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Abstract

The advent of batteryless, transiently powered, embeddable,
effectively maintenance-free computers that operate solely on
harvested energy has enabled new applications in sensing and
actuation. In particular, computational RFIDs (CRFIDs) [17]
serve as the basis of RFID sensor networks [7] that embed
computational capabilities wherever radio waves can reach.

A key problem facing deployments of transiently powered
computers in hard-to-reach places is that those computers can
become inaccessible to physical contact, making it impossible
to update device firmware after deployment.

This paper’s main contribution is Bootie, a proof-of-concept
bootloader for transiently powered computers that enables
them to change their behavior without any physical contact.
Bootie’s current implementation comprises compile- and run-
time components to bundle two or more unmodified firmware
programs into a single bootable image, select a firmware pro-
gram at boot time, supervise that firmware program’s execu-
tion, and cycle through available firmware images.

This paper’s secondary contribution is the preliminary de-
sign of a firmware update protocol that will allow a future ver-
sion of Bootie to accept and install firmware updates wirelessly,
thereby enabling experimenters for the first time to change the
behavior of their deployed devices. The current implementa-
tion is a stepping stone toward this goal.

Bootie is implemented for the MSP430 family of microcon-
trollers. Source code is available at the author’s web page.

1 Introduction

The recent advent of ultra-low-power microcon-
trollers is leading to an entirely new class of low-
power embedded computers.1 Maintenance-free com-
putational RFIDs (CRFIDs; see [17, 21] for back-
ground) enable general-purpose computation with
only harvested radio frequency (RF) energy and can
operate in contexts where replacing or recharging

1Portions of this introduction are adapted from [17].

a battery is inconvenient or hazardous (e.g., im-
plantable medical devices [12]) or where integrated
circuits and small surface-mount capacitors enable
economies of scale for manufacturing and miniatur-
ization. The primary challenge to CRFIDs, and sim-
ilarly transiently powered computers, is completing
time- or energy-intensive computations in spite of
continual power interruptions that result in complete
loss of computational state.

A second challenge concerns device maintainabil-
ity. Computational RFIDs, like sensor motes and
other embedded platforms, require a developer to
physically plug a wire into the device to reprogram
it via certain programming pins. When devices are
embedded in places that are difficult to reach to ob-
tain physical contact, they can no longer be repro-
grammed with new firmware. An RFID sensor net-
work [7] offers to make computation a ubiquitous
property of an environment, but it threatens to fix
the computational landscape in a single mode be-
cause its constituent devices cannot have their soft-
ware upgraded.

This paper identifies an opportunity to make tran-
siently powered devices’ firmware wirelessly upgrad-
able. A first step is to enable these devices to switch
between firmware programs; without the ability to
switch to a newly uploaded firmware program, there
is no use for wireless firmware uploads. Our contri-
butions in this paper are (1) Bootie, a bootloader
for transiently powered devices that enables a devel-
oper to change a device’s behavior without touching
it; and (2) a preliminary protocol for wirelessly up-
loading new device firmware that is based on the EPC
class-1 generation-2 standard RFID protocol [10].
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Bootie combines compile-time and run-time mech-
anisms to facilitate switching among two or more
firmware images. At compile time, Bootie packages
multiple firmware programs into a single firmware im-
age suitable for uploading to a microcontroller via a
physical electrical connection. At run time, Bootie
supervises the device’s boot sequence and decides
which firmware program to run.

The current proof-of-concept implementation of
Bootie cycles through the firmware programs it bun-
dled at compile time; it does not require a program-
mer or RFID reader infrastructure to interact with
it. Besides introducing Bootie, this paper discusses
future extensions to Bootie that will enable (1) wire-
less firmware uploading and (2) wireless firmware se-
lection.

1.1 Related work

Bootloaders are common on desktop computers, es-
pecially computers that are configured to run differ-
ent operating systems or operating system versions
based on a boot-time decision. Examples of desk-
top bootloaders include GNU GRUB [18] and Apple
Inc.’s Boot Camp [6].

The Deluge system [13] for TinyOS-based sen-
sor motes, now integrated into TinyOS, consid-
ers “retasking” nodes—reprogramming them after
deployment—to be a crucial capability of sensor net-
works, and accordingly develops a protocol to allow
sensor motes to disseminate new programs via an
epidemic strategy that guarantees eventual consis-
tency across a network. Its predecessor, Xnp [9],
allowed firmware to be updated from a central lo-
cation. Both systems, especially Xnp, are similar
in spirit to Bootie, but both benefit from an infras-
tructure (TinyOS, running on continuously battery-
powered nodes with plentiful RAM and nonvolatile
memory) that is not available to computational
RFIDs. Bootie’s protocol for firmware updates su-
perficially resembles both systems’ update protocols,
but CRFIDs are non-autonomous nodes that are in-
capable of initiating communication; in particular,
they cannot communicate with each other. The im-
position of a powerful reader that provides all power
and communication necessitates some changes from

the sensor network model.
Researchers have considered the problem of task

scheduling on the WISP prototype CRFID, but we
consider that problem distinct from the problem of
selecting alternative firmware images. Buettner’s
scheduler for CRFIDs [8] performs incremental tri-
als to find an appropriate starting voltage for a given
task, but does not specify how tasks are chosen at
run time. Additionally, that system does not have a
goal of enabling wireless firmware uploads.

In the spirit of task scheduling, the Mementos state
checkpointing system for CRFIDs [17] introduced the
notion of energy-aware instruction reordering. Me-
mentos shares Bootie’s realizations that reboots are
frequent and operating energy is unpredictable, but
it focuses on single-program scenarios.

2 Proposed Work

I propose to design and implement a simple boot-
loader for computational RFIDs. A computational
RFID [17] (CRFID) is a highly constrained, bat-
teryless computer that harvests energy to operate a
microcontroller. To date, all published experiments
with computational RFIDs (see, e.g., [5] for a snap-
shot of the state of the art) have cast them as single-
purpose devices that perform a single task when op-
erating power is available. Such devices have a simple
boot sequence: execution starts at a predetermined
point, the device completes its own internal routines
(zeroing registers, calibrating timers, and so on), and
execution eventually reaches the beginning of the sin-
gle task; after that, the device acts as a single-purpose
computer.

Currently, programming a CRFID—for example,
uploading a new firmware image to change the de-
vice’s behavior—involves gaining physical access to
a set of hardware pins on the device. The need
for physical access partially defeats the purpose of
CRFIDs; a main reason they lack batteries is so
that they can be deployed in hard-to-reach places
where having a battery would be a liability. CRFIDs
have been proposed for use in infrastructure monitor-
ing [17], wildlife tracking [11], and dense stationary
sensing [11] (so many nodes that changing batteries
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would be unwieldy). In each of these cases, the abil-
ity to update CRFIDs’ firmware in situ would en-
able faster iteration and easier experimentation. A
bootloader for CRFIDs is a first step toward wireless
firmware updates; it would enable a CRFID to start
from newly uploaded firmware once that firmware
has been successfully uploaded, and not before then.
Uploading new firmware over the air is challenging
because the operations (e.g., cryptographic hashing)
required to verify firmware images severely tax the
limited onboard energy reservoir. Initial measure-
ments [17] suggest that a transiently powered CRFID
may lose power several times per second while it is
computing. Further measurements (e.g., [11]) suggest
that the communication link is unreliable, especially
with sub-optimal antenna orientation or occluding
bodies. It is therefore reasonable to take defensive
measures against unreliable firmware updates.

For this project, I will implement a proof-of-
concept task switcher that toggles back and forth be-
tween two programs on a CRFID. My task switcher
will, via a compiler optimization pass at compile
time, wrap itself around the two programs, and all
three entities (the task switcher and the two pro-
grams to be switched) will be compiled into a single
firmware image and uploaded to a CRFID via the
wired interface. At run time, the CRFID will read a
flag from nonvolatile memory and select the program
to run based on the value of the flag. It will then
start the selected program. If the program fails to
complete because the device runs out of energy, the
flag will remain unchanged and the same program will
be rerun at next boot. However, if the program com-
pletes, the task switcher will update the flag so that
the other program will be run at next boot. Main-
taining the flag in nonvolatile memory is nontrivial
because a flash memory bit can be flipped cheaply
in only one direction; the other direction requires an
expensive erasure. I will discuss coding schemes that
minimize the necessity of erasure.

In the future, my bootloader could be general-
ized to support more than two alternative firmware
images, and it could be modified to accept “switch
to firmware N” commands from a controlling RFID
reader. A large part of the synthesis project report
will be devoted to discussion of the design principles

concerning the implementation of an N-way boot-
loader. I will discuss the problem of encoding an
N-way switch in flash memory, and I will discuss in
depth the procedure by which new firmware can be
uploaded. Given the aforementioned limitations of
current CRFID deployments, I believe this work will
be of interest to the CRFID community and perhaps
the networking community.

3 Design

This section discusses the current implementation of
Bootie. For a discussion of future extensions, in par-
ticular a facility for wireless firmware updates, see
Section 6.

3.1 Challenges

A fundamental property of computational RFIDs is
that they have no onboard power supply; rather, they
are equipped only with a small energy buffer in the
form of a capacitor. Even when the distance be-
tween a CRFID and the reader that powers it via
radio waves is fixed, constant energy availability is
not guaranteed. Figure 1 depicts periods of operating
energy and power failure in a laboratory experiment.
Previous work [11, 17] has noted that energy short-
falls are a constant concern for transiently powered
CRFIDs.

Each time its power drops below a cutoff thresh-
old, the MSP430’s brownout protection feature cuts
power to the microcontroller. (Similar features are
common on other microcontrollers as well.) Each
power loss event—such events are common on com-
putational RFIDs, as Figure 1 shows—results in the
total loss of computational state on the microcon-
troller. Fortunately, executable code is stored in (and
executed from) onboard nonvolatile flash memory in-
stead of RAM, so the program itself is not lost with
each power loss event.

In a regime in which the total loss of computa-
tional state is a common occurrence rather than a
rare event, it is necessary to reconsider certain as-
sumptions about program execution. For example:
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Figure 1: Time (milliseconds) versus capacitor voltage (volts) for a DL WISP 4.1 prototype computational
RFID over a timespan of 47 seconds. The DL WISP 4.1 was held at a constant distance of 3 feet from an
RFID reader that was broadcasting queries at approximately 100 Hz. The DL WISP 4.1’s orientation was
manipulated by a human experimenter to simulate motion in a pocket during fast walking. Each vertical
dip represents a loss of operating power and computational state followed by a recharging and device reset.
The spans between vertical dips are usable for computation.

• If a single program is loaded into the microcon-
troller’s code memory, a power failure will result
in the program being rerun from the beginning
each time operating power returns to a sufficient
level. The boot sequence runs each time oper-
ating power is restored, so any code that runs
at boot time must run quickly to allow time for
subsequent computations to execute.

• A state machine is a common programming de-
vice for embedded applications on microcon-
trollers. Unless the programmer is careful to
copy program state to nonvolatile storage (which
copying takes time and energy above normal in-
struction execution), the state machine will enter
its start state frequently, and expected transi-
tions later in the state sequence may not occur.
A particular challenge for a bootloader is that
it must durably store its own state if the action
of selecting a firmware program is meant to be
durable.

• Operations that are not idempotent may be per-
formed more than once if computational state is
lost in between instances of the operation. A
programmer must be wary of non-idempotent

operations, and a bootloader must try to respect
requests that a firmware program be run a lim-
ited number of times (in a row, for example).

• If a bootloader is to perform cryptographic op-
erations on firmware programs (e.g., integrity
verification via a cryptographic checksum), it
must execute CPU-intensive tasks. If operat-
ing power disappears during firmware verifica-
tion, the same task may need to be re-executed
from the beginning at next boot.

A further challenge to running multiple alterna-
tive programs on a computational RFID is related
to a distinct advantage of the class of devices. The
ability to embed CRFIDs in hard-to-reach places—
inside concrete, for example, or as part of an im-
planted medical device [12]—results in a lack of re-
programmability. CRFIDs, like most experimen-
tal microcontroller-based devices, are typically pro-
grammed once while connected to a desktop com-
puter, then deployed. Reprogramming such a device
involves repeating the programming step after mak-
ing physical (electrical) contact with the device. To
enable firmware updates after deployment, a boot-
loader must allow binary images to be uploaded wire-
lessly, and it must be able to patch new firmware into
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an existing environment, which may involve difficult
address space manipulation, among other issues.

3.2 Design goals

The version of Bootie described in this manuscript
sets two goals: run multiple firmware images on an
MSP430 microcontroller (though not at the same
time); and switch among firmware images without
requiring physical contact with the device.

The goals of the current implementation are as fol-
lows:

• Minimize code size. The MSP430F2131 micro-
controller on which we developed Bootie has
8 KB of flash memory available for developer-
supplied code, and only 256 bytes of RAM. We
must therefore conserve code space where pos-
sible. In particular, the bootloader should min-
imize redundancy when bundling firmware im-
ages together.

• Minimize boot time. Figure 1 demonstrates
that CRFIDs may reboot many times per sec-
ond, with timespans usable for computation be-
ing very short; we must therefore minimize the
run time of the boot sequence.

• Make it easy to combine two or more projects us-
ing the bootloader. The mechanics of switching
between firmware programs should be handled
automatically to the maximum extent possible,
as should the mechanics of integrating two or
more projects’ compilation phases.

• The bootloader should never leave the system in
an unrecoverable state. If the bootloader fails, it
should do so in such a way that the device runs
one of the input firmware programs.

The long-term goals for future versions of Bootie
are described in Section 6. Briefly, a future version
of Bootie will be able to accept, verify, and install
firmware updates wirelessly, despite interruptions to
operating power.

4 Implementation

The current version of Bootie comprises 231 lines
of code and includes C, C++, and Perl programs
as well as a Makefile that assembles multiple input
firmware programs into a single bootable firmware
image. The code is freely available at the author’s
web page [1]. It requires a development copy of the
LLVM compiler toolchain [14] and a copy of GNU
binutils [3] that supports the microcontroller archi-
tecture.2 Bootie targets the TI MSP430 [4] family of
microcontrollers. It is implemented for, and has been
tested exclusively on, MSP430F2131 microcontrollers
mounted on Olimex test boards [16]. It could be
made to target the DL WISP 4.1’s MSP430F2132 mi-
crocontroller via a one-line code change in its Make-
file, but a design flaw in the DL WISP 4.1 precludes
the sort of nonvolatile write Bootie uses to record
its state.3 Because Bootie uses no WISP-specific fea-
tures of the DL WISP 4.1, we chose the Olimex devel-
opment board for simplicity. The MSP430F2131 and
MSP430F2132 share a flash memory size of 8 KB, but
the former has 256 bytes of RAM versus the latter’s
512 bytes.

Bootie’s present implementation serves as a proof
of concept. It accepts two or more C programs as
input, generates another C program containing boot
routines and program switching logic, and bundles
all of the programs together into a single firmware
image. When loaded with Bootie, the device cycles
through the input firmware programs on successive
boots.

4.1 Proof of concept

An illustrative example of Bootie’s compile-time op-
eration is described below and diagrammed in Fig-

2At the time of this writing, a Web search for “llvm-
msp430” finds a project of that name that includes appropriate
versions of all of the necessary tools.

3The DL WISP 4.1 uses a 1.8-volt voltage regulator to en-
sure that the microcontroller always receives at most 1.8 volts.
However, the voltage threshold for flash writing and erasure
on the MSP430F2132 is 2.2 volts; therefore, the DL WISP 4.1
cannot write reliably to its own microcontroller’s flash mem-
ory. A driver exists that allows the DL WISP 4.1 to use an
off-chip nonvolatile EEPROM for storage at 1.8 volts [11].
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Figure 2: Overview of the compile-time operation of the current version of Bootie. Standalone firmware
programs a.c and b.c are compiled, their main methods’ names changed, and the results combined with
a wrapper program bootloader.c. Standard assembly and linking of the combined program produces a
firmware image called bootloader that can be loaded directly onto the target microcontroller.

ure 2. For demonstration purposes, Bootie was given
two input firmware programs: a.c, which blinks an
LED attached to the microcontroller’s pin 1.1, and
b.c, which blinks an LED attached to pin 1.3.4

Compile-time operation. To give Bootie the
requisite control over the device’s operation, we use
a standard method of ensuring that it runs at boot
time: we name its startup procedure main() and use
the compiler toolchain’s linker to build an executable
that calls main() when it runs. However, each input
firmware program already has its own main() pro-
cedure that expects to run at boot time. To avoid
collisions during the linker phase, we use a program
manipulation pass at compile time to rename each
input firmware’s main() procedure according to the
source file in which the procedure is found. (A future
version of Bootie will recursively check for collisions
with its proposed names as well.)

In detail:

• In Bootie’s Makefile, we specify FIRMWARES=a b

4It is not unusual for a complete device firmware program
to be written as one file; for example, the WISP’s firmware is
maintained as a single C file. The chief advantage of such a
single-file structure is that global variables—frowned upon in
general use but common in embedded systems—can be made
available to the entire program without any complicated post-
compilation linkage between units.

to indicate that we want the bootloader to toggle
between the program in a.c and the program in
b.c.

• The Makefile invokes clang [2], the LLVM C com-
piler front end, to compile a.c and b.c into
LLVM bitcode.

• The Makefile invokes LLVM’s opt tool to run
an optimization pass from RenameMain. Re-
nameMain, adapted from a pass of the same
name in the Mementos [17], takes an input pro-
gram named like foo.bc and renames its main()
function to _main_foo(). The pass runs on a.bc
and b.bc, renaming their main() functions to
make way for the bootloader’s own main() func-
tion.

• The Makefile invokes a Perl script that generates
a file called bootloader.c. This file contains
code to toggle among the available firmwares.

• The Makefile invokes clang to compile
bootloader.c into bootloader.bc.

• The Makefile invokes llvm-link, LLVM’s bit-
code linker, to link all the bitcode files (a.c, b.c,
bootloader.bc) together. The only main() func-
tion comes from bootloader.bc.
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• The Makefile invokes llc, LLVM’s bitcode-to-
assembly translator, to generate MSP430 assem-
bly code.

• The Makefile invokes msp430-gcc, mspgcc’s
compiler driver (which invokes the standard
binutils tools), to assemble and link the MSP430
assembly code into a firmware image called
bootloader. This final image is what we load
onto the microcontroller.

Run-time operation. Figure 3 depicts the run-
time operation of Bootie in the same example sce-
nario. Bootie’s compile-time operations result in its
main() function being called immediately each time
the microcontroller boots. This main() function in-
vokes one of the input programs based on information
available at run time. In detail:

• At boot, the device reads a location in
nonvolatile memory (0x10BE, the last 16-bit
word of information memory segment C in an
MSP430F2131 microcontroller’s flash memory)
that contains the address of a main() function
to run, _main_a() or _main_b() in the exam-
ple above. The location in nonvolatile memory
acts as an n+ 1-way switch if there are n input
firmware programs; the extra switch state is the
default value for initialized flash memory and in-
dicates that no firmware is currently marked as
the next to run. The switch state is compared
to a hard-coded lookup table of function point-
ers computed at compile time. If the switch does
not point to a known main() function, it is set to
point to the default function—_main_a() in our
example. The switch state is now guaranteed to
give the memory address of a main() function,
so it is cast to a function pointer fn.

• The next switch state (in a rotating fashion) is
looked up in the list of pointers to main functions
and cast to another function pointer nextfn.

• Bootie calls the function pointed to by fn.

• If that function returns, the nextfn pointer is
written to the n + 1-way switch location to in-
dicate that it should be run at next boot. If,

however, the function pointed to by fn does not
return, the n+ 1-way switch still matches fn, so
the same function will be run again at next boot.

• Execution terminates; Bootie puts the microcon-
troller in its CPUOFF power mode. The micro-
controller will not execute any more code until
its next boot. (This step is strictly optional.)

Some of the behavior defined above is specific to
the test case; for example, a real application may re-
quire more than a simple rotation among firmware
programs. Section 5 discusses such practical con-
cerns.

5 Evaluation

This section evaluates the current implementation of
Bootie with respect to the goals stated in Section 3.2.
For a discussion of extensions to Bootie that will ex-
pand its capabilities and usefulness in future versions,
see Section 6.

5.1 Versus goals

Bootie meets the stated goals listed in Section 3.2.
Specifically:

• Bootie’s code size is small relative to the total
size of the firmware image downloaded to the mi-
crocontroller. Its code size when compiled with-
out optimizations is 240 bytes in 60 instructions,
or 3% of the 8 KB code memory; with optimiza-
tion (at gcc’s -O3 level) it is 178 bytes in 56 in-
structions, or 2% of the code memory. We con-
sider this overhead acceptable.

After compilation (with no optimization) and
linking against required libraries (e.g., the C lan-
guage runtime for the target microcontroller),
the executable bootloader including two sam-
ple programs is 3 833 bytes long. Because we
wait until all components (the input programs’
and Bootie’s) have been compiled before linking
them together, we include the required libraries
only once, satisfying our goal of minimizing du-
plicated code.
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Figure 3: Overview of the run-time operation of the current proof-of-concept version of Bootie. Bootie’s
main() function examines an n + 1-way switch (a function pointer stored in flash memory) to determine
which firmware program to run. Once the firmware is selected, a “next firmware” pointer is made to point to
the next firmware program in the lookup table. The firmware program is run through its function pointer.
If it completes successfully, Bootie writes the “next firmware” pointer to the n + 1-way switch so that the
next firmware will be run at next boot. If, however, the program fails to finish or the device runs out of
energy before it updates the n+ 1-way switch, the firmware selected at the beginning of the lifecycle will be
run at next boot.

• At 16 MHz with a cycle time of 62.5 ns, Bootie’s
boot sequence—which comprises simple memory
reads and jumps, along with a possible flash seg-
ment erasure—requires 7.6 µs (121 cycles) if no
flash erasure is necessary or 2.7 ms (approxi-
mately 49 000 cycles, 48 800 of which are spent
erasing flash) if flash erasure is necessary. Such
timings can support up to approximately 370 full
boot cycles per second, which we find qualita-
tively acceptable given the adverse energy har-
vesting conditions under which CRFIDs operate.

• Bootie’s compile-time functionality is imple-
mented in compiler passes and a Makefile. The
input programs in this paper’s proof-of-concept
implementation are individual C source files that
can independently be compiled into firmware im-
ages. No changes to the input programs’ code
were necessary, satisfying our goal of making it
easy to combine multiple firmware images.

Furthermore, our implementation of Bootie re-
quires no physical interaction with the device to
switch between firmware images, satisfying our
goal of automatically changing device function-
ality.

• Bootie maintains only one word (2 bytes) of state
in nonvolatile memory. If the n + 1-way switch
in nonvolatile memory acquires an invalid value
(because of, e.g., insufficient voltage during a
flash write [20]), Bootie defensively assumes that
it should run a default firmware program. Fur-
thermore, because the current implementation of
Bootie does not overwrite any firmware via wire-
less upload (or any other means), it preserves
the integrity of programs stored in code mem-
ory. Bootie therefore satisfies our goal of never
leaving the system in an unrecoverable state.

Scalability. We have tested Bootie’s program-
rotation scheme with up to 5 input programs; the
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example in this paper uses 2 input programs only
for simplicity. Because Bootie’s n + 1-way switch
is stored as a 16-bit word, Bootie supports up to
216−1 = 65 535 input programs; in practice, the num-
ber of input programs is limited by the code mem-
ory size (8 KB on our test devices). Adding another
program to the rotation requires two steps: copy its
C source code into Bootie’s build directory (along-
side the existing programs’ source files) and edit the
FIRMWARES line in the Makefile to add the new pro-
gram’s name.

5.2 Suitability for CRFIDs

We consider the current proof-of-concept implemen-
tation of Bootie to be compatible with the CRFID
model (constrained microcontroller, frequent power
loss, task switching without physical contact). How-
ever, we question the utility of a program that toggles
either one pin or another pin in an endless repeating
sequence.

It is important to note that Bootie is not limited
to programs that toggle pins. Given two input pro-
grams that perform useful tasks (e.g., sensing from an
onboard analog sensor), a cooperating RFID reader
could effectively duty-cycle the CRFID’s different be-
haviors by repeatedly turning its transmission of the
energy-supplying carrier wave on and off.

The current proof-of-concept implementation
demonstrates that it is possible to load multiple
firmware programs onto a CRFID’s microcontroller.
Section 6 describes extensions to the current im-
plementation that will make Bootie more useful to
CRFIDs that are physically inaccessible.

6 Extensions

In this section, we discuss several extensions to
Bootie’s current proof-of-concept implementation. In
particular, we propose a preliminary design for wire-
less firmware updates for computational RFIDs.

6.1 Wireless firmware updates

For Bootie to be useful on a deployed CRFID, it must
support wireless uploading and verification of new
firmware programs.

Fortunately, the EPC class-1 generation-2 RFID
protocol specification [10], upon which current pro-
totype CRFIDs operate, includes a BlockWrite com-
mand that can write up to 4 096 bits at a time; each
BlockWrite is acknowledged separately by the recip-
ient. It also includes a Write command that can be
used to update a single word of memory at a time
(e.g., the n + 1-way switch Bootie uses to select the
program to run).

A protocol sketch—which neglects error handling,
bookkeeping work for the CRFID related to resuming
a firmware upload or incorporating new firmware into
the boot sequence, and a notion of authentication—
appears in Figure 4. The protocol is similar to other
file transfer protocols that support chunked content
transfers. Because the RFID protocol mandates that
a participating tag reply within 20 milliseconds of
a BlockWrite command from a reader, and we have
timed a 256-byte flash write at approximately 10 ms,
we suggest that the reader send data in 256-byte (128-
word) chunks.

We propose that Bootie be made to support
the cryptographic authentication of newly uploaded
firmware, both after a complete transfer and one
chunk at a time. We propose to use a simple message
authentication code (MAC) scheme that has already
been implemented on a CRFID [19]. A property as-
sociated with the use of a MAC is that the secret key
used in the MAC computation must be shared among
(i.e., stored on) all participating tags and readers. If
that key were disclosed by any device (e.g., by an ad-
versary capturing and decapsulating a CRFID’s mi-
crocontroller [15]), the security of the entire collection
of devices would be compromised. However, consid-
ering the much higher computational cost typically
associated with public-key cryptography, we suspect
that a MAC scheme is more appropriate as a default
for Bootie.

Challenges to uploading firmware. The prob-
lem of computing a binary patch to send to a CRFID
is a matter for future consideration. We assume

9



Read: begin upload

AC
K 

st
ar

tA
dd

re
ss

, s
ize

BlockW
rite startAddress,

128 words, data

AC
K

Tag computes MAC,
writes 128 words
to code memory

Tag finds
appropriate space
in code memory

BlockW
rite startAddress,

128 words, data

AC
K…

Tag computes MAC,
writes ≤ 128 words

to code memory
…

Read checksum

startAddress, size Re
pl

y 
ch

ec
ks

um

Tag computes
MAC of entire

program

Reader breaks program
into 128-word (256-byte)

chunks

Reader computes MACs
and sends chunks

in sequence
W

rite

switchAddress, startAddress

AC
K

Reader computes
MAC of entire

program
READER

TAG

1

2

3 4

5

0

Tag stores address
of new program

for next boot

Figure 4: Firmware upload protocol sketch for a CRFID (“Tag”). Step 0: An RFID reader that wishes to
upload new firmware to a CRFID must first perform all of the necessary work to assemble a binary patch
(i.e., must resolve all symbols, strip out duplicate information, etc.). Step 1: the reader issues an RFID Read
command indicating to the tag that it would like to upload new firmware. The tag confirms that there is
appropriate space for the new firmware and sends the starting address of the space. Step 2: the reader sends
a sequence of 128-word (256-byte) program chunks and their cryptographic MACs via RFID BlockWrite
commands. Step 3: the reader and tag both compute a cryptographic MAC over the entire program sent
by the reader. Step 4: if the checksums match, the reader sends an RFID Write command to select the new
firmware on the tag. Step 5: the new firmware is usable on the tag.

that such computations are too CPU-intensive for a
CRFID and must therefore be carried out on the more
powerful reader infrastructure.

Another challenge is that current CRFID proto-
types (e.g., the DL WISP 4.1) do not support the full
EPC class-1 generation-2 RFID protocol in software.
We suspect that Bootie could be integrated into de-
vice hardware at the same time as full RFID protocol
support is moved into hardware; hardware protocol
support has long been a goal of CRFID development.

A further challenge is tolerating protocol violations
or errors. If the RFID reader providing chunks of a
firmware image fails to send all of them—i.e., if it
silently aborts the protocol in step 2 as shown in Fig-
ure 4—then the CRFID must, at some subsequent
time, cancel its end of the firmware upload. A con-
stantly powered computer might use a timeout period
to expire stale upload sessions, but a transiently pow-
ered computer that lacks a built-in notion of time

cannot. Further complicating the firmware upload
process, a partial upload may be used as an attack
vector by a malicious party, for example to fill pre-
cious nonvolatile memory or to disrupt the next le-
gitimate transmission of firmware.

6.2 Addressing limitations

The current proof-of-concept implementation of
Bootie has no recourse in cases of colliding interrupt
handlers. If two or more input firmware programs use
the same interrupt vector—i.e., they both try to in-
stall their own handlers for certain events at the same
memory location—then a compile-time error results.
We plan to evaluate two possible solutions to this
problem. First, Bootie’s optimization passes could
recognize interrupt vectors at compile time, trans-
form them into conventional functions without the
interrupt attribute, and install its own interrupt
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vectors that examined the value of the n + 1-way
switch and dispatched the appropriate function. A
second approach is to enforce a compile-time require-
ment that at most one input program provide inter-
rupt vectors. Bootie’s current behavior is in line with
this second approach, except that it does not enforce
the compile-time requirement.

Another simple extension would extend Bootie’s
collision avoidance mechanism (which currently at-
tempts to ensure that only the input programs’
main() functions are renamed to avoid a collision).
Bootie could add another optimization pass that re-
names every symbol with external linkage, then cor-
recting any references to those symbols where they
appear. For example, an input program f.c with a
main() function and foo() function might be altered
to have _main_f() and _foo_f().

Further collision avoidance: rename all functions
in an input program rather than just the main() func-
tions.

7 Conclusion

We present Bootie, a rudimentary bootloader for
computational RFID (CRFID) devices. We present
a proof-of-concept implementation of Bootie that
switches between multiple CRFID firmware programs
without requiring physical interaction with the de-
vice. Bootie can be extended to support the wire-
less upload of new firmware programs to CRFIDs; we
sketch a protocol to support such an upload between
an RFID reader infrastructure and a CRFID.
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