
Eucalyptus and OpenNebula do support live migration, how-
ever). Migration can be “simulated” in a public cloud by sus-
pending the application, converting its disk state into a new
machine image, copying the machine image to a new server
and restarting the image on the new machine. Unlike live
migration, such an approach only migrates the disk state of
an application and does not migrate memory state; it also in-
curs an application down-time. However, it does enable an
application to be moved to a larger system with its disk state
intact. Since the disk state may need to be copied twice, once
to construct a new machine image and then to copy the ma-
chine image to the new server2, the latency of this approach
is 2D

r + b.
From the above discussion, it is clear that, except for lo-

cal resizing, the latency of a transition mechanism is directly
proportional to either the disk state or the memory state of
the virtual server. The transition-aware approach attempts to
minimize this overhead by preferring mechanisms that incur
the lower data copying overheads (and hence, lower laten-
cies). Like before, the optimization problem can be formu-

2In Amazon’s EC2, the disk state must be uploaded to its S3 storage
system as a machine image and then copied over to the new server, resulting
in two copy operations
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Figure 1: Architecture of our Kingfisher prototype

lated as an integer linear program. The ILP is identical to the
previous one except for the optimization criteria which must
minimize the transition cost rather than rental cost, and can
be stated as follows:

min
N∑

i=1

M∑
j=1

T∑
k=1

mijkxijk (6)

subject to the same constraints as before. Here mijk be the
cost of transforming server-i to server-j using mechanism k.
This cost is estimated using the above equations that capture
the overhead of replication, live migration etc. Like before,
xijk are integer variable of the ILP that take values zero or
one, and indicate whether the final solution will employ tech-
nique k to transition server i to server j.

4 Kingfisher Implementation
We have implemented a prototype of the Kingfisher cloud
provisioning system that allows each application provider
(i.e., customer) to independently optimize their provision-
ing objectives (e.g., optimize either rental or transition cost
while provisioning sufficient capacity for the application).
Kingfisher’s application-centric provisioning engine inter-
faces with a cloud management platform that manages the
cloud environment with support for VM deployment, basic
image management, etc. In this work, we used a modified
version of the OpenNebula toolkit to implement Kingfisher’s
cloud management platform. We use OpenNebula to de-
ploy/undeploy VMs on/from a set of servers (private-cloud),
or create/terminate instances on Amazon’s EC2. We use the
XML-RPC APIs exposed by OpenNebula deploy, terminate,
or reconfigure servers allocated to an application.

The architecture of Kingfisher and its relationship to the
cloud orchestration framework is shown in Figure 1. Our sys-
tem consists of following key components:

Monitoring engine: Since OpenNebula does not imple-
ment any sophisticated monitoring capabilities, the King-
fisher architecture includes a monitoring engine to track both
application-level workloads and system-level resource usage
for virtual machines and physical servers. Our monitoring
engine is implemented based on the Ganglia [7] monitoring
system. Ganglia consists of a server component (gmetad) that
aggregates monitoring statistics from various machines, and

a reporting agent (gmond) which runs inside each virtual ma-
chine. By default, Ganglia monitors only system-level met-
rics such as CPU, disk, memory and network usage. We en-
hanced ganglia to also monitor application workloads by en-
hancing the reporting agent to track application logs in real-
time, and report statistics such as number of requests serviced
and their service times seen over a reporting period (currently
every 15s in our system). Each VM image is pre-configured
with the reporting agent; thus, when new virtual machines are
dynamically deployed, the Ganglia server automatically rec-
ognizes new servers and begins to monitor them without the
need for any additional configuration.

Ganglia stores monitored statistics in a custom round-
robin database (RRD); our monitoring engine can track re-
source usage and application workload statistics by period-
ically querying this database and determining whether any
user-specified thresholds have been exceeded (e.g., thresh-
olds on SLA violations, request drops, or resource utiliza-
tion). Finally, in scenarios where the cloud platform provides
monitoring capabilities (e.g., Amazon EC2 CloudWatch),
our monitoring engine can directly query the cloud platform
APIs, rather than Ganglia databases, to obtain these metrics.

Workload Forecasting: The workload forecasting compo-
nent in Kingfisher uses the workload statistics gathered by the
monitoring engine to derive estimates of future workloads.
We use the open-source R statistical package to implement
workload forecasting. More specifically, we extract a time-
series of prior workload observations from the monitoring
engine and model it as a ARIMA time-series. We use the
ARIMA forecasting libraries in Rto predict the future peak
workload. The forecasted workload allows Kingfisher to plan
a transition to a new configuration when it detects that the ca-
pacity of the current configuration may be exceeded. In our
experiments (in Section 5), we focus on evaluating the cost
benefits of Kingfisher, hence we assume a perfectly accurate
forecaster.

Capacity planner: The capacity planner is the heart of
Kingfisher’s provisioning engine. It implements our ILP-
based algorithm for optimizing the server rental cost for an
application or the transition cost of moving to a new configu-
ration. We employ an lpsolve, an open-source LP solver that
is invoked via a JNI interface from Kingfisher.

Our ILP-based planner requires several pieces of input be-
fore it can begin computing cost-optimized configuration for
an applications. First, the various types of servers supported
by the cloud platform and their rental prices need to be spec-
ified. Second, all provisioning mechanisms supported by the
cloud platform (e.g., migration, replication etc) must be spec-
ified, and a model for estimating the cost/overhead of each
mechanism must also be specified. Finally, the empirically
derived application capacities for each server hardware type
must be specified.

Given these configuration parameters, Kingfisher’s plan-
ner can be invoked by specifying (i) the tier-specific peak re-
quest rate λ for which capacity must be provisioned, (ii) the
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current configuration for the application, which can be empty
if this is the initial deployment of the application, and (iii)
the optimization objective, which can be rental cost or tran-
sition cost. The planner then uses lpsolve to solve the LP
approximation of our ILP, and uses a heuristic to convert the
LP solution into an integer solution. Recall from the previ-
ous section, the solution specifies both a new configuration of
servers for the application and a transition plan for transform-
ing the current configuration to the new one.

Orchestration engine: Once an initial or new configuration
has been computed, Kingfisher’s orchestration engine instan-
tiates the configuration using the transition plan. This com-
ponent uses the interfaces exposed by the cloud management
platform to resize VMs, startup new instances, or migrate ex-
isting VMs. The orchestration engine merely specifies the
server type to use (e.g., small, medium, large) for each con-
figuration step, and leaves the problem of placement of these
VMs onto physical servers to the cloud manager. Thus, the
management platform (OpenNebula or EC2) is assumed to
track which physical servers are available to create a VM of
the desired type for the application.

Live migration is implemented by simply initiating a mi-
gration to a new server type. For replication, the machine
image is specified and a deployment request for a new server
type is made. Shutdown-and-migrate involves shutting down
the application, capturing a new machine image using the cur-
rent disk state, and then specifying this machine image along
with the request for a new server type.

5 Experimental Evaluation

In this section, we evaluate the efficacy of Kingfisher on a pri-
vate as well as a public cloud. For the private cloud, we use a
laboratory-based cloud system built on virtualized Xen/linux-
based cluster, while our evaluation on the public cloud uses
Amazon’s EC2.

We use the java implementation of TPCW [12] for our ex-
periments. TPC-W is a multi-tier web benchmark that repre-
sents an e-commerce web application comprising of a Tomcat
application tier and a mysql database tier. The workload used
to trigger the provisioning the algorithm was browsing mix
of the TPC-W specification; that was generated using TPC-
W clients.

5.1 Evaluation on a Private Cloud

Our private cloud platform is built on two types of servers: 8-
core 2GHz AMD Opteron 2350 servers and 4-core 2.4 GHz
Intel Xeon X3220 systems. All machines run Xen 3.3 and
Linux 2.6.18 (64bit kernel). Our platform is assumed to sup-
port small and large servers, comprising 1, 2 and 4 cores, re-
spectively. These are constructed by deploying a Xen VM on
the above servers and dedicating the corresponding number
of cores the VM (by pinning the VM’s VCPUs to the cores).

We created a virtual applicance of TPC-W on Centos 5.2.
We have used a modified version Tomcat-5.5.27 as the servlet
container and mysql-5.0.45 as the backend database-server;
our modified Tomcat server logs the service time of each re-
quest, in addition to other default per-request statistics. We
also created a dispatcher appliance using the HAProxy load
balancer; the dispatcher is used to distribute and load balance
across all TPC-W replicas.

5.1.1 Profiling Server Capacities

Earlier, we have argued that real-world applications will not
scale linearly with the number of cores due to software arti-
facts and differences in processor hardware across different
systems. For instance, an application will see different ca-
pacities due to differences in the processor clock frequencies,
hardware caches sizes, or even the RAM on machines. Such
hardware heterogeneity is common since most large clouds,
including ones such as EC2, employ multiple hardware server
configurations. Even with identical hardware, software arti-
facts often prevent linear scale-up with number of cores. To
deal with this heterogeneity when making provisioning deci-
sions, Kingfisher resorts to empirical profiling to determine
the application’s capacity on each server type.

To demonstrate these effects, we configured TPC-W with
both tiers in a single VM, and ran this VM on 1, 2 and 4
core systems; we refer to single-core system as “small” dual-
core as “medium” while the quad-core as “large”. In each
case, we gradually increased the workload seen by the TPC-
W application until the server saturated and began dropping
requests. Figure 2 plots the empirically derived capacities for
various multi-core configurations on our Intel and AMD sys-
tems. As shown, on private cloud, dual-core VMs on Xeon-
servers have a capcity 1.77 time of that of a single core, while
quad-core VMs have 1.8 times the capacity of a single-core
system, but with increased RAM it becomes 2.2 times. How-
ever in the case of AMD, the scaling is very different. As can
be seen, there are also differences between Intel and AMD
servers with the same number of cores.

In our subsequent experiments we have used only AMD
single and quad-core systems as s̈malländ l̈arge;̈ we assume
that these empirically derived capacity profiles are made
available to Kingfisher to aid its provisioning decisions.

5.1.2 Cost-aware versus Cost-oblivious Provisioning

Our first provisioning experiment compares our cost-aware
approach to a cost-oblivious approach (which ignores rental
costs when provisioning servers). Our baseline cost-oblivious
approach uses the same ILP formulation as Kingfisher but
with a linear cost model (where an n-core servers cost n times
as much as a single core system, effectively causing the ILP to
ignore rental costs). It is important to note that, for a fair com-
parison, our cost-oblivious approach does take our empiri-
cally derived capacity profiles into account. In contrast, King-
fisher’s cost-aware approach will account for both non-linear



University of Massachusetts, Technical Report UM-CS-2010-005 9

Figure 2: Non-linear scaling behavior of TPC-W on multi-
core servers

(a) large workload jumps

(b) small workload jumps

Figure 3: Cost-aware versus cost-oblivious provisioning

capacity scaling and pricing differentials across servers.
Since many prior provisioning cost-oblivious approaches

are based on replication as the primary means to increase ca-
pacity, we restrict both approaches to replication-based pro-
visioning. We denote these two approaches as CA-R (cost-
aware with replication) and CO-R (cost-oblivious with repli-
cation). For ease of exposition we have used only two types
of server-classes, namely small and large and used the NS-
cloud platform’s pricing model, mentioned in Table-1, for
the same. On our TPCW-application, we increase the re-
quest rate from 35 to 210 req/s in moderate steps, causing the
provisioning algorithm to be invoked each time. Figure 3(a)
depicts the servers configurations chosen by the CA-R and
CO-R approaches and the rental cost of each configuration.
As shown, the cost-oblivious approach chooses an increas-
ing number of small servers each time, while the cost-aware
approach chooses a combination of small and large servers,
resulting in a lower hourly rental cost (while provisioning the
same capacity).

Next we repeat the above experiment with a workload
that increases in small steps. As shown in Figure 3(b), both

approaches choose identical configurations—an increasing
number of small servers. Since the workload increases in
small steps, one extra small server suffices to service this
workload increase after each step, which is what both ap-
proaches choose. Further, we have (artificially) restricted our
cost-aware approach to use only replication. Consequently,
it is unable to consider replacing a set of small servers with
a cheaper quad-core server (which requires migration). This
experiment also motivates the need to use both replication and
migration to obtain optimal results.

5.1.3 Benefits of using migration and replication

(a) small workload increase

(b) large workload jumps

Figure 4: Benefits of using replication and migration in a uni-
fied provisioning approach.
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Figure 5: Application Performance during cost-aware and
cost-oblivious provisioning.

Next, we repeat the previous experiment, but allow both
approaches to use both migration and replication. By allow-
ing our approaches to use both mechanisms, our provisioning
algorithms are able to consider a larger set of feasible con-
figurations, which can yield higher savings in the rental cost.
As shown in Figure 4(a), even though the workload increases
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in small steps as before, our cost-aware approach now outper-
forms the cost-oblivious approach. This is because, it chooses
to use migration to transition one or more small servers to a
single large server, extracting the benefits of a low cost-per-
core pricing of quad-core servers. For a fair comparison, we
let the cost-oblivious approach use both migration and repli-
cation as well; consequently, unlike Figure 3(b), it chooses
occasionally chooses a large server as well; but its choices
are frequently more expensive than those of the cost-aware
approach.

Figure 4(b) compares the two approaches for scenario
where the workload increases in large steps. As shown, by us-
ing the best possible mechanism for each step (i.e., migration
or replication), the cost-aware approach is able to pick lower-
cost configurations. Figure 5 shows the workload on the TPC-
W application and the avrage response-time along the course
of its evolution. It should be observed that The transition-cost
aware system quickly achieves the desired configuration and
thus the response-times reduce early along the curve.

5.1.4 Transition cost-aware Provisioning

Our experiments thus far have focused on optimizing rental
cost and have ignored the overhead of transitioning the appli-
cation from one configuration to another. Kingfisher’s tran-
sition cost-aware provisioning approach is useful for quickly
provisioning capacity (e.g., in scenarios where the workload
surges suddenly); however, our approach may not necessarily
minimize rental costs since its focus is on quick, rather than
cheap, provisioning.

To demonstrate the benefits of our approach, we subjected
our TPCW web application to a workload that increased in
large steps, as depicted in Figure 6(a),6(b). As each step, we
invoked Kingfisher’s transition cost-aware provisioning and
compared the decisions made by this approach with its rental
cost-aware provisioning method (which ignores the transition
cost when making decisions, and is henceforth referred to as a
transition cost-oblivious approach). In this case, we assumed
a cloud platform with two servers small (S) and large (L),
with rental costs of $0.11 and $0.25 per hour, respectively (as
in Table-1).

Figure 7 depicts our results. Figure 7(a) and 7(b) plot
the configurations chosen by the transition cost-oblivious
and transition-cost-aware approaches and their correspond-
ing rental costs. Also shown are the actual latencies incurred
in our cloud platforms to complete the migration and repli-
cation steps. As shown in the figure, after the second work-
load increase, the cost-aware approach chooses a migration to
a large server, while the cost-oblivious servers starts up two
small replicas. The migration latency is only 7 seconds while
that for replication is an order of magnitude higher. The lower
latency, however, is achieved at the expense of a higher rental
cost ($0.5 versus $0.47 per hour). In the third step, the cost-
aware approach does not perform any reconfiguration, while
the cost oblivious approach performs migration. In this case,
the latency of the replicate operations is comparable, but we

note that the cost-oblivious approach incurs twice the data
copying cost (due to the need to copy the machine image to
two small servers), while the cost-aware approach reduces the
data copying cost, again at the expense of a somewhat higher
rental cost. It should be noted that since we have considered
only two types of servers, for ease of exposition, the result
shows a small benefit; our subsequent EC2 experiments con-
sider a larger number of server types, allowing for a larger
number of reconfiguration possibilities.

The response-times (request drops) seen by the two ap-
proaches are shown in Figure 6(a) and (b). Since the tran-
sition latency of a migrate operation is lower than that for
replication, the response time stays high for longer dura-
tion in the transition-cost-oblivious approach; the response
times are comparable in the first and third step since both ap-
proaches resort to replication in first step and in third step
live-migration is very quick.

Overall, the experiment demonstrates that copying of
memory state during a live migration incurs lower laten-
cies than copying of disk images during replication (typically
memory state is smaller than disk image sizes, and memory-
to-memory transfers are faster than disk-to-disk copying).
Hence, live migration may be preferred, whenever feasible,
to reduce transition costs. The experiment also demonstrates
that migration is not always feasible (e.g., if the application
is already on the largest possible server) and replication may
be needed in such cases (e.g., in the second step).
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Figure 6: Workload and Response Times of a transition-cost
aware system with a transition-cost oblivious system.

(a) Transition-cost oblivious (b) Transition-cost aware

Figure 7: Comparison of a transition-cost aware system with
a transition-cost oblivious system.

5.1.5 Impact of the Pricing Model

Prior experiments have assumed a convex pricing model
where the cost-per-core reduces with increasing number of
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cores in the system. Since our ILP can handle arbitrary pric-
ing models, we demonstrate how different pricing models can
impact the choice of the configuration.

We consider the TPC-W application and wish to deploy
it on a cloud platform with different initial capacities (the
desired capacity is varied from λ to 6λ). We assume that
the cloud supports three types of servers, small, medium and
large. First, we assume a convex pricing model, which re-
sembles the ones employed in today’s clouds. In this case,
larger servers have lower cost-per-core, causing our approach
to prefer medium and large servers over small ones, when
possible. Next, we employ a concave pricing model, where
the cost-per-core increases for larger systems. In this case,
since the small server has the cheapest price per code, our
cost-aware approach uses only small servers to provision ca-
pacity. Finally, we choose an arbitrary pricing model, where
the medium server is the cheaper, and the large server is the
next cheapest on a cost-per-core basis. This causes our ap-
proach to prefer medium servers when possible and occasion-
ally chooses some large server instances. For comparison, we
also show the results of the cost-oblivious approach, which
always chooses small servers regardless of the pricing model.

Provisioning Algorithm λ 3λ 4λ 5λ 6λ
Convex pricing model (S=0.11,M=0.15,L=0.25)

Cost Aware S 2M M,L 2L 4M
Cost Oblivious S 3S 4S 5S 6S

Concave pricing model (S=0.11,M=0.24,L=0.5)
Cost Aware S 3S 4S 5S 6S

Arbitrary pricing model (S=0.11,M=0.15,L=0.44)
Cost Aware S 2M S,2M 2S,2M 4M

Table 2: Provisioning with different pricing models

5.2 Evaluation on the Public EC2 Cloud
Amazon EC2 supports seven EC2-instance types [5], namely
small, large, xlarge, high-cpu-medium, high-cpu-xlarge,
high-mem-dxlarge, high-mem-qxlarge. We chose the first
five configurations / instance-type for our experiments. EC2-
instances can be created either from the instance-store or
from EBS-volume snapshots, where an EBS-volume is a per-
sistent storage which is charged at a rate of $0.1-perGB-
month. Amazon offers snapshoting capability on these EBS-
volumes; as mentioned, these snapshots can be used to cre-
ate new EC2-instances. Besides this, an EC2-instance cre-
ated using EBS-snapshots can be stopped and started into an-
other EC2-instance type (which is involves only the stopping
and starting-time). In order to test our provisioning system
we created a replica of our private cloud TPCW-images (of
size 10GB), both on the instance-store as well as on EBS-
volumes. We used HAProxy as a load balancer; we used a
dedicated high-cpu-medium instance as a load-balancer.

5.2.1 Profiling Server Capacity

Like in the private cloud, Kingfisher must profile TPC-W’s
performance on each server type before it can make provi-

Figure 8: Non-linear scaling behavior of TPC-W on EC2-
instances

sioning decisions. To do so, we chose first EC2 instance
types, namely small (m1.small), large (m1.large), xlarge
(m1.xlarge), high-cpu-medium (c1.medium) and high-cpu-
xlarge (c1.xlarge); these instances have 1, 4, 8, 5 and 20 EC2
compute units (ECUs), respectively. Like in private cloud,
we empirically estimated the capacity of each of these in-
stances and Figure 8 plots the derived capacities for various
EC2-instances. Our results show several interesting insights.
First, like in the private cloud, it shows that TPC-W scales
non-linearly with the number of ECU (logical cores). Sec-
ond, it also demonstrates that the performance is dependent
not only on the number of cores but also the RAM and I/O
performance on each server. For example, it shows that the
performance of a 8 ECU xlarge server is better than a 20
ECU/core high-cpu-xlarge server. This is because the former
has a larger amount of RAM (15GB versus 7GB), which ap-
pears to impact application performance more than the num-
ber of logical cores / ECUs [5]. A similar result is true for
the large and the Med-fast server type, where the latter has
one more logical core but the former has significantly more
RAM, giving it a performance edge.

As we will show next, Kingfisher is able to easily take
these capacity profiles, resulting from arbitrary hardware dif-
ferences, as well as the non-linear pricing model uses by
Amazon into account when making provisioning decisions.

5.2.2 Determining Transition Costs in EC2

Kingfisher’s transition-aware provisioning method needs to
accurately account for the overheads of different replication /
migration mechanisms available in EC2. We conducted a se-
quence of experiments to empirically determine these costs,
so that they can be fed into Kingfisher’s optimization algo-
rithm. We present a summary of these results below.

EC2 provides two mechanisms from starting up a new
new replica: (1) using an EBS-volume image or (2) using
the instance-store. Unlike our private cloud, which supports
live migration, the EC2 system supports only shutdown-and-
migrate on EBS-volume based instances, while on instance-
store based EC2-instances it only supports replication. Nev-
ertheless, it is possible to simulate a migrate operation for
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instance-store based instances (i.e. those created using in-
stance store) in two different ways. If the application does
not maintain any state on its local disk (e.g., if the persis-
tent state is stored on the S3 and on a separate EBS-volume,
which is mounted on EC2-instance during instance-creation
time), then we can emulate migration by starting a new in-
stance on a larger server (via replication) and simply shut-
ting down the old server and attaching the disk state to the
new server (called replicate-shutdown). In contrast, if the
state of the local disk needs to be migrated as well, then a
shutdown-copy-migrate operation can be performed, where
an application is shutdown, a machine image of its disk state
is created and uploaded to S3, and a new replica is started
with the machine image, which contains the old disk state; on
EBS-snapshot based instances, one can stop the instance and
restart it as a different EC2-instance; we call this as stop-and-
start operation.

We conducted experiments to quantify the overheads of
these operations. Table-3 depicts the latency to start-up an
instance. There are two mechanisms using with an EC2 in-
stance can be started, namely 1.) one using the instance-store
(i.e S3) 2.) using an EBS volume image. From our observa-
tions, the time to create an instance from and instance-store is
linearly proportional to the size of compressed image, how-
ever in the second case its nearly constant;

In order to capture the cost of each of the provisioning
operation, we break down the each operation into its com-
ponent steps and capture the cost of each of the component
steps. The cost of the composite step is nothing but the sum
of the cost of individual steps. The shutdown-copy-migrate
option, in a non-EBS volume instance involves following five
steps 1.) copy the complete disk-image 2.) compress it 3.)
uploading it onto S3 4.) register it as an AMI 5.) create an
instance using this new AMI. Table-3 shows the time taken
to complete each of these steps for different size-images. It
can be seen from the table that the the total time is linearly
varying with the size of compressed image. The procedure of
doing shutdown-copy-migrate on an EBS-volume based in-
stance has three steps: (i) take a snapshot of EBS-volume,
(ii) register an AMI using the snapshot, and (iii) create and
instance. We conducted two separate experiments for the
sake of convenience. Table-4 depicts the time it takes to take
a snapshot of volume which contains data which cannot be
compressed any-further. It can be approximately modeled as
a linear function of compressed image The time to take the
snapshot of an EBS volume can also be modeled as a linear
function of size of compressed image size. The time it takes
to boot an instance from EBS-snapshot is nearly constant; our
measured average value is 65 sec. The reason for this is that
EBS-service firstly copies the volume’s required-blocks, for
starting-up the image, and thus the machine boots quickly but
the rest of the disk is lazily copied over to the new volume.
The average instance registration time is 7 sec. The replicate-
shutdown option incurs a similar overhead as that of a pure
replicate operation. In our experiments we have used the time

to be 800 sec (since our instance gets compressed to 3GB).
Finally, the stop-and-start operation involves following

three steps 1.) stop the instance 2.) change its attributes 3.)
start the instance. We found that its a constant for an image
(irrespective of the instance-type). The mean overhead for
these steps is 65 sec.

Volume Size
(GB)

Compressed
Image (GB)

Snapshot upload
time(s)

boot time (s)

10 1.22 675 175 190
10 1.60 710 210 246.5
10 2.34 927 310 345
10 2.99 1160 314 407.1
10 3.08 1308 435 424
10 3.54 1466 490 494.3

Table 3: Time measurements of steps involved in shutdown-
copy-migrate operation

Volume Size
(GB)

Used Space Compressed
Image (GB)

Zone Snapshot
time

10 2 2 us-east-1a 491
10 4 4 us-east-1a 915
10 6 6 us-east-1a 2064
10 8 8 us-east-1b 2596

Table 4: Time Measurements of taking snapshot of an EBS
volume

Volume Size
(GB)

Used-up
space

Zone Startup Time
(s)

10 5 us-east-1a 82.7
10 6 us-east-1a 84
10 7 us-east-1a 82
10 8 us-east-1b 85.7
10 9 us-east-1a 88

Table 5: Time measurements of start-up time of an image
from EBS-volume

5.2.3 Rental- and Transition-cost aware Provisioning in
EC2

To evaluate the efficacy of Kingfisher in taking rental and
transition costs into account, we repeated a version of our
TPC-W experiment on the public EC2 cloud. We assume an
initial configuration of four small servers serving an initial
workload of λ = 35. The rental cost of servers is summa-
rized in Table-1) and transition cost is as discussed above.
Like before we varied the workload in steps and Table-6 de-
picts the configurations generated by the cost-oblivious and
Kingfisher’s cost-aware methods. Like before, the cost-aware
(CA-RM) method is able to provision the same capacities at
a lower rental cost.

Since these solutions do not account for the reconfigura-
tion/transition costs, we repeated this experiment for three fla-
vors of transition-aware provisioning that capture the real-life
constraints specific to EC2: (i) TA-RM-1, which only takes
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into account the number of transitions and cost of each tran-
sition and also the rental cost of final configuration; (ii) TA-
RM-2: that considers transition costs and final rental costs
for non-EBS instances in EC2, and (iii) TA-RM-3 that distin-
guishes between 32-bit small EC2 instances, and 64-bit larger
EC2 instances, and assumes that 32-bit and 64-bit applica-
tions are not mixed across the corresponding server types.

In order to compare CA-RM configurations with that of
TA-RM, we let Kingfisher choose the least transition-cost
scheme to achieve the final configuration suggested by CA-
RM. Initially, TA-RM-* chooses to perform only one mi-
gration stop-and-start as opposed to 2-migrations as chosen
by CA-RM; also notice that both the configurations have
the same dollar cost however CA-RM policy tries to maxi-
mize capacity, while TA-RM-* schemes minimize the num-
ber of reconfigurations. When the workload increases from
2λ to 3λ, the CA-RM method resort to replication, while
the TA-RM-* chooses the faster stop-and-start provisioning.
In the final step, CA-RM chooses to perform two replica-
tions, however, TA-RM-1 initiates two stop-and-start opera-
tions for faster provisioning. Since TA-RM-2 provisions non-
EBS instances TA-RM-2, it chooses the faster replication op-
tion (over the slower stop-and-start option). TA-RM-3, on the
other-hand, performs a stop-and-start migration from small to
medium instances and then initiates another replication.

Policy λ 2λ 3λ 6λ
CO-RM 4S(.34) S,L (.425) 2L (.68) 3L,2S (1.19)
CA-RM 4S (.34) 2M (.34) S,2M (.425) 4M,S (.765)

TA-RM-1 4S (.34) 2S,M (.34) S,2M (.425) XL,L,M (1.19)
TA-RM-2 4S (.34) 2S,M (.34) S,2M (.425) S,4M (0.765)
TA-RM-3 4S (.34) 2S,M (.34) S,2M (.425) 3M,L (0.85)

Table 6: Provisioning with different methods; here λ = 35

Figure-9(d) and Figure-9(c) depict the configurations cho-
sen by TA-RM-3 scheme and also the time to execute the
operation. Figure-9(a) and Figure-9(b) show the response-
times of the of the corresponding configurations, showing
how the configuration responds to the workload. The benifit
of transfer-cost aware system are apparent as it finished early.

6 Related Work
Our work focuses on optimizing the use of elasticity mecha-
nisms and is applicable in commercial cloud service offerings
(exemplified by Amazon EC2 and others) and cluster man-
agement systems such as OpenNebula or Eucalyptus. In par-
ticular, this study is the first work to propose cost-aware pro-
visioning in a cloud, along with algorithms to optimize how
additional mechanisms beyond replication can be leveraged
to support elasticity.

There is a significant amount of related work, however,
in the area of dynamic capacity provisioning in data centers,
grids, or compute clusters, starting with earlier work such
as [6] and [3]. Much of this work is platform-centric, while
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Figure 9: Comparison of a transition-cost aware system with
a transition-cost oblivious system.

our work considers a customer-centric view of provisioning
and resource optimization. Other work has considered migra-
tion as a means of dynamic provisioning [8], while we con-
sider replication with different types of migrations and assign
cost to each of them.

There is also an extensive body of work on dynamic pro-
visioning of web applications using analytic models [14, 11,
16, 18]. An online measurement approach to estimate capac-
ity model parameters was proposed in [2]. The approach em-
ploys a queueing model that partitions capacity of a shared
server among multiple hosted applications. Classical feed-
back control theory has also been used to model the bottle-
neck tier for providing performance guarantees for web ap-
plications [1, 15]. The approach in [15] formulates the appli-
cation tier server provisioning as a profit maximization prob-
lem and models application servers as M/G/1/PS queueing
systems. The work in [13] provides a model-driven approach
for adapting resources for a multi-tier application. Finally,
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machine learning techniques have also been used for provi-
sioning, such as the k-nearest neighbor approach to provision
the database tier [4].

In contrast to these efforts, our work automates the process
of characterizing the workload mix and uses empirical mod-
els as a basis for provisioning system capacity. Further, while
we employ analytic models of rental and transition costs, our
approach has involved a full prototype implementation and
experiments on an actual Linux cluster.

7 Concluding Remarks
Since today’s cloud platforms offer a plethora of different
server configurations for rent and price them differently on
a cost-per-core basis, we argued that these pricing differen-
tials can be exploited by an application provider to minimize
the rental cost of provisioning a certain capacity. We pro-
posed a new cost-aware provisioning approach for cloud ap-
plications that can optimize either the rental cost for provi-
sioning a certain capacity or the transition cost of reconfigur-
ing an application’s current capacity. Our approach exploits
both replication and migration to dynamically provision ca-
pacity and uses an integer linear program formulation to op-
timize cost. We prototyped a cloud provisioning engine, us-
ing OpenNebula, that implements our approach and evalu-
ated its efficacy on a laboratory-based Xen cloud. Our exper-
iments demonstrated the cost benefits of our approach over
prior cost-oblivious approaches and the benefits of unifying
both replication and migration-based provisioning into a sin-
gle approach. We also presented a case study of how our
approach can be employed in a public cloud such as Amazon
EC2.
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