
A Mobile Robot for Autonomous Scene Capture and Rendering

Blake Foster, Rui Wang, and Roderic Grupen
University of Massachusetts Amherst

Abstract— In recent years, projects such as Google Street
View have contributed to widespread metrology of open human
environments. Despite the ubiquity of such projects, image-
capturing remains a labor-intensive process. In this work, we
apply a new image-based heuristic to capture indoor scenes
with an autonomous mobile robot. We task the robot to take
a set of photographs that is sufficient to build a relatively
complete 3D model of its environment. Our key insight is that
the completeness of the the map, at any given viewpoint, is
closely correlated with the quality of a synthesized image. Our
heuristic exploits this relationship to choose a strategic set of
new locations for the robot to visit. Because our heuristic is
based on a realtime rendering algorithm, it is easily accelerated
on the GPU, which allows us to evaluate a large set of candidate
locations quickly. Our algorithm starts with an initial set of
photos obtained through random exploration, which may not
show a large part of the scene. We then compute a sparse
3D point cloud, and randomly pick a number of candidate
viewpoints in the region bounded by the 3D points. Finally, we
select the best viewpoints according to our metric, and send
the robot to those locations to gather more photos. The process
can be repeated, until no unexplored regions remain. When the
exploration is finished, we construct a complete 3D model of
the scene, which we use to create a virtual tour.

I. INTRODUCTION

In the past decade, projects such as Google Street View
have contributed to widespread metrology of open human en-
vironments. Such projects motivate a number of challenges,
including adaptive view selection and smooth view interpo-
lation. The human brain is remarkably adept at the former.
Given even a small set of images of a new environment, a
human can easily identify additional viewpoints that would
reveal hidden areas. In this work, we attempt to give that
same ability to a simple mobile robot, built from a Lego
Mindstorms kit and a point-and-shoot camera. We task the
robot to capture a set of photographs that is sufficient to
build a relatively complete 3D model of an indoor scene.
Our key insight is that the completeness of the map, at
any given viewpoint, is closely correlated with the quality
of a synthesized image. This relationship elicits an efficient
heuristic for choosing new areas to explore.

Initially, our robot has no knowledge of its surroundings.
We begin by building a rough map via random exploration. In
this stage, the robot moves semi-randomly, capturing photos
at intervals. We then use bundle adjustment [25] to build an
initial map, consisting of a sparse set of 3D points and the
location of each photo.

We use the initial map to guide a second, adaptive ex-
ploration step. In this stage, the robot attempts to capture
photos from previously unvisited or undersampled areas.
To this end, we select a set of candidate locations, and

evaluate each location with a heuristic that estimates the
quality of a synthesized image. Our heuristic is based on
a real time rendering algorithm, which enables acceleration
on a modern GPU. The computational cost of evaluating
each candidate viewpoint is equivalent to rendering one low-
resolution image. On a modern GPU, our implementation can
can perform up to 155 evaluations per second.

After evaluating each candidate viewpoint, we select the
best locations for further exploration. The robot then navi-
gates to its goals, tracking SIFT [19] features to ensure that
it stays on course. This provides a new set of photos, which
fill in gaps in the robot’s map. If necessary, the process can
be repeated, until the robot’s map is complete. When the
exploration is finished, we construct a complete 3D model
of the scene, which we use to create a virtual tour.

II. RELATED WORK

SLAM. Se et al. [23] use SIFT features as landmarks in
near realtime SLAM. Their system runs on a mobile robot
with a trinocular vision system. Successfully matching a
feature in all three cameras provides a 3D location relative
to the robot. These 3D landmarks are tracked across multiple
frames. In [24], they extend their approach to the kidnapped
robot problem, in which a robot must determine its location
without any initial clues beyond its current sensor data.

Davison et al. [6] use a single camera to track features in
a vision-based realtime SLAM system. Their system obtains
3D locations for features by matching to previous frames.

Sabe et al. [22] use stereo vision to guide a humanoid robot
as it autonomously explores its environment. Their focus
is mainly on obstacle avoidance. Their system detects the
ground plane, and assumes that regions classified as ground
may be safely walked on. The robot maintains an egocentric
navigation grid, in which each cell contains the probability
that an obstacle is present. We use a similar system for our
robot.

Gutmann et al. [26] use a similar approach to path-
planning. Their navigation grid keeps track of the estimated
floor height. They use a cost function based on both the floor
height and the probability of finding an obstacle to plan their
robot’s path.

Eade and Drummond [9] use a graph-based approach
to monocular SLAM. Their system avoids the computa-
tional cost of global bundle adjustment by partitioning the
landmarks into clusters. They first optimizing the landmark
positions in each cluster, and then run a global optimization
on the cluster locations. In [10], they extend their approach
to allow for multiple connected components in the graph.

This allows the robot to recover when it becomes lost. In
cases where the robot recognizes a previously-seen location,
their system allows for loop-closing.

Unlike previous SLAM research, our goal is to build a
dense reconstruction of the scene, consisting of millions of
points. We therefore depart from the usual goal of realtime
mapping as the robot explores, and opt for offline bundle
adjustment. Our main contribution is a heuristic defined by
the quality of a synthesized image, which we use to meet
our goal of complete scene reconstruction.

Structure From Motion. Advances in multi-view stereop-
sis make image-based reconstruction a viable alternative to
manual modeling or laser scanning. Yang et al. [28] present a
realtime stereo vision system that estimates the geometry of
the scene in front of an array of stationary Webcams. Their
system uses the GPU to choose a depth at each pixel from a
fixed set of possible depth values. They get good results for
scenes that contain mostly fronto-parallel planar surfaces, but
their system fails in scenes that contain complex geometry
at many depth levels or repetitive patterns. Gallup et al. [13]
use multiple plane orientations to improve the performance
of this approach on sloped surfaces. Merrell et al. [20]
introduced a realtime system for merging rough depth maps
obtained via plane-sweeping. Given sufficiently many views
captured in video, their system provides excellent results.

Pan et. al [21] present an interactive vision-based modeling
system. They require the user to rotate an object in front of a
Webcam, and use features tracked across multiple frames to
build a 3D model. Their system works well for small objects
with simple geometry, but is not applicable to larger scenes
captured with moving cameras.

Bundler [25] can efficiently compute robust geometry from
images taken with many different cameras under a variety of
lighting conditions. Goesele et al. use Bundler in conjunction
with a 3D photo-browsing system, but they do not attempt to
solve the problem of view-interpolation. In [14], they obtain
dense reconstructions from Bundler’s output. We use Bundler
to compute the camera locations and sparse 3D points that
make up our robot’s initial map.

Patch-based multiview stereo (PMVS) [12] computes a
dense point cloud from a set of photos taken by calibrated
cameras. In some scenes, the point cloud is dense enough to
be used directly by a simple point-based rendering system.
In cases where the point cloud is too sparse, they use Poisson
surface reconstruction [17] to construct a mesh. We use
their open source PMVS software to build our final dense
reconstruction, after calibrating the cameras with Bundler.

Image-Based Rendering. While a wide variety of image-
based rendering systems have been proposed, all existing sys-
tems require either detailed geometry or many photographs.
In either case, the data-gathering phase requires specialized
equipment or extensive human labor.

Light-field rendering [18] and the lumigraph [15] both at-
tempt to capture all the light within a scene. Both approaches
achieve photorealistic rendering in real time, but require huge
numbers of photographs. Additionally, light-field rendering

requires a complex capturing rig. Surface light fields [27]
require a smaller number of photos, but rely on a laser
scanner to obtain accurate geometry. Debevec et al. [8] render
architectural scenes captured in only a few photos with the
help of approximate geometry. They employ a user-assisted
modeling system to obtain rough geometric models, and use
projective texture mapping to render the models from novel
viewpoints.

In unstructured lumigraph rendering [5], Buehler et al,
recognize that image-based rendering techniques lie on a
continuum from detailed geometry and few photographs
to no geometry and many photographs. They propose an
approach that works for any point on the continuum. Given a
large number of photographs, their system functions like the
lumigraph. Given a 3D model and a few photographs, their
system functions like view-dependent texture mapping [7].
Our rendering quality heuristic is motivated by their algo-
rithm.

Aliaga et al. [2] also use a robot to capture images for
view synthesis. Their robot captures thousands of photos at
regularly-spaced locations, thereby eliminating the need for
accurate geometry. Our system differs from theirs in that we
only capture a sparse set of photos, which we use to compute
accurate scene geometry.

III. HARDWARE

Our robot is built with a Lego Mindstorms NXT kit. The
NXT’s 32-bit ARM7 processor handles the low-level motor
control and sensor communication. Due to the computational
complexity of multiview stereopsis, we run all of our control
code on a host PC. We use the Mindstorms NXT Toolbox for
MATLAB [3] to control the motors and read sensor data over
the NXT’s built-in Bluetooth. The robot’s sensors include a
compass sensor, an ultrasonic rangefinder, mechanical double
bumpers on the front and rear, and sensors to monitor the
camera status.

Fig. 1. Our robot

The camera is a
Cannon A590 running
the CHDK [1]. The shutter
is controlled by a simple
CHDK script that monitors
the 5V pin in the camera’s
USB port. When we wish to
take a photo, we command
the NXT to turn on one of
its three motor ports, which
connects to the USB port
through a voltage regulator.
This in turn causes the
CHDK script to trigger the
shutter. The photo is then
transmitted to the host PC
with an Eye-Fi wireless
SD card. Figure 1 shows
a photograph of our robot.
The attached video shows a demo of our robot in action.

IV. ALGORITHMS

Our robot gathers images in two stages. In the random
exploration stage, the robot roams semi-randomly, taking
photos at intervals. We use these photos to construct an initial
map. In the adaptive exploration stage, the robot uses its
map to determine where it needs to gather more data, and
navigates to those areas with its vision system.

A. Random Exploration

SLAM systems update both a robot’s location and map in
realtime as it explores. Our random exploration stage differs
from SLAM in that we do not attempt either localization or
mapping until after the exploration completes. We take this
approach because our goal is to build a dense reconstruction
of the scene, consisting of far more points than a typical
SLAM system would track. Global bundle adjustment is a
necessary step in the reconstruction pipeline, so for simplic-
ity we allow bundle adjustment to recover the locations of
the initial set of photos. The computational cost of bundle
adjustment is not a limitation, since, if desired, SLAM-based
navigation could be used up until the final reconstruction
phase, with local geometry estimated from small clusters of
photos serving as geometric proxies during goal selection.

During the random exploration stage, the robot attempts
to capture circles of photos, in which it turns in place
while taking pictures at roughly 10◦ intervals. Since the
camera is positioned off the robot’s axis of rotation, these
images provide good baselines for stereo matching. The robot
records readings from its ultrasonic and compass sensors
along with each photo. When a circle completes, it turns
to the compass heading at which it saw the longest range
on the ultrasonic sensor, and drives for a random distance
before starting another circle.

We do not attempt to avoid obstacles as the robot explores.
Instead, we rely on the robot’s bumper to detect collisions.
When the robot encounters an obstacle, it backs up, turns in
a random direction, and continues on a straight path. Should
an obstacle fail to trigger the mechanical bumper, the robot
will detect that the motors have stalled, and proceed as if the
bumper were triggered.

Typically we allow the robot to take around 100 photos in
the random exploration stage. While we could reconstruct the
scene from fewer photos, capturing view-dependent lighting
effects (e.g. shiny reflections) necessitates a larger set of
images. When the random exploration stage completes, we
use Bundler [25] to compute the 3D location of each photo
and a cloud of 3D scene points. Bundler works by matching
SIFT [19] features in tracks across multiple images. Thus
a 3D point is associated with a SIFT descriptor in each
image in which it is identified. We use these SIFT features
as landmarks for navigation in the second stage.

B. Adaptive Exploration

Our robot does most of its work in the adaptive exploration
stage. The goal of the adaptive exploration stage is to identify
areas that require more photographs, travel to those areas,
and capture more images.

Fig. 2. Top: A point cloud from Bundler. Bottom: The resulting mesh,
generated with Poisson surface reconstruction. The details in the interior of
the room are missing, but our heuristic does not require accurate geometry.

Choosing a goal. Our adaptive exploration stage begins
by computing a geometric model of the visible portions of
the scene. To this end we estimate a normal at each 3D
point (based on the positions of nearby points), and employ
Poisson surface reconstruction [17] to create a mesh. This
mesh both defines the robot’s boundaries and serves as a
geometric proxy in our rendering-quality heuristic. While
this mesh is typically only a rough approximation of the true
geometry, our heuristic does not require a highly accurate
geometric model. Figure 2 shows a point cloud and the
resulting mesh.

Intersecting the mesh with the plane defined by the camera
positions yields a rough approximation of the boundaries of
the robot’s space. We choose our goal locations from a set
of randomly-selected points within this boundary. At each
point, we evaluate a heuristic that estimates the quality of
a synthesized image. The heuristic is based on unstructured
lumigraph rendering [5]. Given a location L and angle θ,
we first position a virtual camera C at L with orientation θ.
Next, using a modern GPU, we rasterize the mesh with C.
We use a shader that encodes the 3D location of each pixel in
the red, green, and blue color channels. This provides the 3D
location P of the projected point on the mesh for each pixel
p. Ideally, if we were to render the scene from C, we would
want to find a source camera Ci at location Li that captures
the ray R(t) = P + t · ~r, where ~r = (L − P)/||L − P ||.
The color of the pixel in Ci that captures R(t) then tells us
the amount of light reflected from the scene point P in the
direction of L.

While it is unlikely that any of the photos will perfectly
capture R(t), some of them may capture rays that are very
close. Our heuristic attempts to encode exactly how close

Fig. 3. An example of our heuristic with two source views. The score for
the pixel in camera C intersected by ~r is the minimum of the two angles
θ1 and θ2 between R and the rays R1 and R2 from the scene point P
to source cameras C1 and C2, respectively. In each novel viewpoint, we
compute a score for every pixel, and take the average as the view score.

Fig. 4. An example navigation grid and path from A to D via intermediate
notes B and C. Darker cells have higher costs. The costs are computed with
a kernel density estimator, which gives the grid a blurred appearance.

we are to capturing the ray through each pixel. For each
camera Ci (located at Li) that can see P , we construct the
ray Ri(t) = P + t · ~ri from P through Li. The angle θi =
arccos(~r ·~ri) then gives us a measure of how close Ci comes
to capturing ~r. The smallest angle found in all the views that
can see P becomes the score for pixel p. We compute the
score for every pixel in each of the randomly-selected novel
views. The actual score for each view is the mean of the
per-pixel scores. Figure 3 shows an example with two source
cameras C1 and C2.

We compute the per-pixel scores in parallel on the GPU
with Nvidia’s CUDA, and then compute the mean on the
CPU. With 100 source views, we can evaluate a new view-
points at roughly 155 frames per second on a GeForce GTX
480. We could possibly achieve higher speed by parallelizing
the mean, but the per-pixel scores dominate the computation.
Finally, we select the views with the best scores, and send
the robot to gather more photos at these locations.

Path-Planning. Our path-planning system takes a similar
approach to [22] and [26]. We create a navigation grid
(typically about 100 cells in the larger dimension) centered
on the bounding box of the previously explored area. Each
grid cell c is then assigned a score s(c) determined by the

number of above-ground 3D points that it contains. Our
coordinate system places all the cameras in the x-y plane, so
we can identity above-ground points by setting a threshold
on the z-coordinate. We set a conservative threshold of z = 0
in all our experiments.

The cost K(c) of entering a cell represents the probability
that c contains an obstacle. We precompute the costs of all
cells with a kernel density estimator. In a neighborhood N
around c, the cost K(c) is given by:

K(c) =
1

|N |
∑
ci∈N

w(c, ci) · s(ci) (1)

In our experiments, the weights w(c, ci) were Gaussian,
which allowed for efficient precomputation of the cell costs
via a separable convolution.

We find a path to our goal location with an A* search
on the grid, using the cell costs as weights. We allow the
robot to move to any of the 8 neighbors of its current cell.
To avoid a long sequence of short moves, we simplify the
path when the search completes. First, we merge sequences
of moves at the same angle into single longer moves. Then
we recursively remove path nodes that can be skipped over
without increasing the path cost by more than a constant
multiple of the total cost of the original move sequence.

Figure 4 shows the navigation grid for the office scene,
and an example path from A to D.

Path-Following. Our robot maintains a target node as it
follows its path. Initially, the robot is at the starting node
A and the target is the second node B. When the robot
comes within a threshold distance of its target node, the
next node along the path becomes the new target node,
until the robot reaches its goal D. Since the initial map
is only a rough approximation of the scene geometry, it
is possible that the path to the target is occluded. If our
robot encounters an obstacle, it drives a short distance off
of its path and then computes a new path to its goal. If the
robot encounters more than k obstacles, we assume that our
geometric model is inadequate to find a route to the goal
(or the goal unreachable), and move on to the next goal. We
used k = 5 in our experiments.

Accurate path-following depends on the ability to deter-
mine the robot’s location. Our robot’s odometry is inaccurate
(mainly due to slippage during turns), and thus we rely on
vision for localization. Localization begins by taking a photo,
and extracting SIFT features. We then match these new SIFT
features to the existing SIFT features associated with the
current 3D points obtained from Bundler. We use best bin
first search (BBF) [4] to accelerate the matching. Because the
point cloud is static, we precompute a balanced KD-Tree,
and reuse it every time we wish to localize a new photo.
Matching 1,000 features to a KD-Tree containing 160,000
features takes less than 250 milliseconds on a Core i7 920
CPU.

To ensure that our system is robust to bad matches, we
use RANSAC to compute the camera parameters from the
point correspondences. On each RANSAC iteration, we first
use the DLT algorithm [16, §4.1] to estimate a 3× 4 camera

matrix P . We then use an RQ decomposition [16, §6.2.4] to
extract the camera intrinsic matrix K, rotation matrix R, and
translation vector T from P , so that

P ≈ K ·

 R T

 (2)

where K—written in terms of the focal length f , image
width w, and image height h—has the form

K =

 f w/2
f h/2

1

 (3)

Due to error in P , (2) is never exact. Moreover, fac-
torizing P can introduce additional error, since the upper
triangular matrix obtained via the RQ decomposition does
not necessarily take the form of K. We therefore apply
a nonlinear optimization to f , R, and T , to minimize the
reprojection error of the matched points. The rotation matrix
and translation vector from the best consensus set give us
the position and orientation of the robot.

C. Reconstruction

When the robot has finished gathering new photos, we
regenerate a dense 3D model which includes the newly
discovered areas. We first run Bundler again, to obtain
precise locations of the new photos and sparse 3D points
in previously unexplored parts of the scene. We then use the
open-source patch-based multiview stereo software [12] to
obtain a dense reconstruction.

V. EVALUATION AND RESULTS

A. Scene Reconstruction

We tested our robot in an office, which contained a
variety of challenges to navigation and localization, including
furniture, specular surfaces, and textureless areas. The robot
took 108 photos during the random exploration stage, and
153 additional photos during the adaptive exploration stage.
Figure 7 shows the resulting point clouds from Bundler
before and after the adaptive exploration stage. To better
illustrate the completeness of the reconstruction, we also
generated dense points clouds with PMVS after each stage.

B. Evaluation of Navigation Accuracy

We evaluated the robot’s navigation accuracy in a small
test area in our lab. We hung a Webcam from the ceiling, to
provide a view of the test area directly overhead. We marked
a grid on the floor, which we used to remove perspective
distortion from the Webcam image. Then we allowed the
robot to run its random exploration stage in the test area,
taking a photo with the Webcam every time the robot took
a photo. We manually marked the robot’s location in each
overhead image, which gave us a ground truth heading and
orientation in every photo. To measure the accuracy of the
camera locations computed by Bundler, we found a similarity
transformation that minimized the sum of squared distances
between the Bundler camera locations and the ground truth

Fig. 5. (a): Histograms of the position error (in inches) and the heading
error (in degrees) for vision-based localization from 70 new viewpoints.
(b): Histograms of the position error (in inches) and the heading error (in
degrees) for the photos in the initial map.

locations. We then computed both the position and heading
error between Bundler’s results and the ground truth. Since
stereo reconstruction algorithms typically have more error
along the line of sight, we also computed the line of sight
and transverse components of the position error. Figure 5b
shows histograms of the results.

To evaluate the robot’s vision-based localization, we
placed the robot near a wall in our test area, and took 70
more photos as the robot slowly backed to the opposite wall.
We used the map obtained from Bundler to compute the
location of each photo. We then used the same similarity
transformation to map the locations of the new photos into
the ground truth coordinate frame, and compared the results
to manually-marked locations and headings. Figure 5a shows
histograms of the results.

On average, the position error was about two inches and
the heading error about a degree. This is likely within the
margin of error on our ground-truth positions.

C. View Synthesis

The photos gathered by our robot are naturally well-suited
for image-based rendering. We implemented a simple view-
interpolation system based on unstructured lumigraph render-
ing [15], using the dense point cloud directly as a geometric
proxy. We handle holes in the rasterized point cloud by
interpolating the depths from nearby pixels. We tested our
rendering system on a set of 261 images taken by the robot
in an office. Figure 6 shows several novel viewpoints. There
is some blurring due to slight inaccuracies in the recovered
geometry. If highly accurate view-interpolation is desired, we
would recommend a plane-based reconstruction algorithm
such as [11].

D. Limitations and Future Work

We have demonstrated a simple and inexpensive system
that can adaptively capture photos for scene reconstruction.

Fig. 6. Synthesized images from a set of photos taken by the robot.

Fig. 7. Top left: The point cloud after the random exploration stage. Top
right: The resulting dense point cloud computed with PMVS. Bottom-left:
The point cloud after the adaptive exploration stage. Bottom right: The
resulting dense point cloud computed with PMVS.

Our robot is guided by a heuristic that is well suited for both
dense reconstruction and image-based rendering. Currently,
we use two stages in the scene reconstruction, the random
exploration stage and the adaptive exploration stage. If the
adaptive exploration stage misses parts of the scene, we can
repeat the process as many times as necessary. One possible
direction for future work would be to dynamically update
the map during the adaptive exploration stage, and stop
automatically when it is complete.

Currently, evaluating our heuristic requires offline bundle
adjustment before the adaptive exploration stage. Ideally, we
would avoid global bundle adjustment until we build the final
3D model. Our heuristic requires only rough geometry, so
it would be conceivable to obtain approximate geometry by
running bundle adjustment on small clusters of images as the
robot explores. We could then use SLAM-based methods for
navigation, and eliminate the need for the random exploration
stage.

REFERENCES

[1] CHDK, 2007–2010, http://chdk.wikia.com/wiki/CHDK.
[2] D. Aliaga, T. Funkhouser, D. Yanovsky, and I. Carlbom, Reconstruct-

ing building interiors from images, Proc. IEEE Visualization, 2002,
pp. 331–338.

[3] Linus Atorf, Alexander Behrens, Achim Knepper, Robert Schwann,
Rainer Schnitzler, Johannes Ball, Thomas Herold, and Aulis
Telle, RWTH - Mindstorms NXT toolbox for Matlab, 2007–2009,
http://www.mindstorms.rwth-aachen.de.

[4] Jeffrey S. Beis and David G. Lowe, Shape indexing using approximate
nearest-neighbour search in high-dimensional spaces, CVPR, 1997,
pp. 1000–1006.

[5] Chris Buehler, Michael Bosse, Leonard McMillan, Steven Gortler,
and Michael Cohen, Unstructured lumigraph rendering, SIGGRAPH,
2001, pp. 425–432.

[6] Andrew J. Davison, Ian D. Reid, Nicholas D. Molton, and Olivier
Stasse, Monoslam: Real-time single camera slam, 29 (2007), no. 6,
1052–1067.

[7] Paul Debevec, Yizhou Yu, and George Boshokov, Efficient view-
dependent image-based rendering with projective texture-mapping,
Tech. report, 1998.

[8] Paul E. Debevec, Camillo J. Taylor, and Jitendra Malik, Modeling
and rendering architecture from photographs: a hybrid geometry- and
image-based approach, SIGGRAPH, 1996, pp. 11–20.

[9] Ethan Eade and Tom Drummond, Monocular slam as a graph of
coalesced observations, ICCV, 2007, pp. 1–8.

[10] , Unified loop closing and recovery for real time monocular
slam, BMVC, 2008.

[11] Yasutaka Furukawa, Brian Curless, Steven M. Seitz, and Richard
Szeliski, Reconstructing building interiors from images, ICCV, 2009,
pp. 80–87.

[12] Yasutaka Furukawa and Jean Ponce, Accurate, dense, and robust multi-
view stereopsis, PAMI 1 (2009), no. 1, 1–8.

[13] D. Gallup, J. Frahm, P. Mordohai, Q. Yang, and M. Pollefeys, Real-
time plane-sweeping stereo with multiple sweeping directions, CVPR,
2007, pp. 1–8.

[14] Michael Goesele, Noah Snavely, Brian Curless, Hugues Hoppe, and
Steven M. Seitz, Multi-view stereo for community photo collections,
ICCV, 2007, pp. 1–8.

[15] Steven J. Gortler, Radek Grzeszczuk, Richard Szeliski, and Michael F.
Cohen, The lumigraph, SIGGRAPH, 1996, pp. 43–54.

[16] Richard Hartley and Andrew Zisserman, Multiple view geometry in
computer vision, 2nd ed., Cambridge University Press, 2006.

[17] M. Kazhdan, M. Bolitho, and H. Hoppe, Poisson surface reconstruc-
tion, Proc. of SGP, 2006, pp. 61–70.

[18] Marc Levoy and Pat Hanrahan, Light field rendering, SIGGRAPH,
1996, pp. 31–42.

[19] David G. Lowe, Object recognition from local scale-invariant features,
ICCV, 1999, p. 1150.

[20] P. Merrell, A. Akbarzadeh, L. Wang, P. Mordohai, J. Frahm, R. Yang,
D. Nistér, and M. Pollefeys, Real-time visibility-based fusion of depth
maps, ICCV, 2007, pp. 1–8.

[21] Q. Pan, G. Reitmayr, and T. Drummond, ProFORMA: Probabilistic
Feature-based On-line Rapid Model Acquisition, BMVC, 2009.

[22] Kohtaro Sabe, Masaki Fukuchi, Jens-Steffen Gutmann, Takeshi
Ohashi, Kenta Kawamoto, and Takayuki Yoshigahara, Obstacle avoid-
ance and path planning for humanoid robots using stereo vision,
ICRA, vol. 1, 2004, pp. 592–597.

[23] S. Se, D. Lowe, and J. Little, Vision-based mobile robot localization
and mapping using scale-invariant features, ICRA, 2001, pp. 2051–
2058.

[24] Stephen Se, David G. Lowe, and James J. Little, Vision-based global
localization and mapping for mobile robots, IEEE Transactions on
Robotics 21 (2005), 364–375.

[25] Noah Snavely, Steven M. Seitz, and Richard Szeliski, Photo tourism:
exploring photo collections in 3d, ACM Trans. Graph. 25 (2006), no. 3,
835–846.

[26] Jens steffen Gutmann, Masaki Fukuchi, and Masahiro Fujita, Real-time
path planning for humanoid robot navigation, IJCAI, 2005, pp. 1232–
1237.

[27] Daniel N. Wood, Daniel I. Azuma, Ken Aldinger, Brian Curless, Tom
Duchamp, David H. Salesin, and Werner Stuetzle, Surface light fields
for 3d photography, SIGGRAPH, 2000, pp. 287–296.

[28] Ruigang Yang and Marc Pollefeys, Multi-resolution real-time stereo
on commodity graphics hardware, CVPR, 2003, pp. 211–218.

